

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08pa8vldr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PA16 and PA8.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

MC 9 S08 PA AA (V) B CC

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
MC	Qualification status	MC = fully qualified, general market flow
9	Memory	• 9 = flash based
S08	Core	• S08 = 8-bit CPU
PA	Device family	• PA
AA	Approximate flash size in KB	 16 = 16 KB 8 = 8 KB
(V)	Mask set version	 (blank) = Any version A = Rev. 2 or later version, this is recommended for new design

Table continues on the next page

MC9S08PA16 Series Data Sheet, Rev. 3, 06/2015

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Symbol	Description	Min.	Max.	Unit
V _{DD}	Supply voltage	-0.3	6.0	V
I _{DD}	Maximum current into V _{DD}	—	120	mA
V _{DIO}	Digital input voltage (except RESET, EXTAL, XTAL, or true open drain pin PTA2 and PTA3)	-0.3	V _{DD} + 0.3	V
	Digital input voltage (true open drain pin PTA2 and PTA3)	-0.3	6	V
V _{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
Ι _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

1. All digital I/O pins, except open-drain pin PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD}. PTA2 and PTA3 is only clamped to V_{SS}.

5 General

5.1 Nonswitching electrical specifications

5.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

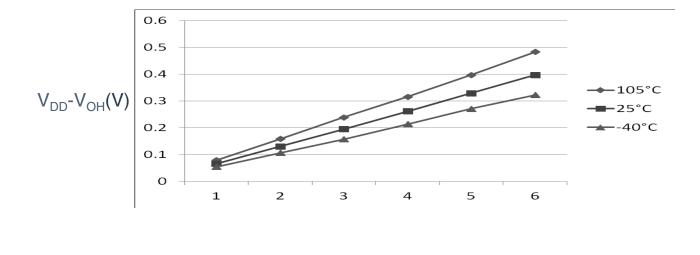
Symbol	С		Descriptions			Typical ¹	Max	Unit
—	_	Oper	rating voltage	—	2.7	_	5.5	V
V _{OH}	С	Output high voltage	All I/O pins, standard- drive strength	5 V, I _{load} = -5 mA	V _{DD} - 0.8		_	V
	С			3 V, I _{load} = -2.5 mA	V _{DD} - 0.8		—	V
	С		High current drive pins, high-drive	5 V, I _{load} = -20 mA	V _{DD} - 0.8		_	V
	С		strength ²	3 V, I _{load} = -10 mA	V _{DD} - 0.8	—	_	V

Table 2. DC characteristics

Nonswitching electrical specifications

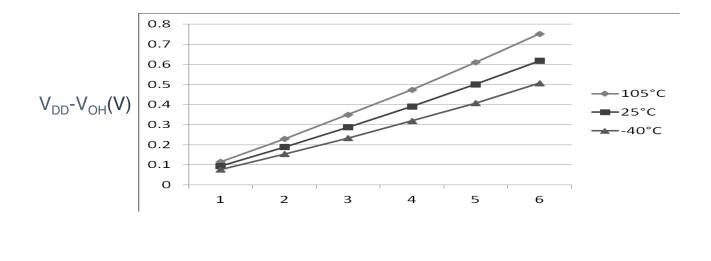
6. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Symbol	С	Descr	ription	Min	Тур	Мах	Unit
V _{POR}	D	POR re-arm	n voltage ^{1, 2}	1.5	1.75	2.0	V
V _{LVDH}	С	Falling low-venture for the shold - high = -		4.2	4.3	4.4	V
V _{LVW1H}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	С	warning threshold - high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}	С		Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}	С		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	С	High range detect/warnir	low-voltage ng hysteresis	—	100	_	mV
V _{LVDL}	С	Falling low-venture for the shold - low		2.56	2.61	2.66	V
V _{LVDW1L}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V _{LVDW2L}	С	warning threshold -	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVDW3L}	С	low range	Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V _{LVDW4L}	С		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}	С	Low range low hyste	-voltage detect eresis	_	40	_	mV
V _{HYSWL}	С	Low range warning h	•	—	80		mV
V _{BG}	Р	Buffered ban	dgap output ⁴	1.14	1.16	1.18	V


