

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	CSIO, EBI/EMI, I ² C, LINbus, UART/USART, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	83
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb9af314napmc-g-jne2

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

· Base Timer (Max 8channels)

Operation mode is selectable from the followings for each channel.

- 16-bit PWM timer
- 16-bit PPG timer
- 16/32-bit reload timer
- 16/32-bit PWC timer

· General-Purpose I/O Port

This series can use its pins as general-purpose I/O ports when they are not used for external bus or peripherals. Moreover, the port relocate function is built in. It can set which I/O port the peripheral function can be allocated to.

- · Capable of pull-up control per pin
- · Capable of reading pin level directly
- Built-in the port relocate function
- · Up to 83 fast General Purpose I/O Ports @ 100pin Package
- Some ports are 5V tolerant I/O (MB9AF315MA/NA, MB9AF316MA/NA only) Please see "
 PIN DESCRIPTION" to confirm the corresponding pins.

Multi-function Timer (Max 2unit)

The Multi-function timer is composed of the following blocks.

- 16-bit free-run timer \times 3ch/unit
- Input capture \times 4ch/unit
- Output compare \times 6ch/unit
- · A/D activating compare \times 3ch/unit
- Waveform generator \times 3ch/unit
- 16-bit PPG timer \times 3ch/unit

The following function can be used to achieve the motor control.

- PWM signal output function
- DC chopper waveform output function
- Dead timer function
- Input capture function
- A/D converter activate function
- DTIF (Motor emergency stop) interrupt function

· Quadrature Position/Revolution Counter (QPRC) (Max 2unit)

The Quadrature Position/Revolution Counter (QPRC) is used to measure the position of the position encoder. Moreover, it is possible to use up/down counter.

• The detection edge of the three external event input pins AIN, BIN and ZIN is configurable.

- 16-bit position counter
- · 16-bit revolution counter
- Two 16-bit compare registers

Dual Timer (32/16bit Down Counter)

The Dual Timer consists of two programmable 32/16-bit down counters. Operation mode is selectable from the followings for each timer channel.

- Free-running
- Periodic (=Reload)
- One-shot

■ PIN DESCRIPTION

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

		Pin No					Din state
LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64	Pin name	type	type
1	79	B1	1	1	VCC	-	
					P50		
				2	INT00_0		
				2	AIN0_2		
2	80	C1	2		SIN3_1	E	Н
					RTO10_0		
				-	(PPG10_0)		
					MADATA00_1		
					P51		
					INT01_0		
				3	BIN0_2		
3 81	81	C2	3		SOT3_1	F	ц
	01	C2	5		(SDA3_1)	Ľ	11
					RTO11_0		
				-	(PPG10_0)		
					MADATA01_1		
					P52		
					INT02_0		
	82			4	ZIN0_2	E	
4		P 3	4		SCK3_1		ц
7	02	82 B3			(SCL3_1)		11
				-	RTO12_0		
					(PPG12_0)		
					MADATA02_1		
					P53		
					SIN6_0		
					TIOA1_2		
5	83	D1	5	-	INT07_2	E	Н
					RTO13_0		
					(PPG12_0)		
					MADATA03_1		
					P54		
					SOT6_0		
6					(SDA6_0)		
	84	D2	6	-	TIOB1_2	Е	Ι
		. 22			RTO14_0		
					(PPG14_0)		
					MADATA04_1		

		Pin No				1/O circuit	Din state
LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64	Pin name	type	type
55	33	H10	45	37	P13 AN03 SCK1_1 (SCL1_1) IC01_2 MAD11 1	F	К
56	34	Н9	46	38	P14 AN04 INT03_1 IC02_2 SIN0_1 MAD12_1	F	L
57	35	H7	47	39	P15 AN05 IC03_2 SOT0_1 (SDA0_1)	- F	K
58	36	G10	48		MAD13_1 P16 AN06 SCK0_1 (SCL0_1) MAD14_1	F	K
59	37	G9	49	40	P17 AN07 SIN2_2 INT04_1 MAD15_1	F	L
60	38	H11	50	41	AVCC	-	-
61	39	F11	51	42	AVRH		
62 63	40	G11 G8	52	43	AVSS P18 AN08 SOT2_2 (SDA2_2) MAD16_1	F	К
64	42	F10	54	45	P19 AN09 SCK2_2 (SCL2_2) MAD17_1	F	К
-	-	H8	-	-	VSS	-	-

