

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	16-TSSOP
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08pa16vtg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Input/Output
 - Up to 37 GPIOs including one output-only pin
 - One 8-bit keyboard interrupt module (KBI)
 - Two true open-drain output pins
 - Four, ultra-high current sink pins supporting 20 mA source/sink current
- Package options
 - 44-pin LQFP
 - 32-pin LQFP
 - 20-pin SOIC; 20-pin TSSOP
 - 16-pin TSSOP

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PA16 and PA8.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

MC 9 S08 PA AA (V) B CC

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
MC	Qualification status	MC = fully qualified, general market flow
9	Memory	9 = flash based
S08	Core	• S08 = 8-bit CPU
PA	Device family	• PA
AA	Approximate flash size in KB	• 16 = 16 KB • 8 = 8 KB
(V)	Mask set version	(blank) = Any version A = Rev. 2 or later version, this is recommended for new design

Field	Description	Values
В	Operating temperature range (°C)	• V = -40 to 105
CC	Package designator	 LD = 44-LQFP LC = 32-LQFP TJ = 20-TSSOP WJ = 20-SOIC TG = 16-TSSOP

2.4 Example

This is an example part number:

MC9S08PA16VLD

3 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 1. Parameter Classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

Nonswitching electrical specifications

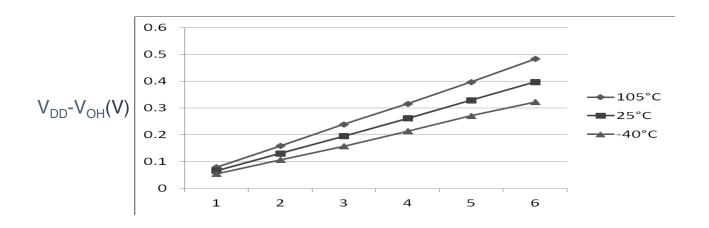
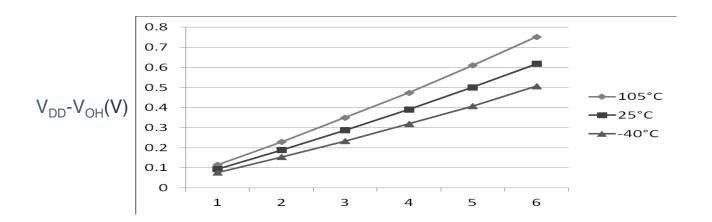

6. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Table 3. LVD and POR Specification

Symbol	С	Desc	ription	Min	Тур	Max	Unit
V _{POR}	D	POR re-arr	n voltage ^{1, 2}	1.5	1.75	2.0	V
V_{LVDH}	С	threshold - hig	roltage detect h range (LVDV 1) ³	4.2	4.3	4.4	V
V _{LVW1H}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	С	warning threshold - high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}	С	— High range	Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}	С		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	С		High range low-voltage detect/warning hysteresis		100	_	mV
V _{LVDL}	С	threshold - low	roltage detect range (LVDV = 0)	2.56	2.61	2.66	V
V _{LVDW1L}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V _{LVDW2L}	С	warning threshold - low range	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVDW3L}	С	low range	Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V _{LVDW4L}	С		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}	С		Low range low-voltage detect hysteresis		40	_	mV
V _{HYSWL}	С		low-voltage nysteresis	_	80	_	mV
V_{BG}	Р	Buffered ban	dgap output 4	1.14	1.16	1.18	V


- 1. Maximum is highest voltage that POR is guaranteed.
- 2. POR ramp time must be longer than 20us/V to get a stable startup.
- 3. Rising thresholds are falling threshold + hysteresis.
- 4. Voltage factory trimmed at $V_{DD} = 5.0 \text{ V}$, Temp = 25 °C

 $I_{OH}(mA)$

Figure 1. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) (V_{DD} = 5 V)

 $I_{OH}(mA)$

Figure 2. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) (V_{DD} = 3 V)