Table 3. LVD and POR Specification

1. Maximum is highest voltage that POR is guaranteed.

2. POR ramp time must be longer than 20us/V to get a stable startup.


- 3. Rising thresholds are falling threshold + hysteresis.
- 4. Voltage factory trimmed at $V_{DD} = 5.0 \text{ V}$, Temp = 25 °C

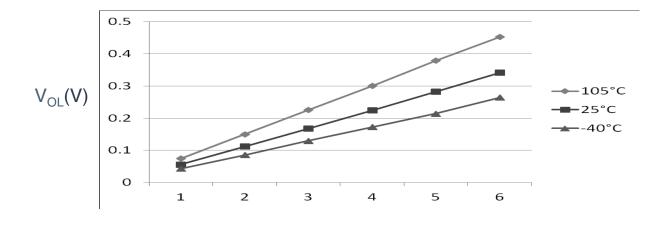
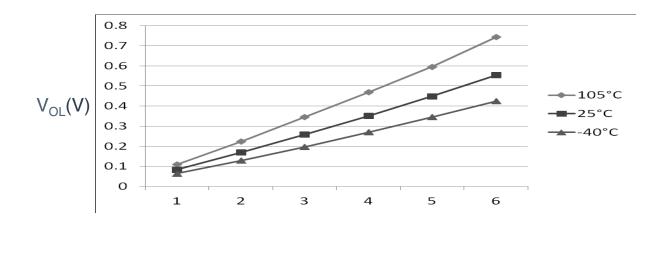
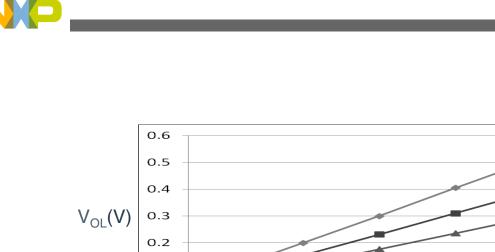
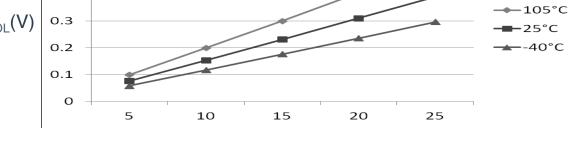

I_{OH}(mA)

Figure 1. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) (V_{DD} = 5 V)


 $I_{OH}(mA)$ Figure 2. Typical I_{OH} Vs. V_{DD}-V_{OH} (standard drive strength) (V_{DD} = 3 V)

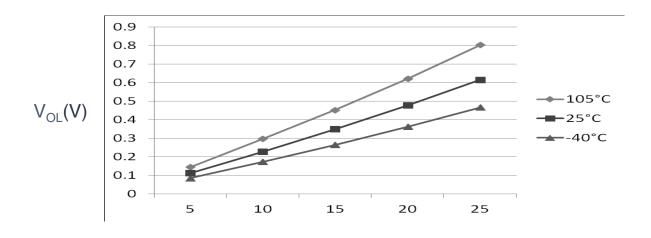
I_{OL}(mA)


Figure 5. Typical I_{OL} Vs. V_{OL} (standard drive strength) (V_{DD} = 5 V)



I_{OL}(mA)

Figure 6. Typical I_{OL} Vs. V_{OL} (standard drive strength) (V_{DD} = 3 V)



I_{OL}(mA)

Figure 7. Typical I_{OL} Vs. V_{OL} (high drive strength) (V_{DD} = 5 V)

I_{OL}(mA)

Figure 8. Typical I_{OL} Vs. V_{OL} (high drive strength) (V_{DD} = 3 V)

