

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Not For New Designs
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08pa16vtjr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1 Or	dering parts4	5.2.1 Control timing	16
1.1	Determining valid orderable parts	5.2.2 Debug trace timing specifications	17
2 Pa	rt identification	5.2.3 FTM module timing	18
2.1	Description4	5.3 Thermal specifications	19
2.2	Pormat	5.3.1 Thermal characteristics	19
2.3	Fields4	6 Peripheral operating requirements and behaviors	19
2.4	Example5	6.1 External oscillator (XOSC) and ICS characteristics	19
3 Pa	rameter Classification5	6.2 NVM specifications	21
4 Ra	tings6	6.3 Analog	22
4.1	Thermal handling ratings6	6.3.1 ADC characteristics	23
4.2	Moisture handling ratings6	6.3.2 Analog comparator (ACMP) electricals	25
4.3	ESD handling ratings6	6.4 Communication interfaces	26
4.4	Voltage and current operating ratings6	6.4.1 SPI switching specifications	26
5 Ge	neral7	7 Dimensions	29
5.1	Nonswitching electrical specifications	7.1 Obtaining package dimensions	29
	5.1.1 DC characteristics	8 Pinout	30
	5.1.2 Supply current characteristics	8.1 Signal multiplexing and pin assignments	30
	5.1.3 EMC performance	8.2 Device pin assignment	31
5.2	Switching specifications	9 Revision history	34

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PA16 and PA8.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

MC 9 S08 PA AA (V) B CC

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
MC	Qualification status	MC = fully qualified, general market flow
9	Memory	9 = flash based
S08	Core	• S08 = 8-bit CPU
PA	Device family	• PA
AA	Approximate flash size in KB	• 16 = 16 KB • 8 = 8 KB
(V)	Mask set version	(blank) = Any version A = Rev. 2 or later version, this is recommended for new design

Field	Description	Values
В	Operating temperature range (°C)	• V = -40 to 105
CC	Package designator	 LD = 44-LQFP LC = 32-LQFP TJ = 20-TSSOP WJ = 20-SOIC TG = 16-TSSOP

2.4 Example

This is an example part number:

MC9S08PA16VLD

3 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 1. Parameter Classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Symbol	Description	Min.	Max.	Unit
V_{DD}	Supply voltage	-0.3	6.0	V
I _{DD}	Maximum current into V _{DD}	_	120	mA
V_{DIO}	Digital input voltage (except RESET, EXTAL, XTAL, or true open drain pin PTA2 and PTA3)	-0.3	V _{DD} + 0.3	V
	Digital input voltage (true open drain pin PTA2 and PTA3)	-0.3	6	V
V _{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V_{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

^{1.} All digital I/O pins, except open-drain pin PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD} . PTA2 and PTA3 is only clamped to V_{SS} .

5 General

5.1 Nonswitching electrical specifications

5.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Descriptions Symbol Min Typical¹ Max Unit 2.7 Operating voltage 5.5 V_{OH} С 5 V, $I_{load} =$ ٧ Output high All I/O pins, standard- $V_{DD} - 0.8$ -5 mA voltage drive strength 3 V, $I_{load} =$ С V_{DD} - 0.8 V -2.5 mA ٧ С High current drive 5 V, $I_{load} =$ $V_{DD} - 0.8$ pins, high-drive -20 mA strength² С 3 V, $I_{load} =$ $V_{DD} - 0.8$ ٧ -10 mA

