

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                     |
|----------------------------|------------------------------------------------------------|
| Core Processor             | S08                                                        |
| Core Size                  | 8-Bit                                                      |
| Speed                      | 20MHz                                                      |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                  |
| Peripherals                | LVD, POR, PWM, WDT                                         |
| Number of I/O              | 14                                                         |
| Program Memory Size        | 8KB (8K x 8)                                               |
| Program Memory Type        | FLASH                                                      |
| EEPROM Size                | 256 x 8                                                    |
| RAM Size                   | 2K x 8                                                     |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V                                                |
| Data Converters            | A/D 12x12b                                                 |
| Oscillator Type            | Internal                                                   |
| Operating Temperature      | -40°C ~ 105°C (TA)                                         |
| Mounting Type              | Surface Mount                                              |
| Package / Case             | 16-TSSOP (0.173", 4.40mm Width)                            |
| Supplier Device Package    | 16-TSSOP                                                   |
| Purchase URL               | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08pa8avtg |
|                            |                                                            |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong





- Input/Output
  - Up to 37 GPIOs including one output-only pin
  - One 8-bit keyboard interrupt module (KBI)
  - Two true open-drain output pins
  - Four, ultra-high current sink pins supporting 20 mA source/sink current
- Package options
  - 44-pin LQFP
  - 32-pin LQFP
  - 20-pin SOIC; 20-pin TSSOP
  - 16-pin TSSOP



## 1 Ordering parts

### 1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PA16 and PA8.

## 2 Part identification

### 2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

### 2.2 Format

Part numbers for this device have the following format:

MC 9 S08 PA AA (V) B CC

### 2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

| Field    | Description                  | Values                                                                                                             |  |  |  |
|----------|------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|--|
| MC       | Qualification status         | MC = fully qualified, general market flow                                                                          |  |  |  |
| 9        | Memory                       | • 9 = flash based                                                                                                  |  |  |  |
| S08 Core |                              | • S08 = 8-bit CPU                                                                                                  |  |  |  |
| PA       | Device family                | • PA                                                                                                               |  |  |  |
| AA       | Approximate flash size in KB | <ul> <li>16 = 16 KB</li> <li>8 = 8 KB</li> </ul>                                                                   |  |  |  |
| (V)      | Mask set version             | <ul> <li>(blank) = Any version</li> <li>A = Rev. 2 or later version, this is recommended for new design</li> </ul> |  |  |  |

Table continues on the next page ....

#### MC9S08PA16 Series Data Sheet, Rev. 3, 06/2015



#### **Parameter Classification**

| Field | Description                      | Values                                                                                                                     |
|-------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| В     | Operating temperature range (°C) | • V = -40 to 105                                                                                                           |
| СС    | Package designator               | <ul> <li>LD = 44-LQFP</li> <li>LC = 32-LQFP</li> <li>TJ = 20-TSSOP</li> <li>WJ = 20-SOIC</li> <li>TG = 16-TSSOP</li> </ul> |

#### 2.4 Example

This is an example part number:

MC9S08PA16VLD

### **3** Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

#### Table 1. Parameter Classifications

| Р | Those parameters are guaranteed during production testing on each individual device.                                                                                                                                   |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| С | Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.                                                                              |
| Т | Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. |
| D | Those parameters are derived mainly from simulations.                                                                                                                                                                  |

#### NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.



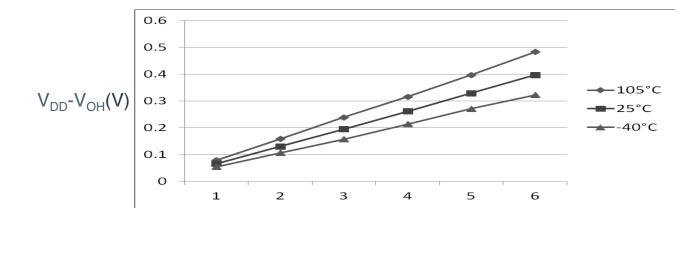
This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either  $V_{SS}$  or  $V_{DD}$ ) or the programmable pullup resistor associated with the pin is enabled.

| Symbol                                                                    | Description                                                                             | Min.                  | Max.                  | Unit |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------|-----------------------|------|
| V <sub>DD</sub>                                                           | Supply voltage                                                                          | -0.3                  | 6.0                   | V    |
| I <sub>DD</sub>                                                           | Maximum current into V <sub>DD</sub>                                                    | —                     | 120                   | mA   |
| V <sub>DIO</sub>                                                          | Digital input voltage (except RESET, EXTAL, XTAL, or true open drain pin PTA2 and PTA3) | -0.3                  | V <sub>DD</sub> + 0.3 | V    |
|                                                                           | Digital input voltage (true open drain pin PTA2 and PTA3)                               | -0.3                  | 6                     | V    |
| V <sub>AIO</sub>                                                          | Analog <sup>1</sup> , RESET, EXTAL, and XTAL input voltage                              | -0.3                  | V <sub>DD</sub> + 0.3 | V    |
| Instantaneous maximum current single pin limit (applies to all port pins) |                                                                                         | -25                   | 25                    | mA   |
| V <sub>DDA</sub>                                                          | Analog supply voltage                                                                   | V <sub>DD</sub> – 0.3 | V <sub>DD</sub> + 0.3 | V    |

1. All digital I/O pins, except open-drain pin PTA2 and PTA3, are internally clamped to V<sub>SS</sub> and V<sub>DD</sub>. PTA2 and PTA3 is only clamped to V<sub>SS</sub>.

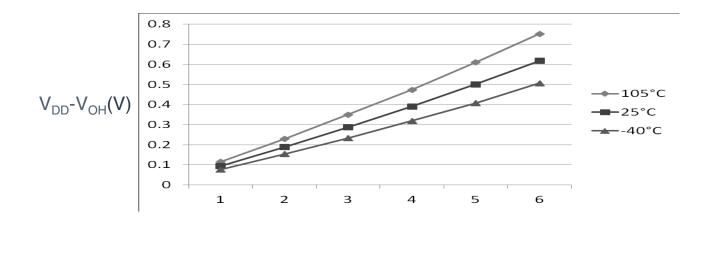
## 5 General

### 5.1 Nonswitching electrical specifications


### 5.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

| Symbol          | С | Descriptions           |                                           |                                     | Min                   | Typical <sup>1</sup> | Max | Unit |
|-----------------|---|------------------------|-------------------------------------------|-------------------------------------|-----------------------|----------------------|-----|------|
| —               | _ | Oper                   | rating voltage                            | _                                   | 2.7                   | _                    | 5.5 | V    |
| V <sub>OH</sub> | С | Output high<br>voltage | All I/O pins, standard-<br>drive strength | 5 V, I <sub>load</sub> =<br>-5 mA   | V <sub>DD</sub> - 0.8 |                      | _   | V    |
|                 | С |                        |                                           | 3 V, I <sub>load</sub> =<br>-2.5 mA | V <sub>DD</sub> - 0.8 |                      | —   | V    |
|                 | С |                        | High current drive<br>pins, high-drive    | 5 V, I <sub>load</sub> =<br>-20 mA  | V <sub>DD</sub> - 0.8 |                      | _   | V    |
|                 | С |                        | strength <sup>2</sup>                     | 3 V, I <sub>load</sub> =<br>-10 mA  | V <sub>DD</sub> - 0.8 | —                    | _   | V    |