5.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
1	С	Run supply current FEI	RI _{DD}	20 MHz	5	7.60	_	mA	-40 to 105 °C
	С	mode, all modules on; run from flash		10 MHz		4.65	—		
		nonnasn		1 MHz		1.90	_		
	С			20 MHz	3	7.05	_		
	С			10 MHz		4.40	—		
				1 MHz		1.85	_		
2	С	Run supply current FEI	RI _{DD}	20 MHz	5	5.88		mA	-40 to 105 °C
	С	mode, all modules off & gated; run from flash		10 MHz		3.70	—		
		gated, full from hash		1 MHz		1.85	_		
	С			20 MHz	3	5.35	_		
	С			10 MHz		3.42	_		
				1 MHz		1.80	_		
3	Р	Run supply current FBE	RI _{DD}	20 MHz	5	10.9	14.0	mA	-40 to 105 °C
	С	mode, all modules on; run from RAM		10 MHz		6.10	—		
				1 MHz		1.69	_		
	Р			20 MHz	3	8.18	_		
	С			10 MHz		5.14	—		
				1 MHz		1.44	_		
4	Р	Run supply current FBE	RI _{DD}	20 MHz	5	8.50	13.0	mA	-40 to 105 °C
	С	mode, all modules off & gated; run from RAM		10 MHz		5.07	—		
		galed, full from train		1 MHz		1.59	_		
	Р			20 MHz	3	6.11	_		
	С			10 MHz		4.10	—		
				1 MHz		1.34	_		
5	Р	Wait mode current FEI	WI _{DD}	20 MHz	5	5.95	_	mA	-40 to 105 °C
	С	mode, all modules on		10 MHz		3.50	—		
				1 MHz		1.24	_		
	С			20 MHz	3	5.45	_		
				10 MHz		3.25	—		
				1 MHz		1.20			
6	С	Stop3 mode supply	S3I _{DD}	—	5	4.6	—	μA	-40 to 105 °C
	С	current no clocks active (except 1kHz LPO clock) ^{2, 3}			3	4.5	_		-40 to 105 °C
7	С	ADC adder to stop3	_	—	5	40		μA	-40 to 105 °C

Table 4. Supply current characteristics

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
	С	ADLPC = 1			3	39	_		
		ADLSMP = 1							
		ADCO = 1							
		MODE = 10B							
		ADICLK = 11B							
8	С	LVD adder to stop34	—	_	5	128	_	μA	-40 to 105 °C
	С				3	124	_		

Table 4. Supply current characteristics (continued)

1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

2. RTC adder cause <1 µA I_{DD} increase typically, RTC clock source is 1kHz LPO clock.

3. ACMP adder cause <10 μ A I_{DD} increase typically.

4. LVD is periodically woken up from stop3 by 5% duty cycle. The period is equal to or less than 2 ms.

5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

5.1.3.1 EMC radiated emissions operating behaviors

Table 5. EMC radiated emissions operating behaviors for 44-pin LQFP package

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	8	dBµV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	8	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	8	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	5	dBµV	
V _{RE_IEC}	IEC level	0.15–1000	Ν	—	2, 3

 Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

2. $V_{DD} = 5.0 \text{ V}, \text{ T}_{A} = 25 \text{ °C}, \text{ } f_{OSC} = 10 \text{ MHz} \text{ (crystal)}, \text{ } f_{SYS} = 20 \text{ MHz}, \text{ } f_{BUS} = 20 \text{ MHz}$

3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method

MC9S08PA16 Series Data Sheet, Rev. 3, 06/2015

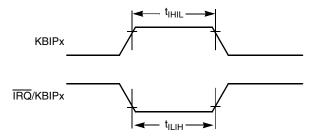
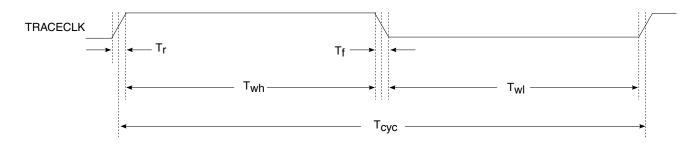