Table 2. DC characteristics

Nonswitching electrical specifications

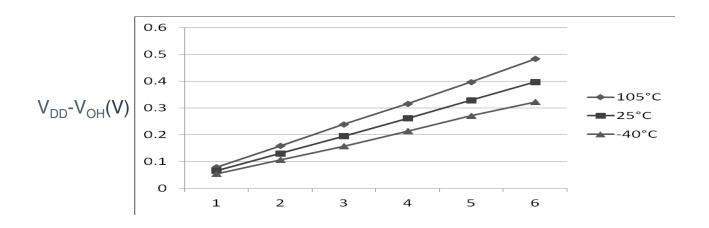
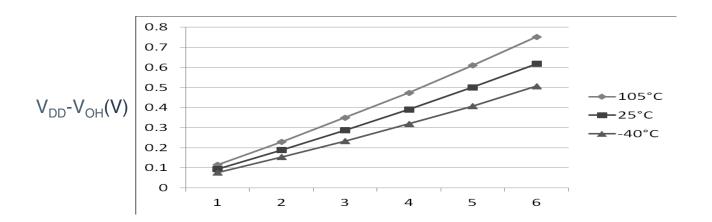
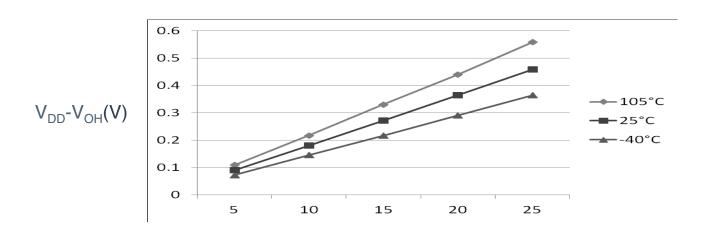

6. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Table 3. LVD and POR Specification

Symbol	С	Desc	ription	Min	Тур	Max	Unit
V _{POR}	D	POR re-arr	n voltage ^{1, 2}	1.5	1.75	2.0	V
V_{LVDH}	С	threshold - hig	roltage detect h range (LVDV 1) ³	4.2	4.3	4.4	V
V _{LVW1H}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	С	warning threshold - high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}	С	— High range	Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}	С		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	С		low-voltage ng hysteresis	_	100	_	mV
V _{LVDL}	С	threshold - low	roltage detect range (LVDV = 0)	2.56	2.61	2.66	V
V _{LVDW1L}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V _{LVDW2L}	С	warning threshold - low range	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVDW3L}	С	low range	Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V _{LVDW4L}	С		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}	С		Low range low-voltage detect hysteresis		40	_	mV
V _{HYSWL}	С		low-voltage nysteresis	_	80	_	mV
V_{BG}	Р	Buffered ban	dgap output ⁴	1.14	1.16	1.18	V


- 1. Maximum is highest voltage that POR is guaranteed.
- 2. POR ramp time must be longer than 20us/V to get a stable startup.
- 3. Rising thresholds are falling threshold + hysteresis.
- 4. Voltage factory trimmed at $V_{DD} = 5.0 \text{ V}$, Temp = 25 °C

 $I_{OH}(mA)$


Figure 1. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) (V_{DD} = 5 V)

 $I_{OH}(mA)$

Figure 2. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) (V_{DD} = 3 V)

 $I_{OH}(mA)$ Figure 3. Typical I_{OH} Vs. V_{DD} - V_{OH} (high drive strength) (V_{DD} = 5 V)

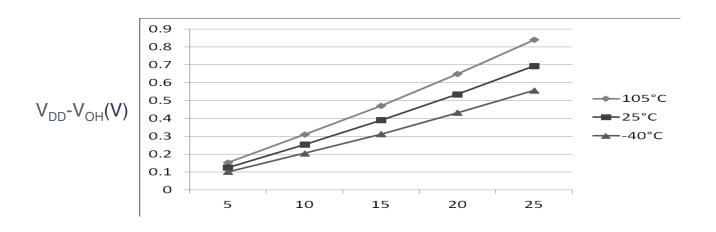
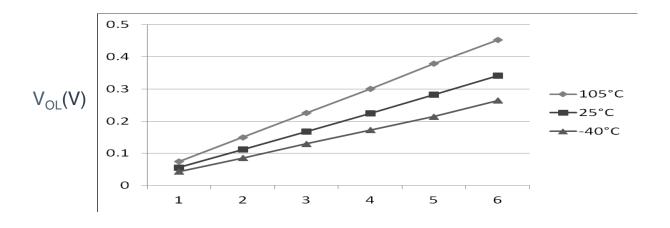
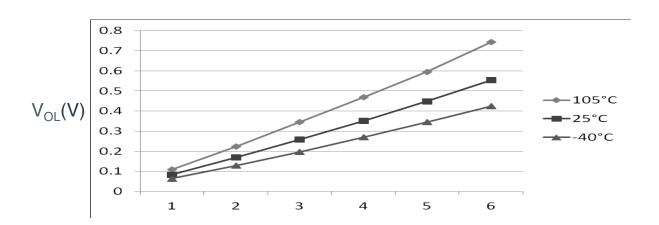