Table 2. DC characteristics





I<sub>OH</sub>(mA)

Figure 1. Typical I<sub>OH</sub> Vs.  $V_{DD}$ - $V_{OH}$  (standard drive strength) ( $V_{DD}$  = 5 V)



 $I_{OH}(mA)$ Figure 2. Typical I<sub>OH</sub> Vs. V<sub>DD</sub>-V<sub>OH</sub> (standard drive strength) (V<sub>DD</sub> = 3 V)



### 5.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

| Num | С | Parameter                                                              | Symbol            | Bus Freq | V <sub>DD</sub> (V) | Typical <sup>1</sup> | Max  | Unit | Temp          |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|-----|---|------------------------------------------------------------------------|-------------------|----------|---------------------|----------------------|------|------|---------------|--|--------|---|------|---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|--|--|---|--|--|--|-------|--|------|---|--|--|
| 1   | С | Run supply current FEI                                                 | RI <sub>DD</sub>  | 20 MHz   | 5                   | 7.60                 | _    | mA   | -40 to 105 °C |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     | С | mode, all modules on; run<br>from flash                                |                   | 10 MHz   |                     | 4.65                 | —    |      |               |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     |   | nonnasn                                                                |                   | 1 MHz    |                     | 1.90                 | _    |      |               |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     | С |                                                                        |                   | 20 MHz   | 3                   | 7.05                 | _    |      |               |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     | С |                                                                        |                   | 10 MHz   |                     | 4.40                 | —    |      |               |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     |   |                                                                        |                   | 1 MHz    |                     | 1.85                 | _    |      |               |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
| 2   | С | Run supply current FEI                                                 | RI <sub>DD</sub>  | 20 MHz   | 5                   | 5.88                 |      | mA   | -40 to 105 °C |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     | С | mode, all modules off & gated; run from flash                          |                   | 10 MHz   |                     | 3.70                 | —    |      |               |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     |   | gated, full from hash                                                  |                   | 1 MHz    |                     | 1.85                 | _    |      |               |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     | С |                                                                        |                   | 20 MHz   | 3                   | 5.35                 | _    |      |               |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     | С |                                                                        |                   | 10 MHz   |                     | 3.42                 | _    |      |               |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     |   |                                                                        |                   | 1 MHz    |                     | 1.80                 | _    |      |               |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
| 3   | Р | Run supply current FBE                                                 | RI <sub>DD</sub>  | 20 MHz   | 5                   | 10.9                 | 14.0 | mA   | -40 to 105 °C |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     | С | mode, all modules on; run<br>from RAM                                  |                   | 10 MHz   |                     | 6.10                 | —    |      |               |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     |   | IIOIII HAM                                                             |                   | 1 MHz    |                     | 1.69                 | _    |      |               |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     | Р |                                                                        |                   | 20 MHz   | 3                   | 8.18                 | _    |      |               |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     | С |                                                                        |                   | 10 MHz   |                     | 5.14                 | —    | -    |               |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     |   |                                                                        |                   | 1 MHz    |                     | 1.44                 | _    |      |               |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
| 4   | Р | Run supply current FBE                                                 | RI <sub>DD</sub>  | 20 MHz   | 5                   | 8.50                 | 13.0 | mA   | -40 to 105 °C |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     | С | mode, all modules off & gated; run from RAM                            |                   | 10 MHz   |                     | 5.07                 | —    |      |               |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     |   | galed, full from train                                                 |                   |          |                     |                      |      |      |               |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | - |  |  | - |  |  |  | 1 MHz |  | 1.59 | _ |  |  |
|     | Р |                                                                        |                   |          |                     |                      |      |      |               |  | 20 MHz | 3 | 6.11 | _ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     | С |                                                                        |                   | 10 MHz   |                     | 4.10                 | —    | 1    |               |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     |   |                                                                        |                   | 1 MHz    |                     | 1.34                 | _    |      |               |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
| 5   | Р | Wait mode current FEI                                                  | WI <sub>DD</sub>  | 20 MHz   | 5                   | 5.95                 | _    | mA   | -40 to 105 °C |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     | С | mode, all modules on                                                   |                   | 10 MHz   |                     | 3.50                 | —    |      |               |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     |   |                                                                        |                   | 1 MHz    |                     | 1.24                 | _    |      |               |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     | С |                                                                        |                   | 20 MHz   | 3                   | 5.45                 | _    |      |               |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     |   |                                                                        |                   | 10 MHz   |                     | 3.25                 | —    |      |               |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     |   |                                                                        |                   | 1 MHz    |                     | 1.20                 |      |      |               |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
| 6   | С | Stop3 mode supply                                                      | S3I <sub>DD</sub> | —        | 5                   | 4.6                  | —    | μA   | -40 to 105 °C |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
|     | С | current no clocks active<br>(except 1kHz LPO<br>clock) <sup>2, 3</sup> |                   |          | 3                   | 4.5                  | _    |      | -40 to 105 °C |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |
| 7   | С | ADC adder to stop3                                                     | _                 | —        | 5                   | 40                   |      | μA   | -40 to 105 °C |  |        |   |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |   |  |  |  |       |  |      |   |  |  |

Table 4. Supply current characteristics



| Num | С | Parameter           | Symbol | Bus Freq | V <sub>DD</sub> (V) | Typical <sup>1</sup> | Max | Unit | Temp          |
|-----|---|---------------------|--------|----------|---------------------|----------------------|-----|------|---------------|
|     | С | ADLPC = 1           |        |          | 3                   | 39                   | _   |      |               |
|     |   | ADLSMP = 1          |        |          |                     |                      |     |      |               |
|     |   | ADCO = 1            |        |          |                     |                      |     |      |               |
|     |   | MODE = 10B          |        |          |                     |                      |     |      |               |
|     |   | ADICLK = 11B        |        |          |                     |                      |     |      |               |
| 8   | С | LVD adder to stop34 | —      | _        | 5                   | 128                  | _   | μA   | -40 to 105 °C |
|     | С |                     |        |          | 3                   | 124                  | _   |      |               |