Figure 10. IRQ/KBIPx timing

5.2.2 Debug trace timing specifications Т

Table 7.	Debug trace	operating	behaviors
----------	-------------	-----------	-----------

Symbol	Description	Min.	Max.	Unit
t _{cyc}	Clock period	Frequency	MHz	
t _{wl}	Low pulse width	2	_	ns
t _{wh}	High pulse width	2	—	ns
t _r	Clock and data rise time	—	3	ns
t _f	Clock and data fall time	—	3	ns
t _s	Data setup	3	—	ns
t _h	Data hold	2		ns

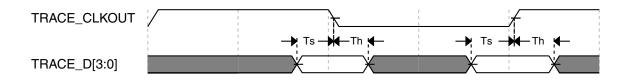


Figure 12. Trace data specifications

rempheral operating requirements and behaviors

6.1 External oscillator (XOSC) and ICS characteristics

Table 10. XOSC and ICS specifications (temperature range = -40 to 105 °C ambient)

Num	С	C	characteristic	Symbol	Min	Typical ¹	Max	Unit
1	С	Oscillator	Low range (RANGE = 0)	f _{lo}	31.25	32.768	39.0625	kHz
	С	crystal or resonator	High range (RANGE = 1) FEE or FBE mode ²	f _{hi}	4	_	20	MHz
	С		High range (RANGE = 1), high gain (HGO = 1), FBELP mode	f _{hi}	4	_	20	MHz
	С		High range (RANGE = 1), low power (HGO = 0), FBELP mode	f _{hi}	4		20	MHz
2	D	Lo	bad capacitors	C1, C2		See Note ³		
3	D	Feedback resistor	Low Frequency, Low-Power Mode ⁴	R _F	—	_	—	MΩ
			Low Frequency, High-Gain Mode		_	10	_	MΩ
			High Frequency, Low- Power Mode		_	1	_	MΩ
			High Frequency, High-Gain Mode		_	1	_	MΩ
4	D	Series resistor -	Low-Power Mode ⁴	R _S	_	_	_	kΩ
		Low Frequency	High-Gain Mode	-	_	200		kΩ
5	D	Series resistor - High Frequency	Low-Power Mode ⁴	R _S	_	—	_	kΩ
	D	Series resistor -	4 MHz	-	_	0		kΩ
	D	High Frequency,	8 MHz	-	_	0	_	kΩ
	D	High-Gain Mode	16 MHz	-		0	_	kΩ
6	С	Crystal start-up	Low range, low power	t _{CSTL}	_	1000		ms
	С	time Low range = 32.768 kHz	Low range, high power	-	_	800		ms
	С	crystal; High	High range, low power	t _{CSTH}	_	3		ms
	С	range = 20 MHz crystal ⁵ , ⁶	High range, high power		_	1.5	_	ms
7	Т	Internal re	eference start-up time	t _{IRST}	—	20	50	μs
8	D	Square wave	FEE or FBE mode ²	f _{extal}	0.03125		5	MHz
	D	input clock frequency	FBELP mode		0		20	MHz
9	Р	Average inter	nal reference frequency - trimmed	f _{int_t}	_	31.25	_	kHz
10	Р	DCO output fi	requency range - trimmed	f _{dco_t}	16	—	20	MHz
11	Р	Total deviation of DCO output	Over full voltage and temperature range	Δf_{dco_t}	_	_	±2.0	%f _{dco}
	С	from trimmed frequency ⁵	Over fixed voltage and temperature range of 0 to 70 °C				±1.0	
12	С	FLL a	cquisition time ⁵ , ⁷	t _{Acquire}	_		2	ms

Table 10. XOSC and ICS specifications (temperature range = -40 to 105 °C ambient) (continued)