Figure 4. Typical I_{OH} Vs. V_{DD} - V_{OH} (high drive strength) (V_{DD} = 3 V)


 $I_{OH}(mA)$

 $I_{OL}(mA)$

Figure 5. Typical I_{OL} Vs. V_{OL} (standard drive strength) ($V_{DD} = 5 \text{ V}$)

 $I_{OL}(mA)$

Figure 6. Typical I_{OL} Vs. V_{OL} (standard drive strength) ($V_{DD} = 3 \text{ V}$)

5.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

Table 4. Supply current characteristics

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
1	С	Run supply current FEI	RI _{DD}	20 MHz	5	7.60	_	mA	-40 to 105 °C
	С	mode, all modules on; run from flash		10 MHz		4.65	_		
		HOIH HASH		1 MHz		1.90	_		
	С			20 MHz	3	7.05	_		
	С			10 MHz		4.40	_		
				1 MHz		1.85	_		
2	С	Run supply current FEI	RI _{DD}	20 MHz	5	5.88	_	mA	-40 to 105 °C
	С	mode, all modules off &		10 MHz		3.70	_		
		gated; run from flash		1 MHz		1.85	_		
	С			20 MHz	3	5.35	_		
	С			10 MHz		3.42	_		
				1 MHz		1.80	_		
3	Р	Run supply current FBE	RI _{DD}	20 MHz	5	10.9	14.0	mA	-40 to 105 °C
	С	mode, all modules on; run		10 MHz		6.10	_		
		from RAM		1 MHz		1.69	_		
	Р			20 MHz	3	8.18	_		
	С			10 MHz		5.14	_		
				1 MHz		1.44	_		
4	Р	Run supply current FBE	RI _{DD}	20 MHz	5	8.50	13.0	mA	-40 to 105 °C
	С	mode, all modules off &		10 MHz		5.07	_		
		gated; run from RAM		1 MHz		1.59	_		
	P			20 MHz	3	6.11	_	1	
	С			10 MHz		4.10	_	1	
				1 MHz		1.34	_	1	
5	Р	Wait mode current FEI	WI _{DD}	20 MHz	5	5.95	_	mA	-40 to 105 °C
	С	mode, all modules on	55	10 MHz		3.50	_	-	
				1 MHz		1.24	_	1	
	С			20 MHz	3	5.45	_	1	
				10 MHz		3.25	_	-	
				1 MHz		1.20	_	-	
6	С	Stop3 mode supply	S3I _{DD}	_	5	4.6	_	μΑ	-40 to 105 °C
-	C	current no clocks active	00	_	3	4.5	_	- F	-40 to 105 °C
		(except 1kHz LPO clock) ^{2, 3}							
7	С	ADC adder to stop3	_	_	5	40	_	μA	-40 to 105 °C

Table 4.	Supply current	characteristics	(continued))
----------	-----------------------	-----------------	-------------	---

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
	О	ADLPC = 1			3	39	_		
		ADLSMP = 1							
		ADCO = 1							
		MODE = 10B							
		ADICLK = 11B							
8	С	LVD adder to stop3 ⁴	_	_	5	128	_	μΑ	-40 to 105 °C
	С				3	124			

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. RTC adder cause <1 μA I_{DD} increase typically, RTC clock source is 1kHz LPO clock.
- 3. ACMP adder cause <10 μ A I_{DD} increase typically.
- 4. LVD is periodically woken up from stop3 by 5% duty cycle. The period is equal to or less than 2 ms.