Table 4. Supply current characteristics (continued)

1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

2. RTC adder cause <1 µA I<sub>DD</sub> increase typically, RTC clock source is 1kHz LPO clock.

3. ACMP adder cause <10  $\mu$ A I<sub>DD</sub> increase typically.

4. LVD is periodically woken up from stop3 by 5% duty cycle. The period is equal to or less than 2 ms.

### 5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

#### 5.1.3.1 EMC radiated emissions operating behaviors

# Table 5. EMC radiated emissions operating behaviors for 44-pin LQFP package

| Symbol              | Description                                         | Frequency<br>band (MHz) | Тур. | Unit | Notes |
|---------------------|-----------------------------------------------------|-------------------------|------|------|-------|
| V <sub>RE1</sub>    | Radiated emissions voltage, band 1                  | 0.15–50                 | 8    | dBµV | 1, 2  |
| V <sub>RE2</sub>    | V <sub>RE2</sub> Radiated emissions voltage, band 2 |                         | 8    | dBµV |       |
| V <sub>RE3</sub>    | Radiated emissions voltage, band 3                  | 150–500                 | 8    | dBµV |       |
| V <sub>RE4</sub>    | V <sub>RE4</sub> Radiated emissions voltage, band 4 |                         | 5    | dBµV |       |
| V <sub>RE_IEC</sub> | IEC level                                           | 0.15–1000               | Ν    | —    | 2, 3  |

 Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

2.  $V_{DD} = 5.0 \text{ V}, \text{ T}_{A} = 25 \text{ °C}, \text{ } f_{OSC} = 10 \text{ MHz} \text{ (crystal)}, \text{ } f_{SYS} = 20 \text{ MHz}, \text{ } f_{BUS} = 20 \text{ MHz}$ 

3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method

#### MC9S08PA16 Series Data Sheet, Rev. 3, 06/2015



## 5.2 Switching specifications

### 5.2.1 Control timing

#### Table 6. Control timing

| Num | С | Rating                                                  | )                                 | Symbol              | Min                    | Typical <sup>1</sup> | Мах | Unit |
|-----|---|---------------------------------------------------------|-----------------------------------|---------------------|------------------------|----------------------|-----|------|
| 1   | Р | Bus frequency $(t_{cyc} = 1/f_{Bus})$                   | )                                 | f <sub>Bus</sub>    | DC                     |                      | 20  | MHz  |
| 2   | С | Internal low power oscillato                            | r frequency                       | f <sub>LPO</sub>    | —                      | 1.0                  | —   | KHz  |
| 3   | D | External reset pulse width <sup>2</sup>                 |                                   | t <sub>extrst</sub> | 1.5 ×                  |                      | _   | ns   |
|     |   |                                                         |                                   |                     | t <sub>cyc</sub>       |                      |     |      |
| 4   | D | Reset low drive                                         |                                   | t <sub>rstdrv</sub> | $34 \times t_{cyc}$    |                      | —   | ns   |
| 5   | D | BKGD/MS setup time after debug force reset to enter u   |                                   | t <sub>MSSU</sub>   | 500                    | _                    | _   | ns   |
| 6   | D | BKGD/MS hold time after is debug force reset to enter u |                                   | t <sub>MSH</sub>    | 100                    | _                    | _   | ns   |
| 7   | D | IRQ pulse width                                         | Asynchronous<br>path <sup>2</sup> | t <sub>ILIH</sub>   | 100                    | _                    | _   | ns   |
|     | D |                                                         | Synchronous path <sup>4</sup>     | t <sub>IHIL</sub>   | 1.5 × t <sub>cyc</sub> | —                    | —   | ns   |
| 8   | D | Keyboard interrupt pulse<br>width                       | Asynchronous<br>path <sup>2</sup> | t <sub>ILIH</sub>   | 100                    | _                    | _   | ns   |
|     | D |                                                         | Synchronous path                  | t <sub>IHIL</sub>   | 1.5 × t <sub>cyc</sub> | —                    | —   | ns   |
| 9   | С | Port rise and fall time -                               | —                                 | t <sub>Rise</sub>   | —                      | 10.2                 | —   | ns   |
|     | С | standard drive strength<br>(load = 50 pF) <sup>5</sup>  |                                   | t <sub>Fall</sub>   | —                      | 9.5                  | —   | ns   |
|     | С | Port rise and fall time -                               | —                                 | t <sub>Rise</sub>   | _                      | 5.4                  | —   | ns   |
|     | С | high drive strength (load = 50 pF) <sup>5</sup>         |                                   | t <sub>Fall</sub>   | —                      | 4.6                  |     | ns   |

1. Typical values are based on characterization data at  $V_{DD}$  = 5.0 V, 25 °C unless otherwise stated.

- 2. This is the shortest pulse that is guaranteed to be recognized as a reset pin request.
- 3. To enter BDM mode following a POR, BKGD/MS must be held low during the powerup and for a hold time of t<sub>MSH</sub> after V<sub>DD</sub> rises above V<sub>LVD</sub>.
- 4. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
- 5. Timing is shown with respect to 20% V<sub>DD</sub> and 80% V<sub>DD</sub> levels. Temperature range -40 °C to 105 °C.



