## Renesas - DF2128FA20V Datasheet





#### Welcome to <u>E-XFL.COM</u>

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                     |
|----------------------------|------------------------------------------------------------------------------|
| Core Processor             | H8S/2000                                                                     |
| Core Size                  | 32-Bit                                                                       |
| Speed                      | 20MHz                                                                        |
| Connectivity               | SCI, UART/USART                                                              |
| Peripherals                | POR, PWM, WDT                                                                |
| Number of I/O              | 43                                                                           |
| Program Memory Size        | 128KB (128K x 8)                                                             |
| Program Memory Type        | FLASH                                                                        |
| EEPROM Size                | -                                                                            |
| RAM Size                   | 4K x 8                                                                       |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V                                                                  |
| Data Converters            | A/D 8x10b SAR                                                                |
| Oscillator Type            | Internal                                                                     |
| Operating Temperature      | -20°C ~ 75°C (TA)                                                            |
| Mounting Type              | Surface Mount                                                                |
| Package / Case             | 64-BQFP                                                                      |
| Supplier Device Package    | 64-QFP (14x14)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/df2128fa20v |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 2.4 Register Configuration

#### 2.4.1 Overview

The CPU has the internal registers shown in figure 2.7. There are two types of registers: general registers and control registers.



## Figure 2.7 CPU Registers

|              |                    |     |    |      |             |             | Ad          | dressi | ng Moo | des    |        |           |            |         |    |
|--------------|--------------------|-----|----|------|-------------|-------------|-------------|--------|--------|--------|--------|-----------|------------|---------|----|
| Function     | Instruction        | xx# | Rn | @ERn | @(d:16,ERn) | @(d:32,ERn) | @-ERn/@ERn+ | @aa:8  | @aa:16 | @aa:24 | @aa:32 | @(d:8,PC) | @(d:16,PC) | @ @aa:8 | I  |
| System       | TRAPA              | —   | _  | _    | _           | _           | _           | —      | _      | _      | —      | _         | _          | —       | 0  |
| control      | RTE                | _   | _  | _    | _           | _           | _           | _      | _      | _      | _      | _         | _          | _       | 0  |
|              | SLEEP              | _   | _  | _    | _           | _           | _           | _      | _      | _      | _      | _         | _          | _       | 0  |
|              | LDC                | В   | В  | W    | W           | w           | W           | _      | w      | —      | W      | —         | _          | _       | _  |
|              | STC                | _   | В  | W    | W           | W           | W           | _      | w      | _      | W      | _         | _          | _       | _  |
|              | ANDC, ORC,<br>XORC | В   | _  | _    | —           | —           | _           | —      | _      | _      | —      | _         | _          | _       | —  |
|              | NOP                | _   | _  | _    | _           | _           | _           | _      | _      | _      | _      | _         | _          | _       | 0  |
| Block data t | ransfer            | _   | _  | _    | _           | _           | _           | _      | _      | _      | _      | _         | _          | _       | BW |

Legend:

B: Byte

W: Word

L: Longword

#### Vector Address\*1 Normal Mode **Exception Source** Vector Number Advanced Mode Reset 0 H'0000 to H'0001 H'0000 to H'0003 Reserved for system use 1 H'0002 to H'0003 H'0004 to H'0007 2 H'0004 to H'0005 H'0008 to H'000B 3 H'0006 to H'0007 H'000C to H'000F 4 H'0008 to H'0009 H'0010 to H'0013 5 H'000A to H'000B H'0014 to H'0017 **Direct transition** 6 H'000C to H'000D H'0018 to H'001B 7 External interrupt NMI H'000E to H'000F H'001C to H'001F Trap instruction (4 sources) 8 H'0010 to H'0011 H'0020 to H'0023 9 H'0012 to H'0013 H'0024 to H'0027 10 H'0014 to H'0015 H'0028 to H'002B 11 H'0016 to H'0017 H'002C to H'002F Reserved for system use 12 H'0018 to H'0019 H'0030 to H'0033 13 H'001A to H'001B H'0034 to H'0037 14 H'001C to H'001D H'0038 to H'003B 15 H'001E to H'001F H'003C to H'003F External interrupt IRQ0 16 H'0020 to H'0021 H'0040 to H'0043 IRQ1 17 H'0022 to H'0023 H'0044 to H'0047 IRQ2 18 H'0024 to H'0025 H'0048 to H'004B H'0026 to H'0027 Reserved H'004C to H'004F 19 20 H'0028 to H'0029 H'0050 to H'0053 21 H'002A to H'002B H'0054 to H'0057 22 H'002C to H'002D H'0058 to H'005B 23 H'002E to H'002F H'005C to H'005F