5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

5.1.3.1 EMC radiated emissions operating behaviors Table 5. EMC radiated emissions operating behaviors for 44-pin LQFP package

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	8	dΒμV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	8	dΒμV	
V _{RE3}	Radiated emissions voltage, band 3	150-500	8	dΒμV	
V _{RE4}	Radiated emissions voltage, band 4	500-1000	5	dΒμV	
V _{RE_IEC}	IEC level	0.15-1000	N	_	2, 3

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150
 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits Measurement of
 Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband
 TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported
 emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the
 measured orientations in each frequency range.
- 2. V_{DD} = 5.0 V, T_A = 25 °C, f_{OSC} = 10 MHz (crystal), f_{SYS} = 20 MHz, f_{BUS} = 20 MHz
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method

5.2 Switching specifications

5.2.1 Control timing

Table 6. Control timing

Num	С	Rating	3	Symbol	Min	Typical ¹	Max	Unit
1	Р	Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	DC	_	20	MHz	
2	С	Internal low power oscillato	r frequency	f _{LPO}	_	1.0	_	KHz
3	D	External reset pulse width ²		t _{extrst}	1.5 ×	_	_	ns
					t _{cyc}			
4	D	Reset low drive		t _{rstdrv}	$34 \times t_{cyc}$	_		ns
5	D	BKGD/MS setup time after debug force reset to enter u	t _{MSSU}	500	_	_	ns	
6	D	BKGD/MS hold time after is debug force reset to enter u	t _{MSH}	100	_	_	ns	
7	D	IRQ pulse width	IRQ pulse width Asynchronous path ²		100	_	_	ns
	D		Synchronous path ⁴	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
8	D	Keyboard interrupt pulse width	upt pulse Asynchronous path ²		100	_	_	ns
	D		Synchronous path	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
9	С	Port rise and fall time -	_	t _{Rise}		10.2		ns
	С	standard drive strength (load = 50 pF) ⁵		t _{Fall}		9.5	_	ns
	С	Port rise and fall time -	_	t _{Rise}	_	5.4	_	ns
	С	high drive strength (load = 50 pF) ⁵		t _{Fall}	_	4.6	_	ns

- 1. Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.
- 2. This is the shortest pulse that is guaranteed to be recognized as a reset pin request.
- 3. To enter BDM mode following a POR, BKGD/MS must be held low during the powerup and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD} .
- 4. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
- 5. Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40 °C to 105 °C.

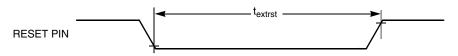


Figure 9. Reset timing

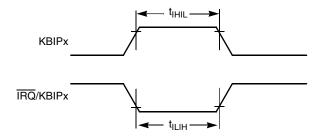


Figure 10. IRQ/KBIPx timing

5.2.2 Debug trace timing specifications

Table 7. Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit
t _{cyc}	Clock period	Frequency	MHz	
t _{wl}	Low pulse width	2	_	ns
t _{wh}	High pulse width	2	_	ns
t _r	Clock and data rise time	_	3	ns
t _f	Clock and data fall time	_	3	ns
t _s	Data setup	3	_	ns
t _h	Data hold	2	_	ns