■ SIGNAL DESCRIPTION

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

			Pin No				
			LQFP-	QFP-	BGA-	LQFP-	LQFP-
Module	Pin name	Function	100	100	112	80	64
							QFN-
							64
ADC	ADTG 0		84	62	Δ7	66	04
ADC	ADTG_1		7	85	D2	7	-
	ADTG 2		10	06	D3 E4	12	-
	ADTG_2		04	90 72	C5	74	59
	ADTG_3	A/D converter external trigger input	94	12	CJ	/4	38
	ADTG_4	pin	- 70	- 19	- D11	-	-
	ADTG_6		12	40		- 12	-
	ADTC 7		20	90	E4	12	0
	ADIG_/		- 50	0	35	-	-
	ADIG_8		- 52	- 20	- T11	- 42	- 24
	AN00		52	21	J11 110	42	25
	ANO		55	22	J10 10	45	<u> </u>
	AN02		55	32	J8 1110	44	27
	AN03		55	24		43	20
	AN04		57	25	П9 117	40	20
	ANOS		50	26	П/	47	39
	AN00	A/D converter enclose input nin	50	27	GIU	48	- 40
		A/D converter analog input pin	59	37	C9	49 52	40
	ANOO	AIVAX describes ADC cli.xx.	64	41	U8 E10	55	44
	ANU9		65	42	F10 E0	55	43
	ANII		66	45	Г9 E11	55	-
	AN12		67	44		50	-
	AN12 AN13		68	45	EIU E8	-	-
	AN13 AN14		60	40	<u>го</u> Е0	-	-
	AN14 AN15		70	47	D11	-	-
Base Timer			27	+0 5	14 14	-	-
	$TIOA0_0$	Base timer ch 0 TIOA nin	19	97	G3	14	10
0	$TIOA0_1$	Dase timer ento TTOA pin	85	63	B7	17	10
	TIOR0_2		40	18	I6	30	22
	TIOB0_0	Base timer ch 0 TIOB nin	9	87	F1	9	5
	TIOB0_1	Duse unier ento 110D più	86	64	C7	_	-
Base Timer	TIOA1 0		28	6	L5	_	_
1	TIOA1 1	Base timer ch.1 TIOA pin	20	98	H1	15	11
-	TIOA1 2		5	83	D1	5	-
	TIOB1 0		41	19	L7	31	23
	TIOB1_0	Base timer ch.1 TIOB pin	10	88	E2	10	6
	TIOB1 2		6	84	D2	6	-
Base Timer	TIOA2 0		29	7	K5	-	-
2	TIOA2 1	Base timer ch.2 TIOA pin	21	99	H2	16	12
	TIOA2 2	- <u>r</u>	96	74	C4	76	60
	TIOB2 0		42	20	K7	32	24
	TIOB2 1	Base timer ch.2 TIOB pin	11	89	E3	11	7
	TIOB2_2	• • •	95	73	B4	75	59