Figure 9. Reset timing



### 5.2.3 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

| No. | С | Function                     | Symbol            | Min | Max                 | Unit             |
|-----|---|------------------------------|-------------------|-----|---------------------|------------------|
| 1   | D | External clock<br>frequency  | f <sub>TCLK</sub> | 0   | f <sub>Bus</sub> /4 | Hz               |
| 2   | D | External clock period        | t <sub>TCLK</sub> | 4   | _                   | t <sub>cyc</sub> |
| 3   | D | External clock<br>high time  | t <sub>clkh</sub> | 1.5 | —                   | t <sub>cyc</sub> |
| 4   | D | External clock<br>low time   | t <sub>clkl</sub> | 1.5 | —                   | t <sub>cyc</sub> |
| 5   | D | Input capture<br>pulse width | t <sub>ICPW</sub> | 1.5 | _                   | t <sub>cyc</sub> |

 Table 8.
 FTM input timing

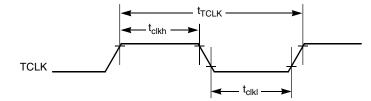



Figure 13. Timer external clock

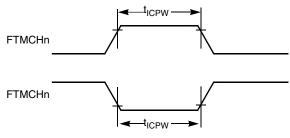



Figure 14. Timer input capture pulse



rempheral operating requirements and behaviors

## 6.1 External oscillator (XOSC) and ICS characteristics

#### Table 10. XOSC and ICS specifications (temperature range = -40 to 105 °C ambient)

| Num | С | C                                                     | characteristic                                                | Symbol               | Min     | Typical <sup>1</sup>  | Max     | Unit              |
|-----|---|-------------------------------------------------------|---------------------------------------------------------------|----------------------|---------|-----------------------|---------|-------------------|
| 1   | С | Oscillator                                            | Low range (RANGE = 0)                                         | f <sub>lo</sub>      | 31.25   | 32.768                | 39.0625 | kHz               |
|     | С | crystal or<br>resonator                               | High range (RANGE = 1)<br>FEE or FBE mode <sup>2</sup>        | f <sub>hi</sub>      | 4       | _                     | 20      | MHz               |
|     | С |                                                       | High range (RANGE = 1),<br>high gain (HGO = 1),<br>FBELP mode | f <sub>hi</sub>      | 4       | _                     | 20      | MHz               |
|     | С |                                                       | High range (RANGE = 1),<br>low power (HGO = 0),<br>FBELP mode | f <sub>hi</sub>      | 4       |                       | 20      | MHz               |
| 2   | D | Lo                                                    | bad capacitors                                                | C1, C2               |         | See Note <sup>3</sup> |         |                   |
| 3   | D | Feedback<br>resistor                                  | Low Frequency, Low-Power<br>Mode <sup>4</sup>                 | R <sub>F</sub>       | —       | _                     | —       | MΩ                |
|     |   |                                                       | Low Frequency, High-Gain<br>Mode                              |                      | _       | 10                    | _       | MΩ                |
|     |   |                                                       | High Frequency, Low-<br>Power Mode                            |                      | _       | 1                     | _       | MΩ                |
|     |   |                                                       | High Frequency, High-Gain<br>Mode                             |                      | _       | 1                     | _       | MΩ                |
| 4   | D | Series resistor -                                     | Low-Power Mode <sup>4</sup>                                   | R <sub>S</sub>       | _       | _                     | _       | kΩ                |
|     |   | Low Frequency                                         | High-Gain Mode                                                | -                    | _       | 200                   |         | kΩ                |
| 5   | D | Series resistor -<br>High Frequency                   | Low-Power Mode <sup>4</sup>                                   | R <sub>S</sub>       | _       | —                     | _       | kΩ                |
|     | D | Series resistor -                                     | 4 MHz                                                         | -                    | _       | 0                     |         | kΩ                |
|     | D | High<br>Frequency,                                    | 8 MHz                                                         | -                    | _       | 0                     | _       | kΩ                |
|     | D | High-Gain Mode                                        | 16 MHz                                                        | -                    |         | 0                     | _       | kΩ                |
| 6   | С | Crystal start-up                                      | Low range, low power                                          | t <sub>CSTL</sub>    | _       | 1000                  |         | ms                |
|     | С | time Low range<br>= 32.768 kHz                        | Low range, high power                                         | -                    | _       | 800                   |         | ms                |
|     | С | crystal; High                                         | High range, low power                                         | t <sub>CSTH</sub>    | _       | 3                     |         | ms                |
|     | С | range = 20 MHz<br>crystal <sup>5</sup> , <sup>6</sup> | High range, high power                                        |                      | _       | 1.5                   | _       | ms                |
| 7   | Т | Internal re                                           | eference start-up time                                        | t <sub>IRST</sub>    | —       | 20                    | 50      | μs                |
| 8   | D | Square wave                                           | FEE or FBE mode <sup>2</sup>                                  | f <sub>extal</sub>   | 0.03125 |                       | 5       | MHz               |
|     | D | input clock<br>frequency                              | FBELP mode                                                    |                      | 0       |                       | 20      | MHz               |
| 9   | Р | Average inter                                         | nal reference frequency -<br>trimmed                          | f <sub>int_t</sub>   | _       | 31.25                 | _       | kHz               |
| 10  | Р | DCO output fi                                         | requency range - trimmed                                      | f <sub>dco_t</sub>   | 16      | —                     | 20      | MHz               |
| 11  | Р | Total deviation of DCO output                         | Over full voltage and temperature range                       | $\Delta f_{dco_t}$   | _       | _                     | ±2.0    | %f <sub>dco</sub> |
|     | С | from trimmed<br>frequency <sup>5</sup>                | Over fixed voltage and<br>temperature range of 0 to<br>70 °C  |                      |         |                       | ±1.0    |                   |
| 12  | С | FLL a                                                 | cquisition time <sup>5</sup> , <sup>7</sup>                   | t <sub>Acquire</sub> | _       |                       | 2       | ms                |