5.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

Table 4. Supply current characteristics

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
1	С	Run supply current FEI	RI _{DD}	20 MHz	5	7.60	_	mA	-40 to 105 °C
	С	mode, all modules on; run from flash		10 MHz		4.65	_		
		HOIH HASH		1 MHz		1.90	_		
	С			20 MHz	3	7.05	_		
	С			10 MHz		4.40	_		
				1 MHz		1.85	_		
2	С	Run supply current FEI	RI _{DD}	20 MHz	5	5.88	_	mA	-40 to 105 °C
	С	mode, all modules off &		10 MHz		3.70	_		
		gated; run from flash		1 MHz		1.85	_		
	С			20 MHz	3	5.35	_		
	С			10 MHz		3.42	_		
				1 MHz		1.80	_		
3	Р	Run supply current FBE	RI _{DD}	20 MHz	5	10.9	14.0	mA	-40 to 105 °C
	С	mode, all modules on; run		10 MHz		6.10	_		
		from RAM		1 MHz		1.69	_	1	
	Р			20 MHz	3	8.18	_		
	С			10 MHz		5.14	_		
				1 MHz		1.44	_		
4	Р	Run supply current FBE	RI _{DD}	20 MHz	5	8.50	13.0	mA	-40 to 105 °C
	С	mode, all modules off &		10 MHz		5.07	_		
		gated; run from RAM		1 MHz		1.59	_		
	P			20 MHz	3	6.11	_	1	
	С			10 MHz		4.10	_	1	
				1 MHz		1.34	_	1	
5	Р	Wait mode current FEI	WI _{DD}	20 MHz	5	5.95	_	mA	-40 to 105 °C
	С	mode, all modules on	55	10 MHz		3.50	_	-	
				1 MHz		1.24	_	1	
	С			20 MHz	3	5.45	_	1	
				10 MHz		3.25	_	-	
				1 MHz		1.20	_	-	
6	С	Stop3 mode supply	S3I _{DD}	_	5	4.6	_	μΑ	-40 to 105 °C
-	C	current no clocks active	00	_	3	4.5	_	- F	-40 to 105 °C
		(except 1kHz LPO clock) ^{2, 3}							
7	С	ADC adder to stop3	_	_	5	40	_	μA	-40 to 105 °C

Table 4.	Supply current	characteristics	(continued))
----------	-----------------------	-----------------	-------------	---

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
	C	ADLPC = 1			3	39	_		
		ADLSMP = 1							
		ADCO = 1							
		MODE = 10B							
		ADICLK = 11B							
8	С	LVD adder to stop3 ⁴	_	_	5	128	_	μΑ	-40 to 105 °C
	С				3	124			

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. RTC adder cause <1 μA I_{DD} increase typically, RTC clock source is 1kHz LPO clock.
- 3. ACMP adder cause <10 μ A I_{DD} increase typically.
- 4. LVD is periodically woken up from stop3 by 5% duty cycle. The period is equal to or less than 2 ms.

5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

5.1.3.1 EMC radiated emissions operating behaviors Table 5. EMC radiated emissions operating behaviors for 44-pin LQFP package

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	8	dΒμV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	8	dΒμV	
V _{RE3}	Radiated emissions voltage, band 3	150-500	8	dΒμV	
V _{RE4}	Radiated emissions voltage, band 4	500-1000	5	dΒμV	
V _{RE_IEC}	IEC level	0.15-1000	N	_	2, 3

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150
 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits Measurement of
 Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband
 TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported
 emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the
 measured orientations in each frequency range.
- 2. V_{DD} = 5.0 V, T_A = 25 °C, f_{OSC} = 10 MHz (crystal), f_{SYS} = 20 MHz, f_{BUS} = 20 MHz
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method

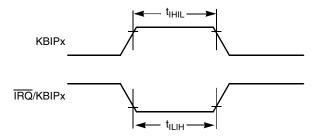


Figure 10. IRQ/KBIPx timing

5.2.2 Debug trace timing specifications

Table 7. Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit
t _{cyc}	Clock period	Frequency	dependent	MHz
t _{wl}	Low pulse width	2	_	ns
t _{wh}	High pulse width	2	_	ns
t _r	Clock and data rise time	_	3	ns
t _f	Clock and data fall time	_	3	ns
t _s	Data setup	3	_	ns
t _h	Data hold	2	_	ns

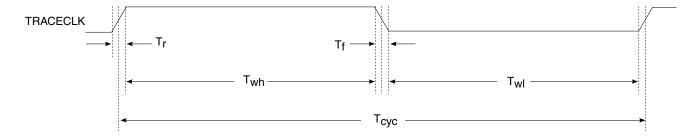


Figure 11. TRACE_CLKOUT specifications

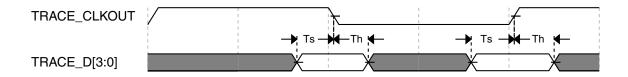


Figure 12. Trace data specifications

5.2.3 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

No.	С	Function	Symbol	Min	Max	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
2	D	External clock period	t _{TCLK}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Table 8. FTM input timing