			Pin No				
			LQFP-	QFP-	BGA-	LQFP-	LQFP-
Module	Pin name	Function	100	100	112	80	64
							QFN-
							64
Multi Function	SIN2_2	Multifunction serial interface ch.2 input pin	59	37	G9	49	40
Serial 2	SOT2_2 (SDA2_2)	Multifunction serial interface ch.2 output pin This pin operates as SOT2 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA2 when it is used in an I ² C (operation mode 4).	63	41	G8	53	44
	SCK2_2 (SCL2_2)	Multifunction serial interface ch.2 clock I/O pin This pin operates as SCK2 when it is used in a CSIO (operation modes 2) and as SCL2 when it is used in an I ² C (operation mode 4).	64	42	F10	54	45
Multi	SIN3_1	Multifunction serial interface ch.3	2	80	C1	2	2
Function	SIN3_2	input pin	39	17	K6	29	-
Serial 3	SOT3_1 (SDA3_1)	Multifunction serial interface ch.3 output pin	3	81	C2	3	3
	SOT3_2 (SDA3_2)	This pin operates as SOT3 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA3 when it is used in an I^2C (operation mode 4).	40	18	J6	30	-
	SCK3_1 (SCL3_1)	Multifunction serial interface ch.3 clock I/O pin	4	82	B3	4	4
	SCK3_2 (SCL3_2)	This pin operates as SCK3 when it is used in a CSIO (operation modes 2) and as SCL3 when it is used in an I^2C (operation mode 4).	41	19	L7	31	-

I

I

					Pin No		
			LQFP-	QFP-	BGA-	LQFP-	LQFP-
Module	Pin name	Function	100	100	112	80	64
							QFN-
							64
Multi	SIN4_0	Maltifunction equial interface at 4	87	65	D7	67	54
Function	SIN4_1	Multifunction serial interface cn.4	65	43	F9	55	-
Serial	SIN4_2	input pin	82	60	C8	-	-
4	SOT4_0 (SDA4_0)	Multifunction serial interface ch.4 output pin	88	66	A6	68	55
	$\begin{array}{c} \overline{\text{SOT4}_1} \\ (\text{SDA4} \ 1) \end{array}$	This pin operates as SOT4 when it is used in a UART/CSIO/LIN (operation	66	44	E11	56	-
	$\frac{\text{SOT4}_2}{\text{SDA4}_2}$	modes 0 to 3) and as SDA4 when it is used in an I^2C (operation mode 4)	83	61	D9	-	-
	SCK4_0 (SCL4_0)	Multifunction serial interface ch.4	89	67	B6	69	56
	$\frac{(SCL_{1}=0)}{SCK4_{1}}$	This pin operates as SCK4 when it is used in a CSIO (operation modes 2)	67	45	E10	-	-
	$\frac{\text{SCE1}_{1}}{\text{SCK4}_{2}}$	and as SCL4 when it is used in an I^2C (operation mode 4).	84	62	A7	-	-
	RTS4 0		90	68	C6	70	-
	RTS4 1	Multifunction serial interface ch.4	69	47	E9	-	-
	RTS4 2	RTS output pin	86	64	C7	-	-
	CTS4_0		91	69	A5	71	-
	CTS4_1	CTS input nin	68	46	F8	-	-
	CTS4_2	CTS input pin	85	63	B7	-	-
Multi	SIN5_0	Multifunction serial interface ch.5	96	74	C4	76	60
Function	SIN5_2	input pin	15	93	F3	-	-
Serial 5	SOT5_0 (SDA5_0)	Multifunction serial interface ch.5 output pin	95	73	B4	75	59
	SOT5_2 (SDA5_2)	This pin operates as SOT5 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA5 when it is used in an I^2C (operation mode 4).	16	94	G1	-	-
	SCK5_0 (SCL5_0)	Multifunction serial interface ch.5 clock I/O pin	94	72	C5	74	58
	SCK5_2 (SCL5_2)	This pin operates as SCK5 when it is used in a CSIO (operation modes 2) and as SCL5 when it is used in an I^2C (operation mode 4).	17	95	G2	-	-