| С | Characteristic                                                                                                              | Symbol               | Min <sup>1</sup> | Typical <sup>2</sup> | Max <sup>3</sup> | Unit <sup>4</sup> |
|---|-----------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|----------------------|------------------|-------------------|
| D | NVM Bus frequency                                                                                                           | f <sub>NVMBUS</sub>  | 1                | —                    | 25               | MHz               |
| D | NVM Operating frequency                                                                                                     | f <sub>NVMOP</sub>   | 0.8              | 1                    | 1.05             | MHz               |
| D | Erase Verify All Blocks                                                                                                     | t <sub>VFYALL</sub>  | _                | _                    | 17338            | t <sub>cyc</sub>  |
| D | Erase Verify Flash Block                                                                                                    | t <sub>RD1BLK</sub>  | _                | _                    | 16913            | t <sub>cyc</sub>  |
| D | Erase Verify EEPROM Block                                                                                                   | t <sub>RD1BLK</sub>  | —                | _                    | 810              | t <sub>cyc</sub>  |
| D | Erase Verify Flash Section                                                                                                  | t <sub>RD1SEC</sub>  | _                | _                    | 484              | t <sub>cyc</sub>  |
| D | Erase Verify EEPROM Section                                                                                                 | t <sub>DRD1SEC</sub> | _                | —                    | 555              | t <sub>cyc</sub>  |
| D | Read Once                                                                                                                   | t <sub>RDONCE</sub>  | _                | _                    | 450              | t <sub>cyc</sub>  |
| D | Program Flash (2 word)                                                                                                      | t <sub>PGM2</sub>    | 0.12             | 0.12                 | 0.29             | ms                |
| D | Program Flash (4 word)                                                                                                      | t <sub>PGM4</sub>    | 0.20             | 0.21                 | 0.46             | ms                |
| D | Program Once                                                                                                                | t <sub>PGMONCE</sub> | 0.20             | 0.21                 | 0.21             | ms                |
| D | Program EEPROM (1 Byte)                                                                                                     | t <sub>DPGM1</sub>   | 0.10             | 0.10                 | 0.27             | ms                |
| D | Program EEPROM (2 Byte)                                                                                                     | t <sub>DPGM2</sub>   | 0.17             | 0.18                 | 0.43             | ms                |
| D | Program EEPROM (3 Byte)                                                                                                     | t <sub>DPGM3</sub>   | 0.25             | 0.26                 | 0.60             | ms                |
| D | Program EEPROM (4 Byte)                                                                                                     | t <sub>DPGM4</sub>   | 0.32             | 0.33                 | 0.77             | ms                |
| D | Erase All Blocks                                                                                                            | t <sub>ERSALL</sub>  | 96.01            | 100.78               | 101.49           | ms                |
| D | Erase Flash Block                                                                                                           | t <sub>ERSBLK</sub>  | 95.98            | 100.75               | 101.44           | ms                |
| D | Erase Flash Sector                                                                                                          | t <sub>ERSPG</sub>   | 19.10            | 20.05                | 20.08            | ms                |
| D | Erase EEPROM Sector                                                                                                         | t <sub>DERSPG</sub>  | 4.81             | 5.05                 | 20.57            | ms                |
| D | Unsecure Flash                                                                                                              | t <sub>UNSECU</sub>  | 96.01            | 100.78               | 101.48           | ms                |
| D | Verify Backdoor Access Key                                                                                                  | t <sub>VFYKEY</sub>  | _                | —                    | 464              | t <sub>cyc</sub>  |
| D | Set User Margin Level                                                                                                       | t <sub>MLOADU</sub>  | _                | _                    | 407              | t <sub>cyc</sub>  |
| С | FLASH Program/erase endurance $T_L$ to $T_H$ = -40 °C to 105 °C                                                             | n <sub>FLPE</sub>    | 10 k             | 100 k                |                  | Cycles            |
| С | EEPROM Program/erase endurance TL<br>to TH = -40 °C to 105 °C                                                               | N <sub>FLPE</sub>    | 50 k             | 500 k                | _                | Cycles            |
| С | Data retention at an average junction<br>temperature of T <sub>Javg</sub> = 85°C after up to<br>10,000 program/erase cycles | t <sub>D_ret</sub>   | 15               | 100                  |                  | years             |

#### Table 11. Flash characteristics (continued)

1. Minimum times are based on maximum  $f_{\text{NVMOP}}$  and maximum  $f_{\text{NVMBUS}}$ 

2. Typical times are based on typical  $f_{\text{NVMOP}}$  and maximum  $f_{\text{NVMBUS}}$ 

3. Maximum times are based on typical  $f_{\text{NVMOP}}$  and typical  $f_{\text{NVMBUS}}$  plus aging

4.  $t_{cyc} = 1 / f_{NVMBUS}$ 

Program and erase operations do not require any special power sources other than the normal  $V_{DD}$  supply. For more detailed information about program/erase operations, see the Memory section.



| Characteristic                       | Conditions                   | С | Symb                | Min  | Typ <sup>1</sup>                  | Max   | Unit             |
|--------------------------------------|------------------------------|---|---------------------|------|-----------------------------------|-------|------------------|
|                                      | Low power (ADLPC<br>= 1)     |   |                     | 1.25 | 2                                 | 3.3   |                  |
| Conversion time<br>(including sample | Short sample<br>(ADLSMP = 0) | Т | t <sub>ADC</sub>    | _    | 20                                | _     | ADCK<br>cycles   |
| time)                                | Long sample<br>(ADLSMP = 1)  |   |                     | —    | 40                                | _     |                  |
| Sample time                          | Short sample<br>(ADLSMP = 0) | Т | t <sub>ADS</sub>    | —    | 3.5                               | _     | ADCK<br>cycles   |
|                                      | Long sample<br>(ADLSMP = 1)  |   |                     | _    | 23.5                              | _     |                  |
| Total unadjusted                     | 12-bit mode                  | Т | E <sub>TUE</sub>    | —    | ±5.0                              | —     | LSB <sup>3</sup> |
| Error <sup>2</sup>                   | 10-bit mode                  | Р |                     | _    | ±1.5                              | ±2.0  |                  |
|                                      | 8-bit mode                   | Р |                     | _    | ±0.7                              | ±1.0  |                  |
| Differential Non-                    | 12-bit mode                  | Т | DNL                 | —    | ±1.0                              | —     | LSB <sup>3</sup> |
| Linearity                            | 10-bit mode <sup>4</sup>     | Р |                     | _    | ±0.25                             | ±0.5  | ]                |
|                                      | 8-bit mode <sup>4</sup>      | Р |                     |      | ±0.15                             | ±0.25 |                  |
| Integral Non-Linearity               | 12-bit mode                  | Т | INL                 |      | ±1.0                              |       | LSB <sup>3</sup> |
|                                      | 10-bit mode                  | Т |                     | _    | ±0.3                              | ±0.5  |                  |
|                                      | 8-bit mode                   | Т |                     |      | ±0.15                             | ±0.25 |                  |
| Zero-scale error <sup>5</sup>        | 12-bit mode                  | С | E <sub>ZS</sub>     |      | ±2.0                              | _     | LSB <sup>3</sup> |
|                                      | 10-bit mode                  | Р |                     |      | ±0.25                             | ±1.0  | ]                |
|                                      | 8-bit mode                   | Р |                     |      | ±0.65                             | ±1.0  |                  |
| Full-scale error <sup>6</sup>        | 12-bit mode                  | Т | E <sub>FS</sub>     |      | ±2.5                              | _     | LSB <sup>3</sup> |
|                                      | 10-bit mode                  | Т |                     | _    | ±0.5                              | ±1.0  | 1                |
|                                      | 8-bit mode                   | Т |                     |      | ±0.5                              | ±1.0  |                  |
| Quantization error                   | ≤12 bit modes                | D | EQ                  |      | —                                 | ±0.5  | LSB <sup>3</sup> |
| Input leakage error <sup>7</sup>     | all modes                    | D | E <sub>IL</sub>     |      | I <sub>In</sub> * R <sub>AS</sub> |       | mV               |
| Temp sensor slope                    | -40°C– 25°C                  | D | m                   | _    | 3.266                             | —     | mV/°C            |
|                                      | 25°C– 125°C                  |   |                     |      | 3.638                             | _     |                  |
| Temp sensor voltage                  | 25°C                         | D | V <sub>TEMP25</sub> |      | 1.396                             | _     | V                |

### Table 13. 12-bit ADC Characteristics ( $V_{REFH} = V_{DDA}$ , $V_{REFL} = V_{SSA}$ ) (continued)

1. Typical values assume  $V_{DDA} = 5.0 \text{ V}$ , Temp = 25°C,  $f_{ADCK}=1.0 \text{ MHz}$  unless otherwise stated. Typical values are for reference only and are not tested in production.