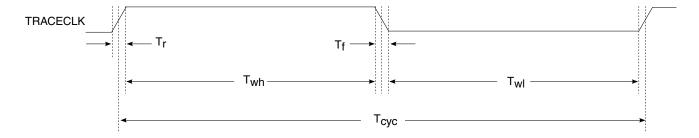


Figure 11. TRACE_CLKOUT specifications

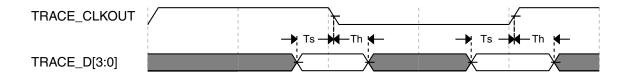


Figure 12. Trace data specifications

5.3 Thermal specifications

5.3.1 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A ¹	T _L to T _H -40 to 105	°C
Junction temperature range	T _J	-40 to 150	°C
	Thermal resistar	nce single-layer board	
44-pin LQFP	$R_{\theta JA}$	76	°C/W
32-pin LQFP	$R_{\theta JA}$	88	°C/W
20-pin SOIC	$R_{\theta JA}$	82	°C/W
20-pin TSSOP	$R_{\theta JA}$	116	°C/W
16-pin TSSOP	$R_{\theta JA}$	130	°C/W
	Thermal resista	ance four-layer board	
44-pin LQFP	$R_{\theta JA}$	54	°C/W
32-pin LQFP	$R_{\theta JA}$	59	°C/W
20-pin SOIC	$R_{\theta JA}$	54	°C/W
20-pin TSSOP	$R_{\theta JA}$	76	°C/W
16-pin TSSOP	$R_{\theta JA}$	87	°C/W

Table 9. Thermal characteristics

6 Peripheral operating requirements and behaviors

^{1.} Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is: $T_J = T_A + R_{\theta JA} x$ chip power dissipation.

6.3 Analog

6.3.1 ADC characteristics

Table 12. 5 V 12-bit ADC operating conditions

Characteri stic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply	Absolute	V_{DDA}	2.7	_	5.5	V	_
voltage	Delta to V _{DD} (V _{DD} -V _{DDAD})	ΔV_{DDA}	-100	0	+100	mV	
Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSA}) ²	ΔV_{SSA}	-100	0	+100	mV	
Input voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
Input capacitance		C _{ADIN}	_	4.5	5.5	pF	
Input resistance		R _{ADIN}	_	3	5	kΩ	_
Analog source	12-bit mode • f _{ADCK} > 4 MHz	R _{AS}	_	_	2	kΩ	External to MCU
resistance	• f _{ADCK} < 4 MHz		_	_	5		
	10-bit modef_{ADCK} > 4 MHz		_	_	5		
	• f _{ADCK} < 4 MHz		_	_	10		
	8-bit mode		_	_	10		
	(all valid f _{ADCK})						
ADC	High speed (ADLPC=0)	f _{ADCK}	0.4	_	8.0	MHz	_
conversion clock frequency	Low power (ADLPC=1)		0.4	_	4.0		

^{1.} Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

^{2.} DC potential difference.

reripheral operating requirements and behaviors

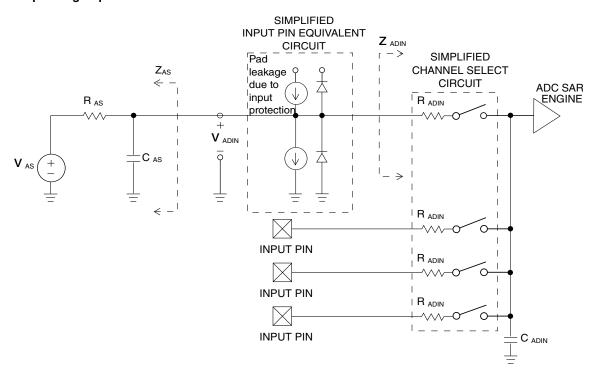


Figure 16. ADC input impedance equivalency diagram

Table 13. 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
Supply current		T	I _{DDA}	_	133	_	μΑ
ADLPC = 1							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDA}	_	218	_	μΑ
ADLPC = 1							
ADLSMP = 0							
ADCO = 1							
Supply current		Т	I _{DDA}	_	327	_	μΑ
ADLPC = 0							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDAD}	_	582	990	μA
ADLPC = 0							
ADLSMP = 0							
ADCO = 1							
Supply current	Stop, reset, module off	Т	I _{DDA}	_	0.011	1	μА
ADC asynchronous clock source	High speed (ADLPC = 0)	Р	f _{ADACK}	2	3.3	5	MHz