N	um	С	Characteristic	Symbol	Min	Typical ¹	Max	Unit
1	3	С	Long term jitter of DCO output clock (averaged over 2 ms interval) ⁸	C _{Jitter}	_	0.02	0.2	%f _{dco}

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.
- 3. See crystal or resonator manufacturer's recommendation.
- Load capacitors (C₁,C₂), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0.
- 5. This parameter is characterized and not tested on each device.
- 6. Proper PC board layout procedures must be followed to achieve specifications.
- 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

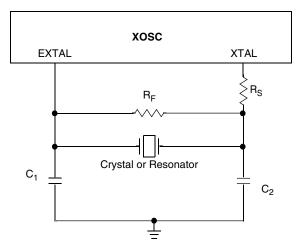


Figure 15. Typical crystal or resonator circuit

6.2 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash and EEPROM memories.

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	Supply voltage for program/erase -40 °C to 105 °C	V _{prog/erase}	2.7	—	5.5	V
D	Supply voltage for read operation	V _{Read}	2.7		5.5	V

Table 11. Flash characteristics

Table continues on the next page...

MC9S08PA16 Series Data Sheet, Rev. 3, 06/2015

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
	Low power (ADLPC = 1)			1.25	2	3.3	
Conversion time (including sample	Short sample (ADLSMP = 0)	Т	t _{ADC}	_	20	_	ADCK cycles
time)	Long sample (ADLSMP = 1)			—	40	_	
Sample time	Short sample (ADLSMP = 0)	Т	t _{ADS}	—	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)			_	23.5	_	
Total unadjusted	12-bit mode	Т	E _{TUE}	—	±5.0	—	LSB ³
Error ²	10-bit mode	Р		_	±1.5	±2.0	
	8-bit mode	Р		_	±0.7	±1.0	
Differential Non-	12-bit mode	Т	DNL	—	±1.0	—	LSB ³
Linearity	10-bit mode ⁴	Р		_	±0.25	±0.5]
	8-bit mode ⁴	Р			±0.15	±0.25	
Integral Non-Linearity	12-bit mode	Т	INL		±1.0		LSB ³
	10-bit mode	Т		_	±0.3	±0.5	
	8-bit mode	Т			±0.15	±0.25	
Zero-scale error ⁵	12-bit mode	С	E _{ZS}		±2.0	_	LSB ³
	10-bit mode	Р			±0.25	±1.0	1
	8-bit mode	Р			±0.65	±1.0	
Full-scale error ⁶	12-bit mode	Т	E _{FS}		±2.5	_	LSB ³
	10-bit mode	Т		_	±0.5	±1.0	1
	8-bit mode	Т			±0.5	±1.0	
Quantization error	≤12 bit modes	D	EQ		—	±0.5	LSB ³
Input leakage error ⁷	all modes	D	E _{IL}		I _{In} * R _{AS}		mV
Temp sensor slope	-40°C– 25°C	D	m	_	3.266	—	mV/°C
	25°C– 125°C			_	3.638	_	
Temp sensor voltage	25°C	D	V _{TEMP25}		1.396	_	V

Table 13. 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

1. Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK}=1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

2. Includes quantization.

- 3. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 4. Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes
- 5. $V_{ADIN} = V_{SSA}$
- 6. $V_{ADIN} = V_{DDA}$
- 7. I_{In} = leakage current (refer to DC characteristics)