#### Table 4.2 **Exception Vector Table**

Notes: 1. Lower 16 bits of the address.

24

103

Internal interrupt\*2

2. For details on internal interrupt vectors, see section 5.3.3, Interrupt Exception Vector Table.

H'0030 to H'0031

H'00CE to H'00CF

### RENESAS

H'0060 to H'0063

H'019C to H'019F

#### 8.3.2 Register Configuration

Table 8.5 shows the port 2 register configuration.

#### Table 8.5Port 2 Registers

| Name                                | Abbreviation | R/W | Initial Value | Address* |
|-------------------------------------|--------------|-----|---------------|----------|
| Port 2 data direction register      | P2DDR        | W   | H'00          | H'FFB1   |
| Port 2 data register                | P2DR         | R/W | H'00          | H'FFB3   |
| Port 2 MOS pull-up control register | P2PCR        | R/W | H'00          | H'FFAD   |

Note: \* Lower 16 bits of the address.

#### Port 2 Data Direction Register (P2DDR)

| Bit           | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|
|               | P27DDR | P26DDR | P25DDR | P24DDR | P23DDR | P22DDR | P21DDR | P20DDR |
| Initial value | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Read/Write    | W      | W      | W      | W      | W      | W      | W      | W      |

P2DDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port 2. P2DDR cannot be read; if it is, an undefined value will be returned.

P2DDR is initialized to H'00 by a reset and in hardware standby mode. It retains its prior state in software standby mode. The address output pins maintain their output state in a transition to software standby mode.

• Mode 1

The corresponding port 2 pins are address outputs, regardless of the P2DDR setting. In hardware standby mode, the address outputs go to the high-impedance state.

• Modes 2 and 3 (EXPE = 1)

The corresponding port 2 pins are address outputs or PWM outputs when P2DDR bits are set to 1, and input ports when cleared to 0. P27 to P24 are switched from address outputs to output ports by setting the IOSE bit to 1.

P27 to P23 can be used as an on-chip supporting module output pin regardless of the P2DDR setting, but to ensure normal access to external space, P27 should not be set as an on-chip supporting module output pin when port 2 pins are used as address output pins.

• Modes 2 and 3 (EXPE = 0)

The corresponding port 2 pins are output ports or PWM outputs when P2DDR bits are set to 1, and input ports when cleared to 0.

# Section 9 8-Bit PWM Timers [H8S/2128 Series]

## 9.1 Overview

The H8/2128 Series has an on-chip pulse width modulation (PWM) timer module with sixteen outputs. Sixteen output waveforms are generated from a common time base, enabling PWM output with a high carrier frequency to be produced using pulse division. The PWM timer module has sixteen 8-bit PWM data registers (PWDRs), and an output pulse with a duty cycle of 0 to 100% can be obtained as specified by PWDR and the port data register (P1DR or P2DR).

#### 9.1.1 Features

The PWM timer module has the following features.

- Operable at a maximum carrier frequency of 1.25 MHz using pulse division (at 20 MHz operation)
- Duty cycles from 0 to 100% with 1/256 resolution (100% duty realized by port output)
- Direct or inverted PWM output, and PWM output enable/disable control

#### 11.3.7 Setting of FRC Overflow Flag (OVF)

The FRC overflow flag (OVF) is set to 1 when FRC overflows (changes from H'FFFF to H'0000). Figure 11.13 shows the timing of this operation.