Figure 13. Timer external clock

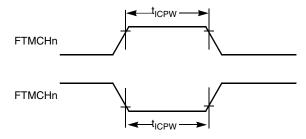


Figure 14. Timer input capture pulse

Table 10. XOSC and ICS specifications (temperature range = -40 to 105 °C ambient) (continued)

Num	С	Characteristic	Symbol	Min	Typical ¹	Max	Unit
13	С	Long term jitter of DCO output clock (averaged over 2 ms interval) ⁸	C _{Jitter}	_	0.02	0.2	%f _{dco}

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.
- 3. See crystal or resonator manufacturer's recommendation.
- Load capacitors (C₁,C₂), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0.
- 5. This parameter is characterized and not tested on each device.
- 6. Proper PC board layout procedures must be followed to achieve specifications.
- 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 8. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

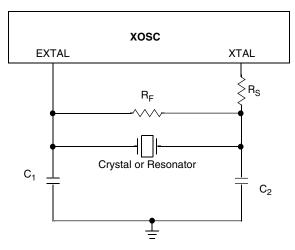


Figure 15. Typical crystal or resonator circuit

6.2 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash and EEPROM memories.

Table 11. Flash characteristics

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	Supply voltage for program/erase -40 °C to 105 °C	V _{prog/erase}	2.7	_	5.5	V
D	Supply voltage for read operation	V_{Read}	2.7	_	5.5	V

reripheral operating requirements and behaviors

Table 11. Flash characteristics (continued)

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	NVM Bus frequency	f _{NVMBUS}	1	_	25	MHz
D	NVM Operating frequency	f _{NVMOP}	0.8	1	1.05	MHz
D	Erase Verify All Blocks	t _{VFYALL}	_	_	17338	t _{cyc}
D	Erase Verify Flash Block	t _{RD1BLK}	_	_	16913	t _{cyc}
D	Erase Verify EEPROM Block	t _{RD1BLK}	_	_	810	t _{cyc}
D	Erase Verify Flash Section	t _{RD1SEC}	_	_	484	t _{cyc}
D	Erase Verify EEPROM Section	t _{DRD1SEC}	_	_	555	t _{cyc}
D	Read Once	t _{RDONCE}	_	_	450	t _{cyc}
D	Program Flash (2 word)	t _{PGM2}	0.12	0.12	0.29	ms
D	Program Flash (4 word)	t _{PGM4}	0.20	0.21	0.46	ms
D	Program Once	t _{PGMONCE}	0.20	0.21	0.21	ms
D	Program EEPROM (1 Byte)	t _{DPGM1}	0.10	0.10	0.27	ms
D	Program EEPROM (2 Byte)	t _{DPGM2}	0.17	0.18	0.43	ms
D	Program EEPROM (3 Byte)	t _{DPGM3}	0.25	0.26	0.60	ms
D	Program EEPROM (4 Byte)	t _{DPGM4}	0.32	0.33	0.77	ms
D	Erase All Blocks	t _{ERSALL}	96.01	100.78	101.49	ms
D	Erase Flash Block	t _{ERSBLK}	95.98	100.75	101.44	ms
D	Erase Flash Sector	t _{ERSPG}	19.10	20.05	20.08	ms
D	Erase EEPROM Sector	t _{DERSPG}	4.81	5.05	20.57	ms
D	Unsecure Flash	t _{UNSECU}	96.01	100.78	101.48	ms
D	Verify Backdoor Access Key	t _{VFYKEY}	_	_	464	t _{cyc}
D	Set User Margin Level	t _{MLOADU}	_	_	407	t _{cyc}
С	FLASH Program/erase endurance T_L to T_H = -40 °C to 105 °C	n _{FLPE}	10 k	100 k	_	Cycles
С	EEPROM Program/erase endurance TL to TH = -40 °C to 105 °C	n _{FLPE}	50 k	500 k	_	Cycles
С	Data retention at an average junction temperature of T _{Javg} = 85°C after up to 10,000 program/erase cycles	t _{D_ret}	15	100	_	years