rempheral operating requirements and behaviors

6.3.2 Analog comparator (ACMP) electricals Table 14. Comparator electrical specifications

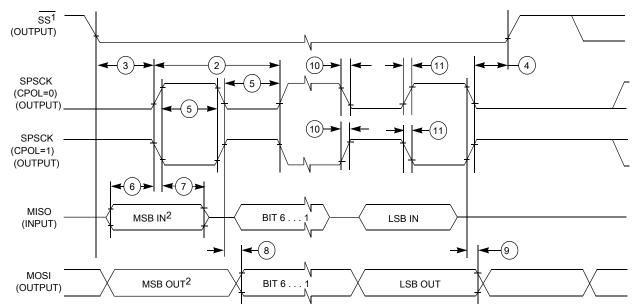
С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage	V_{DDA}	2.7	—	5.5	V
Т	Supply current (Operation mode)	I _{DDA}	_	10	20	μA
D	Analog input voltage	V _{AIN}	V _{SS} - 0.3		V _{DDA}	V
Р	Analog input offset voltage	V _{AIO}			40	mV
С	Analog comparator hysteresis (HYST=0)	V _H	_	15	20	mV
С	Analog comparator hysteresis (HYST=1)	V _H		20	30	mV
Т	Supply current (Off mode)	IDDAOFF	—	60		nA
С	Propagation Delay	t _D		0.4	1	μs

6.4 Communication interfaces

6.4.1 SPI switching specifications

The serial peripheral interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. Refer to the SPI chapter of the chip's reference manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% V_{DD} and 70% V_{DD} , unless noted, and 100 pF load on all SPI pins. All timing assumes high drive strength is enabled for SPI output pins.

Nu	Symbol	Description	Min.	Max.	Unit	Comment
m.						
1	f _{op}	Frequency of operation	f _{Bus} /2048	f _{Bus} /2	Hz	f _{Bus} is the bus clock
2	t _{SPSCK}	SPSCK period	2 x t _{Bus}	2048 x t _{Bus}	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	—
4	t _{Lag}	Enable lag time	1/2	—	t _{SPSCK}	—
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	1024 x t _{Bus}	ns	—
6	t _{SU}	Data setup time (inputs)	15	—	ns	—
7	t _{HI}	Data hold time (inputs)	0	_	ns	—
8	t _v	Data valid (after SPSCK edge)		25	ns	
9	t _{HO}	Data hold time (outputs)	0	—	ns	_
10	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	—


Table 15. SPI master mode timing

Peripheral operating requirements and behaviors

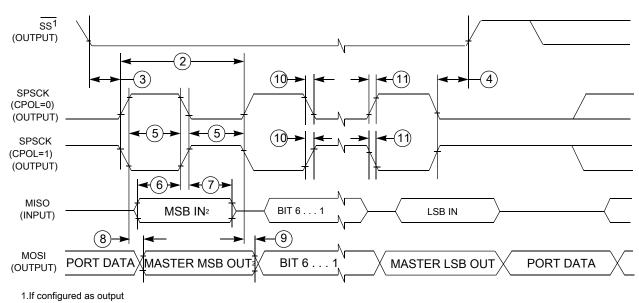

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	—	25	ns	—
	t _{FO}	Fall time output				

Table 15. SPI master mode timing (continued)

1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 17. SPI master mode timing (CPHA=0)

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 18. SPI master mode timing (CPHA=1)

8 Pinout

8.1 Signal multiplexing and pin assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

	Pin	Number		Lowest Priority <> Highest					
44-LQFP	32-LQFP	20-TSSOP	16-TSSOP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4	
1	1	_	—	PTD1 ¹		FTM2CH3			
2	2	_	_	PTD0 ¹		FTM2CH2	_		
3			—	PTE4	_	TCLK2	_	_	
4				PTE3		BUSOUT			
5	3	3	3		_	—	_	V _{DD}	
6	4	_	—		_	—	V _{DDA}	V _{REFH}	
7	5	_	—		_	_	V _{SSA}	V _{REFL}	
8	6	4	4		—	_	—	V _{SS}	
9	7	5	5	PTB7	—	_	SCL	EXTAL	
10	8	6	6	PTB6	—	_	SDA	XTAL	
11	—	_	—		—	_	—	Vss	
12	9	7	7	PTB5 ¹	—	FTM2CH5	SS0	_	
13	10	8	8	PTB4 ¹	—	FTM2CH4	MISO0	_	
14	11	9	—	PTC3	—	FTM2CH3	ADP11	_	
15	12	10	—	PTC2	—	FTM2CH2	ADP10	_	
16	_	—	—	PTD7	—	_	_	_	
17	_	—	—	PTD6	—		—	_	
18	—	—	—	PTD5	—		—	_	
19	13	11	—	PTC1	—	FTM2CH1	ADP9	_	
20	14	12	—	PTC0	—	FTM2CH0	ADP8	_	
21	15	13	9	PTB3	KBI0P7	MOSI0	ADP7	_	
22	16	14	10	PTB2	KBI0P6	SPSCK0	ADP6	_	
23	17	15	11	PTB1	KBI0P5	TXD0	ADP5	_	
24	18	16	12	PTB0	KBI0P4	RXD0	ADP4	—	
25	19	—	—	PTA7	_	FTM2FAULT2	ADP3	_	
26	20	—	—	PTA6	_	FTM2FAULT1	ADP2	_	
27	—	—	—	—	—	—	_	Vss	
28	_	_	—	_	—		_	V _{DD}	