Figure 11.13 Setting of Overflow Flag (OVF)

### 11.3.8 Automatic Addition of OCRA and OCRAR/OCRAF

When the OCRAMS bit in TOCR is set to 1, the contents of OCRAR and OCRAF are automatically added to OCRA alternately, and when an OCRA compare-match occurs a write to OCRA is performed. The OCRA write timing is shown in figure 11.14.



Figure 11.14 OCRA Automatic Addition Timing

#### 11.3.9 ICRD and OCRDM Mask Signal Generation

When the ICRDMS bit in TOCR is set to 1 and the contents of OCRDM are other than H'0000, a signal that masks the ICRD input capture function is generated.

The mask signal is set by the input capture signal. The mask signal setting timing is shown in figure 11.15.

The mask signal is cleared by the sum of the ICRD contents and twice the OCRDM contents, and an FRC compare-match. The mask signal clearing timing is shown in figure 11.16.



Figure 11.15 Input Capture Mask Signal Setting Timing



Figure 11.16 Input Capture Mask Signal Clearing Timing

# 12.3 Operation

# 12.3.1 TCNT Incrementation Timing

TCNT is incremented by input clock pulses (either internal or external).

**Internal Clock:** An internal clock created by dividing the system clock (ø) can be selected by setting bits CKS2 to CKS0 in TCR. Figure 12.2 shows the count timing.



Figure 12.2 Count Timing for Internal Clock Input

**External Clock:** Three incrementation methods can be selected by setting bits CKS2 to CKS0 in TCR: at the rising edge, the falling edge, and both rising and falling edges.

Note that the external clock pulse width must be at least 1.5 states for incrementation at a single edge, and at least 2.5 states for incrementation at both edges. The counter will not increment correctly if the pulse width is less than these values.

Figure 12.3 shows the timing of incrementation at both edges of an external clock signal.

#### 14.1.2 Block Diagram



Figures 14.1 (a) and (b) show block diagrams of WDT0 and WDT1.

Figure 14.1 (a) Block Diagram of WDT0

# **15.2 Register Descriptions**

## 15.2.1 Receive Shift Register (RSR)



RSR is a register used to receive serial data.

The SCI sets serial data input from the RxD pin in RSR in the order received, starting with the LSB (bit 0), and converts it to parallel data. When one byte of data has been received, it is transferred to RDR automatically.

RSR cannot be directly read or written to by the CPU.

#### 15.2.2 Receive Data Register (RDR)



RDR is a register that stores received serial data.

When the SCI has received one byte of serial data, it transfers the received serial data from RSR to RDR where it is stored, and completes the receive operation. After this, RSR is receive-enabled.

Since RSR and RDR function as a double buffer in this way, continuous receive operations can be performed.

RDR is a read-only register, and cannot be written to by the CPU.

RDR is initialized to H'00 by a reset, and in standby mode, watch mode, subactive mode, subsleep mode, and module stop mode.





#### 16.1.3 Input/Output Pins

Table 16.1 summarizes the input/output pins used by the I<sup>2</sup>C bus interface.

| <b>Table 16.1</b> | I <sup>2</sup> C Bus | Interface | Pins |
|-------------------|----------------------|-----------|------|
|-------------------|----------------------|-----------|------|

| Channel | Name                       | Abbreviation | I/O   | Function                              |
|---------|----------------------------|--------------|-------|---------------------------------------|
| 0       | Serial clock               | SCL0         | I/O   | IIC0 serial clock input/output        |
|         | Serial data                | SDA0         | I/O   | IIC0 serial data input/output         |
|         | Formatless<br>serial clock | VSYNCI       | Input | IIC0 formatless<br>serial clock input |
| 1       | Serial clock               | SCL1         | I/O   | IIC1 serial clock input/output        |
|         | Serial data                | SDA1         | I/O   | IIC1 serial data input/output         |

Note: In the text, the channel subscript is omitted, and only SCL and SDA are used.