I

I

I

I

			Pin No					
			LQFP-	QFP-	BGA-	LQFP-	LQFP-	
Module	Pin name	Function	100	100	112	80	64	
							QFN-	
							64	
Multi	DTTI1X_0	Input signal of wave form generator to	8	86	D5	8	-	
Function	DTTI1V 1	control outputs RTO10 to RTO15 of	30	17	K6	20		
Timer		multi-function timer 1	39	17	KU	29	-	
1	FRCK1_0	16-bit free-run timer ch.1 external	87	65	D7	67	-	
	FRCK1_1	clock input pin	44	22	J7	34	-	
	IC10_0		88	66	A6	68	-	
	IC10_1		40	18	J6	30	-	
	IC11_0	16 hit input conture input pip of	89	67	B6	69	-	
	IC11_1	multi function timer 1	41	19	L7	31	-	
	IC12_0	ICyy describes shannel number	90	68	C6	70	-	
	IC12_1	ICXX describes channel humber.	42	20	K7	32	-	
	IC13_0		91	69	A5	71	-	
	IC13 1		43	21	H6	33	-	
	RTO10 0	Wave form generator output of						
	(PPG10_0)	multi-function timer 1	2	80	CI	2	-	
	RTO10 1	This pin operates as PPG10 when it is		_				
	(PPG10_1)	used in PPG 1 output modes.	27	5	J 4	-	-	
	RTO11 0	Wave form generator output of		0.1	G2	2		
	(PPG10_0)	multi-function timer 1	3	81	C2	3	-	
	RTO11_1	This pin operates as PPG10 when it is	20	6	τ.σ			
	(PPG10_1)	used in PPG 1 output modes.	28	0	L5	-	-	
	RTO12_0	Wave form generator output of	4	01	D2	4		
	(PPG12_0)	multi-function timer 1	4	02	D3	4	-	
	RTO12_1	This pin operates as PPG12 when it is	29	7	К5	_		
	(PPG12_1)	used in PPG 1 output modes.	2)	7	K.J	_		
	RTO13_0	Wave form generator output of	5	83	D1	5	_	
	(PPG12_0)	multi-function timer 1		05		5		
	RTO13_1	This pin operates as PPG12 when it is	30	8	15	-	_	
	(PPG12_1)	used in PPG 1 output modes.	50	0	35			
	RTO14_0	Wave form generator output of	6	84	D2	6	_	
	(PPG14_0)	multi-function timer 1		01		0		
	RTO14_1	This pin operates as PPG14 when it is	31	9	H5	21	_	
	(PPG14_1)	used in PPG 1 output modes.		-				
	RT015_0	Wave form generator output of	7	7 85	D3	7	-	
	(PPG14_0)	multi-function timer 1		-	_			
	RTO15_1	Inis pin operates as PPG14 when it is	32	10	L6	22	-	
	(PPG14_1)	used in PPG 1 output modes.		10	20			

HANDLING PRECAUTIONS

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your FUJITSU SEMICONDUCTOR semiconductor devices.

1. Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

(1) Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.

(2) Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device.

Therefore, avoid this type of connection.

(3) Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- (1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- (2) Be sure that abnormal current flows do not occur during the power-on sequence.

HANDLING DEVICES

Power supply pins

In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with each Power supply pin and GND pin of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 μ F be connected as a bypass capacitor between each Power supply pin and GND pin near this device.

· Crystal oscillator circuit

Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as close to the device as possible.

It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation.

Using an external clock

When using an external clock, the clock signal should be driven to the X0,X0A pin only and the X1,X1A pin should be kept open.

Handling when using Multi function serial pin as I²C pin

If it is using the multi function serial pin as I^2C pins, P-ch transistor of digital output is always disabled. However, I^2C pins need to keep the electrical characteristic like other pins and not to connect to the external I^2C bus system with power OFF.