^{1.} Minimum times are based on maximum f_{NVMOP} and maximum f_{NVMBUS}

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

^{2.} Typical times are based on typical $f_{\mbox{\scriptsize NVMOP}}$ and maximum $f_{\mbox{\scriptsize NVMBUS}}$

^{3.} Maximum times are based on typical $f_{\mbox{\scriptsize NVMOP}}$ and typical $f_{\mbox{\scriptsize NVMBUS}}$ plus aging

^{4.} $t_{cyc} = 1 / f_{NVMBUS}$

6.3 Analog

6.3.1 ADC characteristics

Table 12. 5 V 12-bit ADC operating conditions

Characteri stic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply	Absolute	V_{DDA}	2.7	_	5.5	V	_
voltage	Delta to V _{DD} (V _{DD} -V _{DDAD})	ΔV_{DDA}	-100	0	+100	mV	
Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSA}) ²	ΔV_{SSA}	-100	0	+100	mV	
Input voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
Input capacitance		C _{ADIN}	_	4.5	5.5	pF	
Input resistance		R _{ADIN}	_	3	5	kΩ	_
Analog source	12-bit mode • f _{ADCK} > 4 MHz	R _{AS}	_	_	2	kΩ	External to MCU
resistance	• f _{ADCK} < 4 MHz		_	_	5		
	10-bit modef_{ADCK} > 4 MHz		_	_	5		
	• f _{ADCK} < 4 MHz		_	_	10		
	8-bit mode		_	_	10		
	(all valid f _{ADCK})						
ADC	High speed (ADLPC=0)	f _{ADCK}	0.4	_	8.0	MHz	_
conversion clock frequency	Low power (ADLPC=1)		0.4	_	4.0		

^{1.} Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

^{2.} DC potential difference.

Table 13. 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
	Low power (ADLPC = 1)			1.25	2	3.3	
Conversion time (including sample	Short sample (ADLSMP = 0)	Т	t _{ADC}	_	20	_	ADCK cycles
time)	Long sample (ADLSMP = 1)			_	40	_	
Sample time	Short sample (ADLSMP = 0)	Т	t _{ADS}	_	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)			_	23.5	_	
Total unadjusted Error ²	12-bit mode	T	E _{TUE}	_	±5.0	_	LSB ³
	10-bit mode	Р		_	±1.5	±2.0	
	8-bit mode	Р		_	±0.7	±1.0	
Differential Non- Linearity	12-bit mode	T	DNL	_	±1.0	_	LSB ³
	10-bit mode ⁴	Р		_	±0.25	±0.5	
	8-bit mode ⁴	Р		_	±0.15	±0.25	
Integral Non-Linearity	12-bit mode	Т	INL	_	±1.0	_	LSB ³
	10-bit mode	Т		_	±0.3	±0.5]
	8-bit mode	Т		_	±0.15	±0.25	
Zero-scale error ⁵	12-bit mode	С	E _{zs}	_	±2.0	_	LSB ³
	10-bit mode	Р		_	±0.25	±1.0	
	8-bit mode	Р		_	±0.65	±1.0	1
Full-scale error ⁶	12-bit mode	Т	E _{FS}	_	±2.5	_	LSB ³
	10-bit mode	Т		_	±0.5	±1.0]
	8-bit mode	Т		_	±0.5	±1.0	1
Quantization error	≤12 bit modes	D	EQ	_	_	±0.5	LSB ³
Input leakage error ⁷	all modes	D	E _{IL}		I _{In} * R _{AS}		mV
Temp sensor slope	-40°C- 25°C	D	m	_	3.266	_	mV/°C
	25°C– 125°C			_	3.638	_	1
Temp sensor voltage	25°C	D	V _{TEMP25}	_	1.396	_	V

^{1.} Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

^{2.} Includes quantization.