# 17.4 Operation

The A/D converter operates by successive approximations with 10-bit resolution. It has two operating modes: single mode and scan mode.

### 17.4.1 Single Mode (SCAN = 0)

Single mode is selected when A/D conversion is to be performed on a single channel only. A/D conversion is started when the ADST bit is set to 1 by software, or by external trigger input. The ADST bit remains set to 1 during A/D conversion, and is automatically cleared to 0 when conversion ends.

On completion of conversion, the ADF flag is set to 1. If the ADIE bit is set to 1 at this time, an ADI interrupt request is generated. The ADF flag is cleared by writing 0 after reading ADCSR.

When the operating mode or analog input channel must be changed during analog conversion, to prevent incorrect operation, first clear the ADST bit to 0 in ADCSR to halt A/D conversion. After making the necessary changes, set the ADST bit to 1 to start A/D conversion again. The ADST bit can be set at the same time as the operating mode or input channel is changed.

Typical operations when channel 1 (AN1) is selected in single mode are described next. Figure 17.3 shows a timing diagram for this example.

- 1. Single mode is selected (SCAN = 0), input channel AN1 is selected (CH1 = 0, CH0 = 1), the A/D interrupt is enabled (ADIE = 1), and A/D conversion is started (ADST = 1).
- 2. When A/D conversion is completed, the result is transferred to ADDRB. At the same time the ADF flag is set to 1, the ADST bit is cleared to 0, and the A/D converter becomes idle.
- 3. Since ADF = 1 and ADIE = 1, an ADI interrupt is requested.
- 4. The A/D interrupt handling routine starts.
- 5. The routine reads ADCSR, then writes 0 to the ADF flag.
- 6. The routine reads and processes the conversion result (ADDRB).
- 7. Execution of the A/D interrupt handling routine ends. After that, if the ADST bit is set to 1, A/D conversion starts again and steps 2 to 7 are repeated.