Pin		Power-on reset or low voltage detection state	INITX input state	Device internal reset state	Run mode or sleep mode state	Timer mode o sta	r STOP mode ate
status type	Function group	Power supply unstable	Power s	upply stable	Power supply stable	Power sup	oply stable
	1	-	INITX=0	INITX=1	INITX=1	INIT	X=1
		-	-	-	-	SPL=0	SPL=1
Ν	GPIO selected	Setting	Setting	Setting	Maintain	Maintain	Hi-Z/
	1	disabled	disabled	disabled	previous	previous	Internal
					state	state	input fixed at "0"
	Sub crystal	Hi-Z/	Hi-Z/	Hi-Z/	Maintain	Maintain	Maintain
	oscillator output	Internal input	Internal	Internal	previous	previous	previous
	pin	fixed at "0"/	input fixed	input fixed	state	state/ Hi-Z	state/ Hi-Z
	1	or Input	at "0"	at "0"		at	at
	1	enabled				oscillation	oscillation
	1					stop* ² /	stop* ² /
	1					Internal	Internal
	1					input fixed	input fixed
		11.2				at "0"	at "0"
0	GPIO selected	H1-Z	H1-Z/	H1-Z/	Maintain	Maintain	H1-Z/
	1		Input	Input	previous	previous	Internal
			enabled	enabled	state	state	at "0"
	USB I/O pin	Setting	Setting	Setting	Maintain	Hi-Z at	Hi-Z at
	1	disabled	disabled	disabled	previous	transmission	transmission
	1				state	/ Input	/ Input
	1					enabled/	enabled/
	1					Internal	Internal
	1					input fixed	input fixed
	1					at "0" at	at "0" at
D	M 1 ' / '	T (11.1	T (T (reception	reception
Р	wode input pin	input enabled	input	Input	Input	Input	Input
	CDIO salaatad	Sotting	Sotting	Satting	Maintair	Maintain	Li 7/Input
	GPIO selected	disabled	disabled	disabled	provious	provious	anabled
		uisableu	uisabied	uisabled	state	state	enableu
		1			state	state	

*1 : Oscillation is stopped at sub timer mode, low speed CR timer mode, and stop mode.

*2 : Oscillation is stopped at stop mode.

• Pin Characteristics

			(Vcc = AVcc = 2)	.7V to 5.5V,	$Vss = A^{2}$	Vss = 0V, Ta	= - 40°C	C to $+ 105^{\circ}C$
Paramotor	Symbol	Din nama	Conditions			Lloit	Domorko	
Farameter	Symbol	Finname	Conditions	Min	Тур	Max	Unit	Remarks
"H" level input voltage	V _{IHS}	CMOS hysteresis input pin, MD0,1	-	Vcc imes 0.8	-	Vcc + 0.3	V	
(hysteresis input)		5V tolerant I/O pin	-	$Vcc \times 0.8$	-	Vss + 5.5	V	
"L" level input voltage (hysteresis input)	V _{ILS}	CMOS hysteresis input pin, MD0,1	-	Vss - 0.3	-	$Vcc \times 0.2$	V	
"H" level output voltage		4mA type	$\label{eq:Vcc} \begin{split} Vcc \geq 4.5 \ V\\ I_{OH} = - \ 4mA\\ Vcc < 4.5 \ V\\ I_{OH} = - \ 2mA \end{split}$	Vcc - 0.5	-	Vcc	V	
	V _{OH}	12mA type	$\label{eq:Vcc} \begin{split} Vcc &\geq 4.5 \ V\\ I_{OH} &= -12mA\\ Vcc &< 4.5 \ V\\ I_{OH} &= -8mA \end{split}$	Vcc - 0.5	-	Vcc	V	
			The pin doubled as USB I/O	$Vcc \ge 4.5 V$ $I_{OH} = -20.5mA$ $Vcc < 4.5 V$ $I_{OH} = -13.0mA$	• Vcc - 0.4	-	Vcc	V
		4mA type	$\label{eq:Vcc} \begin{split} Vcc &\geq 4.5 \ V\\ I_{OL} &= 4mA\\ \hline Vcc &< 4.5 \ V\\ I_{OL} &= 2mA \end{split}$	Vss	-	0.4	V	
"L" level output voltage	V _{OL}	12mA type	$Vcc \ge 4.5 \text{ V}$ $I_{OL} = 12mA$ $Vcc < 4.5 \text{ V}$ $I_{OL} = 8mA$	Vss	-	0.4	V	
		The pin doubled as USB I/O	$\label{eq:Vcc} \begin{split} Vcc &\geq 4.5 \ V\\ I_{OL} &= 18.5 mA\\ Vcc &< 4.5 \ V\\ I_{OL} &= 10.5 mA \end{split}$	Vss	-	0.4	V	
Input leak current	I _{IL}	-	-	- 5	-	+ 5	μΑ	
Pull-up		D-11	$Vcc \ge 4.5 V$	25	50	100	1-0	
value	K _{PU}	Pull-up pin	Vcc < 4.5 V	30	80	200	KΩ	
Input capacitance	C _{IN}	Other than Vcc, Vss, AVcc, AVss, AVRH	_	-	5	15	pF	