^{3.} $1 LSB = (V_{REFH} - V_{REFL})/2^N$

^{4.} Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes

^{5.} $V_{ADIN} = V_{SSA}$

^{6.} $V_{ADIN} = V_{DDA}$

^{7.} I_{In} = leakage current (refer to DC characteristics)

6.3.2 Analog comparator (ACMP) electricals

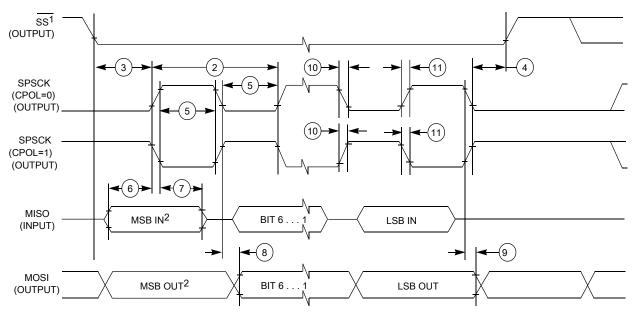
Table 14. Comparator electrical specifications

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage	V_{DDA}	2.7	_	5.5	V
Т	Supply current (Operation mode)	I _{DDA}	_	10	20	μΑ
D	Analog input voltage	V _{AIN}	V _{SS} - 0.3	_	V_{DDA}	V
Р	Analog input offset voltage	V _{AIO}	_	_	40	mV
С	Analog comparator hysteresis (HYST=0)	V_{H}	_	15	20	mV
С	Analog comparator hysteresis (HYST=1)	V_{H}	_	20	30	mV
Т	Supply current (Off mode)	I _{DDAOFF}	_	60	_	nA
С	Propagation Delay	t _D	_	0.4	1	μs

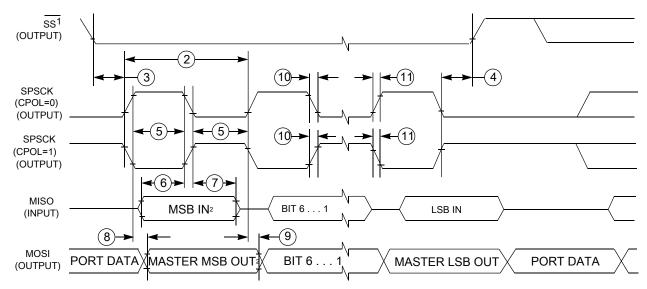
6.4 Communication interfaces

6.4.1 SPI switching specifications

The serial peripheral interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. Refer to the SPI chapter of the chip's reference manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% V_{DD} and 70% V_{DD} , unless noted, and 100 pF load on all SPI pins. All timing assumes high drive strength is enabled for SPI output pins.


Table 15. SPI master mode timing

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	f _{Bus} /2048	f _{Bus} /2	Hz	f _{Bus} is the bus clock
2	t _{SPSCK}	SPSCK period	2 x t _{Bus}	2048 x t _{Bus}	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	1024 x t _{Bus}	ns	_
6	t _{SU}	Data setup time (inputs)	15	_	ns	_
7	t _{HI}	Data hold time (inputs)	0	_	ns	_
8	t _v	Data valid (after SPSCK edge)	_	25	ns	_
9	t _{HO}	Data hold time (outputs)	0	_	ns	_
10	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	_


Table 15. SPI master mode timing (continued)

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

- 1. If configured as an output.
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 17. SPI master mode timing (CPHA=0)

- 1.If configured as output
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 18. SPI master mode timing (CPHA=1)

reripheral operating requirements and behaviors

Table 16. SPI slave mode timing

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	0	f _{Bus} /4	Hz	f _{Bus} is the bus clock as defined in .
2	t _{SPSCK}	SPSCK period	4 x t _{Bus}	_	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1	_	t _{Bus}	_
4	t _{Lag}	Enable lag time	1	_	t _{Bus}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	15	_	ns	_
7	t _{HI}	Data hold time (inputs)	25	_	ns	_
8	t _a	Slave access time	_	t _{Bus}	ns	Time to data active from high-impedance state
9	t _{dis}	Slave MISO disable time	_	t _{Bus}	ns	Hold time to high- impedance state
10	t _v	Data valid (after SPSCK edge)	_	25	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	_
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

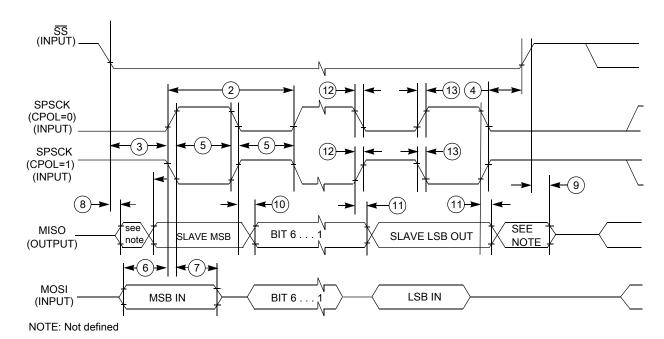


Figure 19. SPI slave mode timing (CPHA = 0)