2. Includes quantization.

- 3. 1 LSB =  $(V_{REFH} V_{REFL})/2^N$
- 4. Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes
- 5.  $V_{ADIN} = V_{SSA}$
- 6.  $V_{ADIN} = V_{DDA}$
- 7. I<sub>In</sub> = leakage current (refer to DC characteristics)

rempheral operating requirements and behaviors

#### 6.3.2 Analog comparator (ACMP) electricals Table 14. Comparator electrical specifications

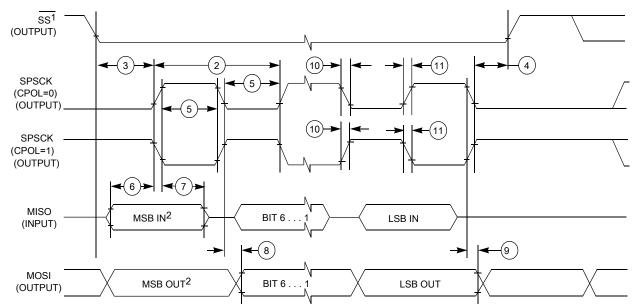
| С | Characteristic                        | Symbol           | Min                   | Typical | Max              | Unit |
|---|---------------------------------------|------------------|-----------------------|---------|------------------|------|
| D | Supply voltage                        | $V_{DDA}$        | 2.7                   | —       | 5.5              | V    |
| Т | Supply current (Operation mode)       | I <sub>DDA</sub> | _                     | 10      | 20               | μA   |
| D | Analog input voltage                  | V <sub>AIN</sub> | V <sub>SS</sub> - 0.3 |         | V <sub>DDA</sub> | V    |
| Р | Analog input offset voltage           | V <sub>AIO</sub> |                       |         | 40               | mV   |
| С | Analog comparator hysteresis (HYST=0) | V <sub>H</sub>   | _                     | 15      | 20               | mV   |
| С | Analog comparator hysteresis (HYST=1) | V <sub>H</sub>   |                       | 20      | 30               | mV   |
| Т | Supply current (Off mode)             | IDDAOFF          | —                     | 60      |                  | nA   |
| С | Propagation Delay                     | t <sub>D</sub>   |                       | 0.4     | 1                | μs   |

### 6.4 Communication interfaces

#### 6.4.1 SPI switching specifications

The serial peripheral interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. Refer to the SPI chapter of the chip's reference manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20%  $V_{DD}$  and 70%  $V_{DD}$ , unless noted, and 100 pF load on all SPI pins. All timing assumes high drive strength is enabled for SPI output pins.

| Nu | Symbol              | Description                    | Min.                   | Max.                    | Unit               | Comment                              |
|----|---------------------|--------------------------------|------------------------|-------------------------|--------------------|--------------------------------------|
| m. |                     |                                |                        |                         |                    |                                      |
| 1  | f <sub>op</sub>     | Frequency of operation         | f <sub>Bus</sub> /2048 | f <sub>Bus</sub> /2     | Hz                 | f <sub>Bus</sub> is the bus<br>clock |
| 2  | t <sub>SPSCK</sub>  | SPSCK period                   | 2 x t <sub>Bus</sub>   | 2048 x t <sub>Bus</sub> | ns                 | $t_{Bus} = 1/f_{Bus}$                |
| 3  | t <sub>Lead</sub>   | Enable lead time               | 1/2                    | _                       | t <sub>SPSCK</sub> | —                                    |
| 4  | t <sub>Lag</sub>    | Enable lag time                | 1/2                    | —                       | t <sub>SPSCK</sub> | —                                    |
| 5  | t <sub>WSPSCK</sub> | Clock (SPSCK) high or low time | t <sub>Bus</sub> - 30  | 1024 x t <sub>Bus</sub> | ns                 | —                                    |
| 6  | t <sub>SU</sub>     | Data setup time (inputs)       | 15                     | —                       | ns                 | —                                    |
| 7  | t <sub>HI</sub>     | Data hold time (inputs)        | 0                      | _                       | ns                 | —                                    |
| 8  | t <sub>v</sub>      | Data valid (after SPSCK edge)  |                        | 25                      | ns                 |                                      |
| 9  | t <sub>HO</sub>     | Data hold time (outputs)       | 0                      | —                       | ns                 | _                                    |
| 10 | t <sub>RI</sub>     | Rise time input                | _                      | t <sub>Bus</sub> - 25   | ns                 | —                                    |


Table 15. SPI master mode timing



#### Peripheral operating requirements and behaviors

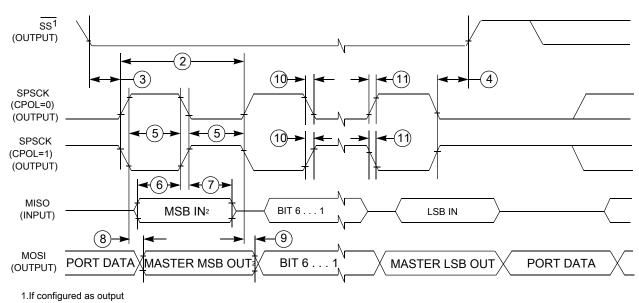

| Nu<br>m. | Symbol          | Description      | Min. | Max. | Unit | Comment |
|----------|-----------------|------------------|------|------|------|---------|
|          | t <sub>FI</sub> | Fall time input  |      |      |      |         |
| 11       | t <sub>RO</sub> | Rise time output | —    | 25   | ns   | —       |
|          | t <sub>FO</sub> | Fall time output |      |      |      |         |

Table 15. SPI master mode timing (continued)



1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.