		(V	cc = 2.7V to 5.5	V, Vss = 0V, Ta	$= -40^{\circ}$ C to $+10^{\circ}$ C	05°C)	
Deremeter	Symbol	Din nomo	Conditiona	Va	Lloit		
Farameter	Symbol	Pin name	Conditions	Min	Max	Unit	
Multiplexed	t		$Vcc \ge 4.5V$	0	10	ns	
Address delay time	ALE-CHMADV	MALE	Vcc < 4.5V	Ŭ	20	115	
Multiplexed Address hold time	t _{CHMADH}	MADATA[15:0]	$Vcc \ge 4.5V$	MCLK×n+0	MCLK×n+10	ns	
	CIMADII		Vcc < 4.5V	MCLK×n+0	MCLK×n+20		

Multiplexed Bus Access Asynchronous SRAM Mode

Note: When the external load capacitance $C_L = 30 \text{pF}$ (m = 0 to 15, n = 1 to 16).

			(Vcc = 2.7V tc	o 5.5V, Vss	= 0V, Ta =	- 40°C	to + 105°C)
Paramotor	Symbol	Din nama	Conditions	Val	Value		Romarks
Falametei	Symbol	Finname	Conditions	Min	Max	Onit	Remains
	+	MCLK ALE	$Vcc \ge 4.5V$	1	9	ns	
MALE dology time	¹ CHAL		Vcc < 4.5V		12	ns	
MALE delay time	t _{CHAH}		$Vcc \ge 4.5V$	1	9	ns	
			Vcc < 4.5V		12	ns	
MCLK $\uparrow \rightarrow$			$\mathbf{V}_{22} > 4.5\mathbf{V}$		t _{OD}		
Multiplexed	t _{CHMADV}		$VCC \ge 4.5 V$	1		ns	
Address delay time		MCLK	Vcc < 4.5V				
$MCLK \uparrow \rightarrow$		MADATA[15:0]	$V_{CC} > 4.5 V$				
Multiplexed	t _{CHMADX}		VCC ≥ 4.3 V	1	t _{OD}	ns	
Data output time			Vcc < 4.5V				

Multiplexed Bus Access Synchronous SRAM Mode

Note: When the external load capacitance $C_L = 30 \text{pF}$.