Table 17.	Pin availability b	y package pin-count	(continued)
-----------	--------------------	---------------------	-------------

	Pin Number				Lowes	st Priority <> F	lighest	
44-LQFP	32-LQFP	20-TSSOP	16-TSSOP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
29	_	_	_	PTD4	_	_	_	_
30	21	_		PTD3	_	_	_	_
31	22	_	_	PTD2	_	_	_	_
32	23	17	13	PTA3 ²	KBI0P3	TXD0	SCL	_
33	24	18	14	PTA2 ²	KBI0P2	RXD0	SDA	_
34	25	19	15	PTA1	KBI0P1	FTM0CH1	ACMP1	ADP1
35	26	20	16	PTA0	KBI0P0	FTM0CH0	ACMP0	ADP0
36	27	_	_	PTC7	_	TxD1	_	_
37	28	_	_	PTC6	_	RxD1	_	_
38	_	_	_	PTE2	_	MISO0	_	_
39	_	_	_	PTE1	_	MOSI0	_	_
40	_	_	_	PTE0	_	SPSCK0	_	_
41	29	_	_	PTC5	_	FTM0CH1	_	_
42	30	_	_	PTC4	_	FTM0CH0	_	_
43	31	1	1	PTA5	IRQ	TCLK0	_	RESET
44	32	2	2	PTA4	_	ACMPO	BKGD	MS

- 1. This is a high current drive pin when operated as output.
- 2. This is a true open-drain pin when operated as output.

Note

When an alternative function is first enabled, it is possible to get a spurious edge to the module. User software must clear any associated flags before interrupts are enabled. The table above illustrates the priority if multiple modules are enabled. The highest priority module will have control over the pin. Selecting a higher priority pin function with a lower priority function already enabled can cause spurious edges to the lower priority module. Disable all modules that share a pin before enabling another module.

8.2 Device pin assignment

rmout

Pins in **bold** are not available on less pin-count packages.

- 1. High source/sink current pins
- 2. True open drain pins

Figure 21. MC9S08PA16 44-pin LQFP package

			i e e e e e e e e e e e e e e e e e e e
PTA5/IRQ/TCLK0/RESET	1	16	PTA0/KBI0P0/FTM0CH0/ACMP0/ADP0
PTA4/ACMPO/BKGD/MS	2	15	PTA1/KBI0P1/FTM0CH1/ACMP1/ADP1
V_{DD}	3	14	PTA2/KBI0P2/RxD0/SDA ²
V_{SS}	4	13	PTA3/KBI0P3/TxD0/SCL ²
PTB7/SCL/EXTAL	5	12	PTB0/KBI0P4/RxD0/ADP4
PTB6/SDA/XTAL	6	11	PTB1/KBI0P5/TxD0/ADP5
PTB5/FTM2CH5/SS01	7	10	PTB2/KBI0P6/SPSCK0/ADP6
PTB4/FTM2CH4/MISO0 ¹	8	9	PTB3/KBI0P7/MOSI0/ADP7

Pins in **bold** are not available on less pin-count packages.

- High source/sink current pins
 True open drain pins

Figure 24. MC9S08PA16 16-pin TSSOP package

Revision history 9

The following table provides a revision history for this document.

Table 18. Revision history

Rev. No.	Date	Substantial Changes
1	10/2012	Initial public release
2	09/2014	 Updated V_{OH} and V_{OL} in DC characteristics Updated footnote on the S3I_{DD} in Supply current characteristics Added EMC radiated emissions operating behaviors Updated the typical of f_{int_t} to 31.25 kHz and updated footnote to t_{Acquire} in External oscillator (XOSC) and ICS characteristics Updated the assumption for all the timing values in SPI switching specifications Updated the rating descriptions for t_{Rise} and t_{Fall} in Control timing Updated the part number format to add new field for new part numbers in Fields
3	06/2015	 Corrected the Min. of the t_{extrst} in Control timing Updated Thermal characteristics to add footnote to the T_A and removed redundant information. Updated the symbol of θ_{JA} to R_{θJA}.

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. All rights reserved

© 2011-2015 Freescale Semiconductor, Inc.