#### Figure 17. SPI master mode timing (CPHA=0)

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

#### Figure 18. SPI master mode timing (CPHA=1)



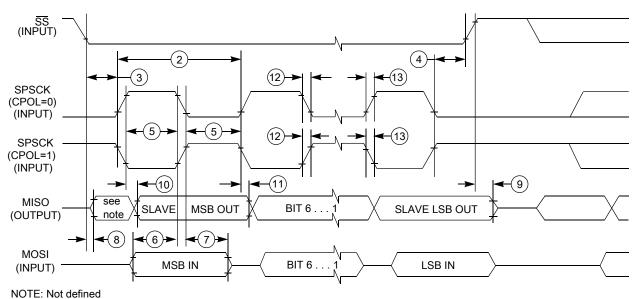



Figure 20. SPI slave mode timing (CPHA=1)

## 7 Dimensions

### 7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

| If you want the drawing for this package | Then use this document number |
|------------------------------------------|-------------------------------|
| 16-pin TSSOP                             | 98ASH70247A                   |
| 20-pin SOIC                              | 98ASB42343B                   |
| 20-pin TSSOP                             | 98ASH70169A                   |
| 32-pin LQFP                              | 98ASH70029A                   |
| 44-pin LQFP                              | 98ASS23225W                   |



## 8 Pinout

## 8.1 Signal multiplexing and pin assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

|         | Pin     | Number   |          | Lowest Priority <> Highest |        |            |                  |                   |  |
|---------|---------|----------|----------|----------------------------|--------|------------|------------------|-------------------|--|
| 44-LQFP | 32-LQFP | 20-TSSOP | 16-TSSOP | Port Pin                   | Alt 1  | Alt 2      | Alt 3            | Alt 4             |  |
| 1       | 1       | _        | —        | PTD1 <sup>1</sup>          |        | FTM2CH3    |                  |                   |  |
| 2       | 2       | _        | _        | PTD0 <sup>1</sup>          |        | FTM2CH2    | _                |                   |  |
| 3       |         |          | —        | PTE4                       | _      | TCLK2      | _                | _                 |  |
| 4       |         |          |          | PTE3                       |        | BUSOUT     |                  |                   |  |
| 5       | 3       | 3        | 3        |                            | _      | —          | _                | V <sub>DD</sub>   |  |
| 6       | 4       | _        | —        |                            | _      | —          | V <sub>DDA</sub> | V <sub>REFH</sub> |  |
| 7       | 5       | _        | —        |                            | _      | —          | V <sub>SSA</sub> | V <sub>REFL</sub> |  |
| 8       | 6       | 4        | 4        |                            | —      | _          | —                | V <sub>SS</sub>   |  |
| 9       | 7       | 5        | 5        | PTB7                       | —      | _          | SCL              | EXTAL             |  |
| 10      | 8       | 6        | 6        | PTB6                       | —      | _          | SDA              | XTAL              |  |
| 11      | —       | _        | —        |                            | —      | _          | —                | Vss               |  |
| 12      | 9       | 7        | 7        | PTB5 <sup>1</sup>          | —      | FTM2CH5    | SS0              | _                 |  |
| 13      | 10      | 8        | 8        | PTB4 <sup>1</sup>          | —      | FTM2CH4    | MISO0            | _                 |  |
| 14      | 11      | 9        | —        | PTC3                       | —      | FTM2CH3    | ADP11            | _                 |  |
| 15      | 12      | 10       | —        | PTC2                       | —      | FTM2CH2    | ADP10            | _                 |  |
| 16      | _       | —        | —        | PTD7                       | —      | _          | _                | _                 |  |
| 17      | _       | —        | —        | PTD6                       | —      |            | —                | _                 |  |
| 18      | —       | —        | —        | PTD5                       | —      |            | —                | _                 |  |
| 19      | 13      | 11       | —        | PTC1                       | —      | FTM2CH1    | ADP9             | _                 |  |
| 20      | 14      | 12       | —        | PTC0                       | —      | FTM2CH0    | ADP8             | _                 |  |
| 21      | 15      | 13       | 9        | PTB3                       | KBI0P7 | MOSI0      | ADP7             | _                 |  |
| 22      | 16      | 14       | 10       | PTB2                       | KBI0P6 | SPSCK0     | ADP6             | _                 |  |
| 23      | 17      | 15       | 11       | PTB1                       | KBI0P5 | TXD0       | ADP5             | _                 |  |
| 24      | 18      | 16       | 12       | PTB0                       | KBI0P4 | RXD0       | ADP4             | —                 |  |
| 25      | 19      | —        | —        | PTA7                       | _      | FTM2FAULT2 | ADP3             | _                 |  |
| 26      | 20      | —        | —        | PTA6                       | _      | FTM2FAULT1 | ADP2             | _                 |  |
| 27      | —       | —        | —        | —                          | —      | —          | _                | Vss               |  |
| 28      | _       | _        | —        | _                          | _      |            | _                | V <sub>DD</sub>   |  |

Table 17. Pin availability by package pin-count



|         | Pin     | Number   |          | Lowest Priority <> Highest |        |         |       |       |  |
|---------|---------|----------|----------|----------------------------|--------|---------|-------|-------|--|
| 44-LQFP | 32-LQFP | 20-TSSOP | 16-TSSOP | Port Pin                   | Alt 1  | Alt 2   | Alt 3 | Alt 4 |  |
| 29      | —       | —        | —        | PTD4                       | _      | —       | —     | —     |  |
| 30      | 21      | _        | —        | PTD3                       | _      | —       | —     | —     |  |
| 31      | 22      | _        | _        | PTD2                       | _      | —       | _     | —     |  |
| 32      | 23      | 17       | 13       | PTA3 <sup>2</sup>          | KBI0P3 | TXD0    | SCL   | —     |  |
| 33      | 24      | 18       | 14       | PTA2 <sup>2</sup>          | KBI0P2 | RXD0    | SDA   | —     |  |
| 34      | 25      | 19       | 15       | PTA1                       | KBI0P1 | FTM0CH1 | ACMP1 | ADP1  |  |
| 35      | 26      | 20       | 16       | PTA0                       | KBI0P0 | FTM0CH0 | ACMP0 | ADP0  |  |
| 36      | 27      | _        | —        | PTC7                       | _      | TxD1    | _     | —     |  |
| 37      | 28      | _        | _        | PTC6                       | _      | RxD1    | —     | —     |  |
| 38      | —       | _        | _        | PTE2                       | _      | MISO0   | —     | —     |  |
| 39      | —       | —        | —        | PTE1                       | _      | MOSI0   | _     | —     |  |
| 40      | —       | _        | _        | PTE0                       | _      | SPSCK0  | —     | —     |  |
| 41      | 29      | —        | —        | PTC5                       | —      | FTM0CH1 | —     | —     |  |
| 42      | 30      | —        | —        | PTC4                       | —      | FTM0CH0 | —     | —     |  |
| 43      | 31      | 1        | 1        | PTA5                       | IRQ    | TCLK0   | —     | RESET |  |
| 44      | 32      | 2        | 2        | PTA4                       | _      | ACMPO   | BKGD  | MS    |  |