6.3.2 Analog comparator (ACMP) electricals

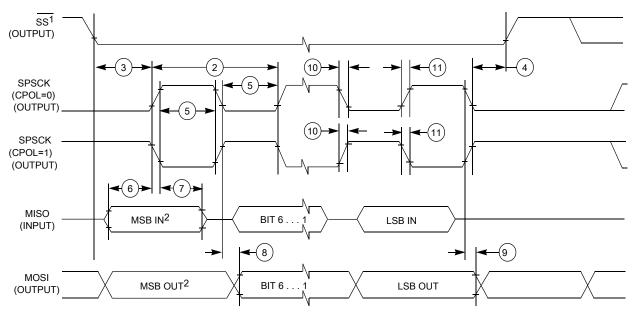
Table 14. Comparator electrical specifications

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage	V_{DDA}	2.7	_	5.5	V
Т	Supply current (Operation mode)	I _{DDA}	_	10	20	μΑ
D	Analog input voltage	V _{AIN}	V _{SS} - 0.3	_	V_{DDA}	V
Р	Analog input offset voltage	V _{AIO}	_	_	40	mV
С	Analog comparator hysteresis (HYST=0)	V_{H}	_	15	20	mV
С	Analog comparator hysteresis (HYST=1)	V_{H}	_	20	30	mV
Т	Supply current (Off mode)	I _{DDAOFF}	_	60	_	nA
С	Propagation Delay	t _D	_	0.4	1	μs

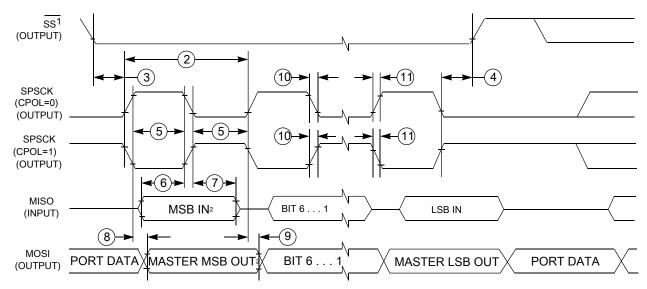
6.4 Communication interfaces

6.4.1 SPI switching specifications

The serial peripheral interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. Refer to the SPI chapter of the chip's reference manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% V_{DD} and 70% V_{DD} , unless noted, and 100 pF load on all SPI pins. All timing assumes high drive strength is enabled for SPI output pins.


Table 15. SPI master mode timing

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	f _{Bus} /2048	f _{Bus} /2	Hz	f _{Bus} is the bus clock
2	t _{SPSCK}	SPSCK period	2 x t _{Bus}	2048 x t _{Bus}	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	1024 x t _{Bus}	ns	_
6	t _{SU}	Data setup time (inputs)	15	_	ns	_
7	t _{HI}	Data hold time (inputs)	0	_	ns	_
8	t _v	Data valid (after SPSCK edge)	_	25	ns	_
9	t _{HO}	Data hold time (outputs)	0	_	ns	_
10	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	_


Table 15. SPI master mode timing (continued)

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

- 1. If configured as an output.
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 17. SPI master mode timing (CPHA=0)

- 1.If configured as output
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 18. SPI master mode timing (CPHA=1)