Table 17. Pin availability by package pin-count

	Pin	Number		Lowest Priority <> Highest					
44-LQFP	32-LQFP	20-TSSOP	16-TSSOP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4	
29	—	—	—	PTD4	_	—	—	—	
30	21	_	—	PTD3	_	—	—	—	
31	22	_	_	PTD2	_	—	_	—	
32	23	17	13	PTA3 ²	KBI0P3	TXD0	SCL	—	
33	24	18	14	PTA2 ²	KBI0P2	RXD0	SDA	—	
34	25	19	15	PTA1	KBI0P1	FTM0CH1	ACMP1	ADP1	
35	26	20	16	PTA0	KBI0P0	FTM0CH0	ACMP0	ADP0	
36	27	_	—	PTC7	_	TxD1	_	—	
37	28	_	_	PTC6	_	RxD1	—	—	
38	—	_	_	PTE2	_	MISO0	—	—	
39	—	—	—	PTE1	_	MOSI0	_	—	
40	—	_	_	PTE0	_	SPSCK0	—	—	
41	29	—	—	PTC5	—	FTM0CH1	—	—	
42	30	—	—	PTC4	—	FTM0CH0	—	—	
43	31	1	1	PTA5	IRQ	TCLK0	—	RESET	
44	32	2	2	PTA4	_	ACMPO	BKGD	MS	

Table 17. Pin availability by package pin-count (continued)

1. This is a high current drive pin when operated as output.

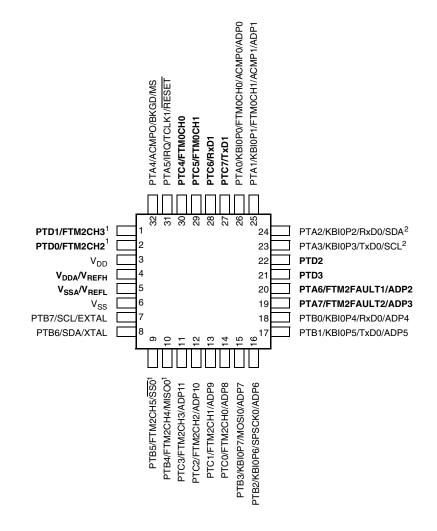
2. This is a true open-drain pin when operated as output.

Note

When an alternative function is first enabled, it is possible to get a spurious edge to the module. User software must clear any associated flags before interrupts are enabled. The table above illustrates the priority if multiple modules are enabled. The highest priority module will have control over the pin. Selecting a higher priority pin function with a lower priority function already enabled can cause spurious edges to the lower priority module. Disable all modules that share a pin before enabling another module.