Table 17. Pin availability by package pin-count (continued)

1. This is a high current drive pin when operated as output.

2. This is a true open-drain pin when operated as output.

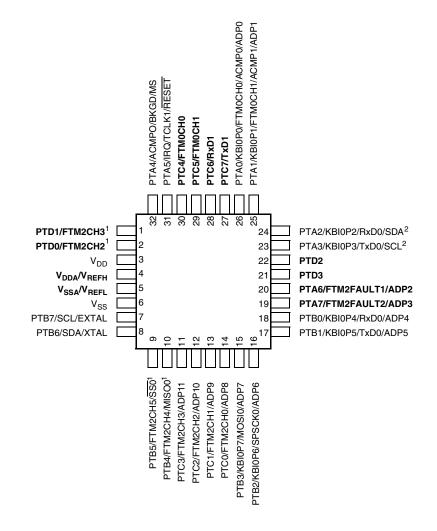
#### Note

When an alternative function is first enabled, it is possible to get a spurious edge to the module. User software must clear any associated flags before interrupts are enabled. The table above illustrates the priority if multiple modules are enabled. The highest priority module will have control over the pin. Selecting a higher priority pin function with a lower priority function already enabled can cause spurious edges to the lower priority module. Disable all modules that share a pin before enabling another module.

### 8.2 Device pin assignment



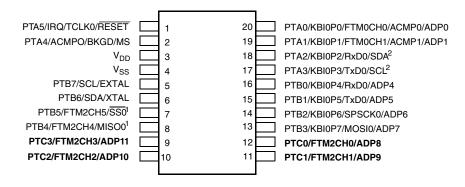
PTA0/KBI0P0/FTM0CH0/ACMP0/ADP0 PTA1/KBI0P1/FTM0CH1/ACMP1/ADP1 PTA4/ACMPO/BKGD/MS PTA5/IRQ/TCLK0/RESET PTC4/FTM0CH0 PTC5/FTM0CH1 PTE0/SPSCK0 PTE1/MOSI0 PTE2/MISO0 PTC6/RxD1 PTC7/TxD1 36 35 θ 4 9 8 37 8 9 끏 PTA2/KBI0P2/RxD0/SDA<sup>2</sup> PTD1/FTM2CH31 3 PTA3/KBI0P3/TxD0/SCL<sup>2</sup> PTD0/FTM2CH21 2 32 31 PTD2 PTE4/TCLK2 3 PTE3/BUSOUT 30 PTD3 4 29 PTD4  $V_{DD}$ 5 28 V<sub>DDA</sub> /V<sub>REFH</sub>  $V_{DD}$ 6 V<sub>SSA</sub> /V<sub>REFL</sub> 27  $V_{SS}$ 7 26 V<sub>SS</sub> 8 PTA6/FTM2FAULT1/ADP2 PTB7/SCL/EXTAL 9 25 PTA7/FTM2FAULT2/ADP3 PTB6/SDA/XTAL 24 10 PTB0/KBI0P4/RxD0/ADP4 Vss PTB1/KBI0P5/TxD0/ADP5 1 2 N e 4 S ဖ œ <u>о</u> 20 22  $\sim$ 5 PTD7 PTD6 PTD5 PTC1/FTM2CH1/ADP9 PTC3/FTM2CH3/ADP11 PTC2/FTM2CH2/ADP10 PTC0/FTM2CH0/ADP8 PTB3/KBI0P7/MOSI0/ADP7 PTB2/KBI0P6/SPSCK0/ADP6 PTB5/FTM2CH5/SS0<sup>1</sup> PTB4/FTM2CH4/MISO0<sup>1</sup>


Pins in **bold** are not available on less pin-count packages.

1. High source/sink current pins

2. True open drain pins

#### Figure 21. MC9S08PA16 44-pin LQFP package





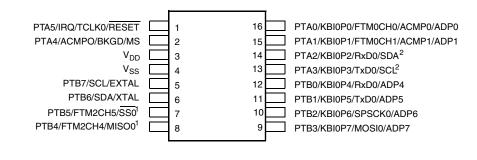

Pins in  $\ensuremath{\textbf{bold}}$  are not available on less pin-count packages.

- 1. High source/sink current pins
- 2. True open drain pins

#### Figure 22. MC9S08PA16 32-pin LQFP package



Pins in **bold** are not available on less pin-count packages.


1. High source/sink current pins

2. True open drain pins

#### Figure 23. MC9S08PA16 20-pin SOIC and TSSOP package

#### MC9S08PA16 Series Data Sheet, Rev. 3, 06/2015





Pins in **bold** are not available on less pin-count packages. 1. High source/sink current pins

2. True open drain pins

#### Figure 24. MC9S08PA16 16-pin TSSOP package

## 9 Revision history

The following table provides a revision history for this document.

| Rev. No. | Date    | Substantial Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | 10/2012 | Initial public release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2        | 09/2014 | <ul> <li>Updated V<sub>OH</sub> and V<sub>OL</sub> in DC characteristics</li> <li>Updated footnote on the S3I<sub>DD</sub> in Supply current characteristics</li> <li>Added EMC radiated emissions operating behaviors</li> <li>Updated the typical of f<sub>int_t</sub> to 31.25 kHz and updated footnote to t<sub>Acquire</sub> in External oscillator (XOSC) and ICS characteristics</li> <li>Updated the assumption for all the timing values in SPI switching specifications</li> <li>Updated the rating descriptions for t<sub>Rise</sub> and t<sub>Fall</sub> in Control timing</li> <li>Updated the part number format to add new field for new part numbers in Fields</li> </ul> |
| 3        | 06/2015 | <ul> <li>Corrected the Min. of the t<sub>extrst</sub> in Control timing</li> <li>Updated Thermal characteristics to add footnote to the T<sub>A</sub> and removed redundant information.Updated the symbol of θ<sub>JA</sub> to R<sub>θJA</sub>.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                               |

#### Table 18. Revision history