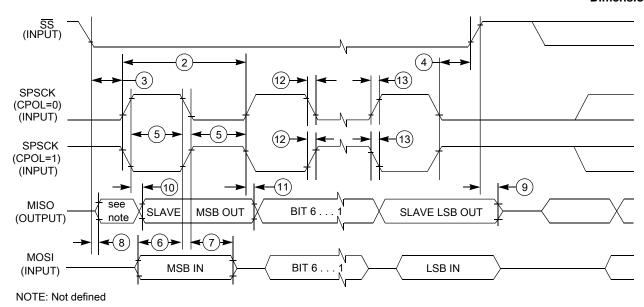
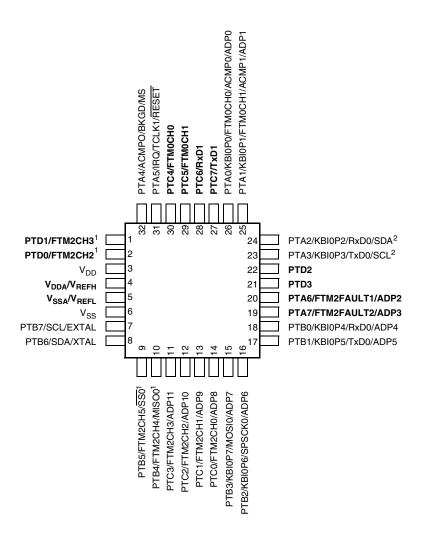


Figure 20. SPI slave mode timing (CPHA=1)

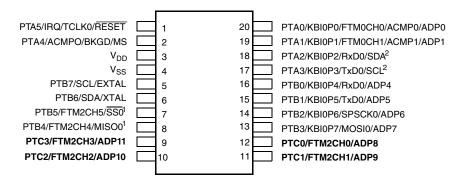
7 Dimensions


7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
16-pin TSSOP	98ASH70247A
20-pin SOIC	98ASB42343B
20-pin TSSOP	98ASH70169A
32-pin LQFP	98ASH70029A
44-pin LQFP	98ASS23225W



Pins in bold are not available on less pin-count packages.

- 1. High source/sink current pins
- 2. True open drain pins

Figure 22. MC9S08PA16 32-pin LQFP package

Pins in **bold** are not available on less pin-count packages.

- 1. High source/sink current pins
- 2. True open drain pins

Figure 23. MC9S08PA16 20-pin SOIC and TSSOP package

MC9S08PA16 Series Data Sheet, Rev. 3, 06/2015

			i e e e e e e e e e e e e e e e e e e e
PTA5/IRQ/TCLK0/RESET	1	16	PTA0/KBI0P0/FTM0CH0/ACMP0/ADP0
PTA4/ACMPO/BKGD/MS	2	15	PTA1/KBI0P1/FTM0CH1/ACMP1/ADP1
V_{DD}	3	14	PTA2/KBI0P2/RxD0/SDA ²
V_{SS}	4	13	PTA3/KBI0P3/TxD0/SCL ²
PTB7/SCL/EXTAL	5	12	PTB0/KBI0P4/RxD0/ADP4
PTB6/SDA/XTAL	6	11	PTB1/KBI0P5/TxD0/ADP5
PTB5/FTM2CH5/SS01	7	10	PTB2/KBI0P6/SPSCK0/ADP6
PTB4/FTM2CH4/MISO0 ¹	8	9	PTB3/KBI0P7/MOSI0/ADP7

Pins in **bold** are not available on less pin-count packages.

- High source/sink current pins
 True open drain pins

Figure 24. MC9S08PA16 16-pin TSSOP package

Revision history 9

The following table provides a revision history for this document.

Table 18. Revision history

Rev. No.	Date	Substantial Changes
1	10/2012	Initial public release
2	09/2014	 Updated V_{OH} and V_{OL} in DC characteristics Updated footnote on the S3I_{DD} in Supply current characteristics Added EMC radiated emissions operating behaviors Updated the typical of f_{int_t} to 31.25 kHz and updated footnote to t_{Acquire} in External oscillator (XOSC) and ICS characteristics Updated the assumption for all the timing values in SPI switching specifications Updated the rating descriptions for t_{Rise} and t_{Fall} in Control timing Updated the part number format to add new field for new part numbers in Fields
3	06/2015	 Corrected the Min. of the t_{extrst} in Control timing Updated Thermal characteristics to add footnote to the T_A and removed redundant information. Updated the symbol of θ_{JA} to R_{θJA}.