8.2 Device pin assignment

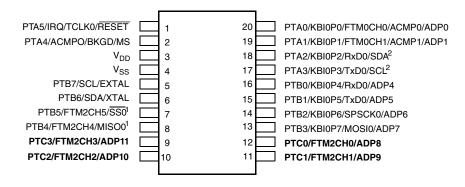
PTA0/KBI0P0/FTM0CH0/ACMP0/ADP0 PTA1/KBI0P1/FTM0CH1/ACMP1/ADP1 PTA4/ACMPO/BKGD/MS PTA5/IRQ/TCLK0/RESET PTC4/FTM0CH0 PTC5/FTM0CH1 PTE0/SPSCK0 PTE1/MOSI0 PTE2/MISO0 PTC6/RxD1 PTC7/TxD1 36 35 θ 4 9 8 37 8 9 井 PTA2/KBI0P2/RxD0/SDA² PTD1/FTM2CH31 3 PTA3/KBI0P3/TxD0/SCL² PTD0/FTM2CH21 2 32 31 PTD2 PTE4/TCLK2 3 PTE3/BUSOUT 30 PTD3 4 29 PTD4 V_{DD} 5 28 V_{DDA} /V_{REFH} V_{DD} 6 V_{SSA} /V_{REFL} 27 V_{SS} 7 26 V_{SS} 8 PTA6/FTM2FAULT1/ADP2 PTB7/SCL/EXTAL 9 25 PTA7/FTM2FAULT2/ADP3 PTB6/SDA/XTAL 24 10 PTB0/KBI0P4/RxD0/ADP4 Vss PTB1/KBI0P5/TxD0/ADP5 1 2 N e 4 S ဖ œ <u>о</u> 20 22 \sim 5 PTD7 PTD6 PTD5 PTC1/FTM2CH1/ADP9 PTC3/FTM2CH3/ADP11 PTC2/FTM2CH2/ADP10 PTC0/FTM2CH0/ADP8 PTB3/KBI0P7/MOSI0/ADP7 PTB2/KBI0P6/SPSCK0/ADP6 PTB5/FTM2CH5/SS0¹ PTB4/FTM2CH4/MISO0¹


Pins in **bold** are not available on less pin-count packages.

1. High source/sink current pins

2. True open drain pins

Figure 21. MC9S08PA16 44-pin LQFP package

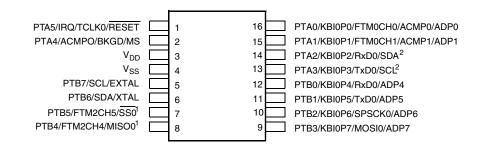


Pins in $\ensuremath{\textbf{bold}}$ are not available on less pin-count packages.

- 1. High source/sink current pins
- 2. True open drain pins

Figure 22. MC9S08PA16 32-pin LQFP package

Pins in **bold** are not available on less pin-count packages.


1. High source/sink current pins

2. True open drain pins

Figure 23. MC9S08PA16 20-pin SOIC and TSSOP package

MC9S08PA16 Series Data Sheet, Rev. 3, 06/2015

Pins in **bold** are not available on less pin-count packages. 1. High source/sink current pins

2. True open drain pins

Figure 24. MC9S08PA16 16-pin TSSOP package

9 Revision history

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
1	10/2012	Initial public release
2	09/2014	 Updated V_{OH} and V_{OL} in DC characteristics Updated footnote on the S3I_{DD} in Supply current characteristics Added EMC radiated emissions operating behaviors Updated the typical of f_{int_t} to 31.25 kHz and updated footnote to t_{Acquire} in External oscillator (XOSC) and ICS characteristics Updated the assumption for all the timing values in SPI switching specifications Updated the rating descriptions for t_{Rise} and t_{Fall} in Control timing Updated the part number format to add new field for new part numbers in Fields
3	06/2015	 Corrected the Min. of the t_{extrst} in Control timing Updated Thermal characteristics to add footnote to the T_A and removed redundant information.Updated the symbol of θ_{JA} to R_{θJA}.

Table 18. Revision history

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. All rights reserved.

© 2011-2015 Freescale Semiconductor, Inc.

Document Number MC9S08PA16 Revision 3, 06/2015