		(Vcc = 2.7)	V to $5.5V$, Vss = 0	V, Ta = - 40° C to	+ 105°C)
Doromotor	Symbol	Conditions	Va	ue	Linit
Farameter	Symbol	Conditions	Min	Max	Unit
AIN pin "H" width	t _{AHL}	-			
AIN pin "L" width	t _{ALL}	-			
BIN pin "H" width	t _{BHL}	-			
BIN pin "L" width	t _{BLL}	-			
BIN rise time from	t	PC_Mode2 or			
AIN pin "H" level	LAUBU	PC_Mode3			
AIN fall time from	t	PC_Mode2 or			
BIN pin "H" level	¹ BUAD	PC_Mode3			
BIN fall time from	t	PC_Mode2 or			ns
AIN pin "L" level	LADBD	PC_Mode3			
AIN rise time from	t	PC_Mode2 or			
BIN pin "L" level	^L BDAU	PC_Mode3			
AIN rise time from	t	PC_Mode2 or	2t *	-	
BIN pin "H" level	¹ BUAU	PC_Mode3	ZICYCP		
BIN fall time from	t	PC_Mode2 or			
AIN pin "H" level	LAUBD	PC_Mode3			
AIN fall time from	t	PC_Mode2 or			
BIN pin "L" level	LBDAD	PC_Mode3			
BIN rise time from	t	PC_Mode2 or			
AIN pin "L" level	LADBU	PC_Mode3			
ZIN pin "H" width	t _{ZHL}	QCR:CGSC = "0"			
ZIN pin "L" width	t _{ZLL}	QCR:CGSC = "0"			
AIN/BIN rise and fall time	+	$OCP \cdot CCSC = "1"$			
from determined ZIN level	^L ZABE	V = 1			
Determined ZIN level from	t	$OCR \cdot CCSC = "1"$			
AIN/BIN rise and fall time	LABEZ	V = 2600.000			

((11)	Quadrature	Position	/Revolution	Counter	timing
		addatatato	1 001001	/	00011101	

* : t_{CYCP} indicates the APB bus clock cycle time except stop.

About the APB bus number which Quadrature Position/Revolution Counter is connected to, see "BLOCK DIAGRAM" in this data sheet.

- *3 : The output drive capability of the driver is below 0.3 V at Low-State (V_{OL}) (to 3.6 V and 1.5 k Ω load), and 2.8 V or above (to the ground and 1.5 k Ω load) at High-State (V_{OH}).
- *4 : The cross voltage of the external differential output signal (D + /D –) of USB I/O buffer is within 1.3 V to 2.0 V.

 *5 : They indicate rising time (Trise) and falling time (Tfall) of the full-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage. For full-speed buffer, Tr/Tf ratio is regulated as within ± 10% to minimize RFI emission.

ORDERING INFORMATION

Part number	Package	
MB9AF311LAPMC1	Plastic • LQFP(0.5mm pitch),64-pin (FPT-64P-M24/M38)	
MB9AF312LAPMC1		
MB9AF314LAPMC1		
MB9AF311LAPMC	Plastic • LQFP(0.65mm pitch),64-pin (FPT-64P-M23/M39)	
MB9AF312LAPMC		
MB9AF314LAPMC		
MB9AF311LAQN	Plastic • QFN(0.5mm pitch),64-pin (LCC-64P-M24)	
MB9AF312LAQN		
MB9AF314LAQN		
MB9AF311MAPMC		
MB9AF312MAPMC	Plactic + I OED(0.5mm nitch) 80 nin	
MB9AF314MAPMC	(FPT-80P-M21/M37)	
MB9AF315MAPMC		
MB9AF316MAPMC		
MB9AF311NAPMC	Plastic + LOED(0.5mm pitch) 100 pin	
MB9AF312NAPMC		
MB9AF314NAPMC	(FPT-100P-M20/M23)	
MB9AF315NAPMC	(11110011120)	
MB9AF316NAPMC		
MB9AF311NAPF		
MB9AF312NAPF	Plastic + OED(0.65mm nitch) 100 nin	
MB9AF314NAPF	Plastic • QFP(0.65mm pitch), 100-pin (FPT-100P-M06)	
MB9AF315NAPF		
MB9AF316NAPF		
MB9AF311NABGL	Direction $PEPCA(0.8mm nitch) 112 nin$	
MB9AF312NABGL	(BGA-112P-M04)	
MB9AF314NABGL		

FU

ÍITSU

Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

Page	Section	Change Results
94	5. 12-bit A/D Converter (1) Electrical characteristics for the A/D converter	 Corrected the value of "Full-scale transition voltage". Min: -20 → AVRH-20 Max: +20 → AVRH+20 Corrected the value of "Compare clock cycle". Max: 10000 → 2000 Corrected the value of "Reference voltage". Min: AVSS → 2.7