| Instruc- | Macmonio        | i    |       |      |       |        |          |          | Instructio | n Format |          |          |          |           |
|----------|-----------------|------|-------|------|-------|--------|----------|----------|------------|----------|----------|----------|----------|-----------|
| tion     |                 | Size | 1st E | 3yte | 2nd E | 3yte   | 3rd Byte | 4th Byte | 5th Byte   | 6th Byte | 7th Byte | 8th Byte | 9th Byte | 10th Byte |
| ROTR     | ROTR.B Rd       | ш    | -     | е    | 8     | rd     |          |          |            |          |          |          |          |           |
|          | ROTR.B #2, Rd   | ۵    | -     | с    | ပ     | p      |          |          |            |          |          |          |          |           |
|          | ROTR.W Rd       | N    | -     | 3    | 6     | rd     |          |          |            |          |          |          |          |           |
|          | ROTR.W #2, Rd   | ×    | -     | с    | ۵     | p      |          |          |            |          |          |          |          |           |
|          | ROTR.L ERd      | -    | -     | 3    | в     | 0: erd |          |          |            |          |          |          |          |           |
|          | ROTR.L #2, ERd  | _    | -     | e    | ш     | 0 erd  |          |          |            |          |          |          |          |           |
| ROTXL    | ROTXL.B.Rd      | ۵    | -     | 2    | 0     | p      |          |          |            |          |          |          |          |           |
|          | ROTXL.B #2, Rd  | ۵    | -     | 2    | 4     | p      |          |          |            |          |          |          |          |           |
|          | ROTXL.W Rd      | ≥    | -     | 2    | -     | p      |          |          |            |          |          |          |          |           |
|          | ROTXL.W #2, Rd  | ≥    | -     | 2    | 5     | p      |          |          |            |          |          |          |          |           |
|          | ROTXL.L ERd     | _    | -     | 2    | e     | 0 erd  |          |          |            |          |          |          |          |           |
|          | ROTXL.L #2, ERd | _    | -     | 2    | 7     | 0: erd |          |          |            |          |          |          |          |           |
| ROTXR    | ROTXR.B Rd      | в    | -     | з    | 0     | rd     |          |          |            |          |          |          |          |           |
|          | ROTXR.B #2, Rd  | ۵    | -     | с    | 4     | p      |          |          |            |          |          |          |          |           |
|          | ROTXR.W Rd      | X    | -     | 3    | -     | rd     |          |          |            |          |          |          |          |           |
|          | ROTXR.W #2, Rd  | ≥    | -     | e    | 5     | p      |          |          |            |          |          |          |          |           |
|          | ROTXR.L ERd     | _    | -     | с    | e     | 0: erd |          |          |            |          |          |          |          |           |
|          | ROTXR.L #2, ERd | Ч    | -     | ю    | 7     | 0 erd  |          |          |            |          |          |          |          |           |
| RTE      | RTE             | Ι    | 5     | 9    | 7     | 0      |          |          |            |          |          |          |          |           |
| RTS      | RTS             | Ι    | 2     | 4    | 7     | 0      |          |          |            |          |          |          |          |           |
| SHAL     | SHAL.B Rd       | В    | -     | 0    | 8     | rd     |          |          |            |          |          |          |          |           |
|          | SHAL.B #2, Rd   | в    | -     | 0    | υ     | p      |          |          |            |          |          |          |          |           |
|          | SHAL.W Rd       | ≥    | -     | 0    | 6     | p      |          |          |            |          |          |          |          |           |
|          | SHAL.W #2, Rd   | Ν    | -     | 0    | ۵     | rd     |          |          |            |          |          |          |          |           |
|          | SHAL.L ERd      | _    | ~     | 0    | ۵     | 0 erd  |          |          |            |          |          |          |          |           |
|          | SHAL.L #2, ERd  | _    | -     | 0    | ш     | 0: erd |          |          |            |          |          |          |          |           |

| Instruction              | 1        | 2                                 | 3        | 4        | 5      | 6 | 7 | 8 | 9 |
|--------------------------|----------|-----------------------------------|----------|----------|--------|---|---|---|---|
| MOV.B<br>@(d:32,ERs),Rd  | R:W 2nd  | R:W 3rd                           | R:W 4th  | R:W NEXT | R:B EA |   |   |   |   |
| MOV.B @ERs+,Rd           | R:W NEXT | Internal<br>operation,<br>1 state | R:B EA   |          |        |   |   |   |   |
| MOV.B @aa:8,Rd           | R:W NEXT | R:B EA                            |          |          |        |   |   |   |   |
| MOV.B @aa:16,Rd          | R:W 2nd  | R:W NEXT                          | R:B EA   |          |        |   |   |   |   |
| MOV.B @aa:32,Rd          | R:W 2nd  | R:W 3rd                           | R:W NEXT | R:B EA   |        |   |   |   |   |
| MOV.B Rs,@ERd            | R:W NEXT | W:B EA                            |          |          |        |   |   |   |   |
| MOV.B Rs,<br>@(d:16,ERd) | R:W 2nd  | R:W NEXT                          | W:B EA   |          |        |   |   |   |   |
| MOV.B Rs,<br>@(d:32,ERd) | R:W 2nd  | R:W 3rd                           | R:W 4th  | R:W NEXT | W:B EA |   |   |   |   |
| MOV.B Rs,@-ERd           | R:W NEXT | Internal<br>operation,<br>1 state | W:B EA   |          |        |   |   |   |   |
| MOV.B Rs,@aa:8           | R:W NEXT | W:B EA                            |          |          |        |   |   |   |   |
| MOV.B Rs,@aa:16          | R:W 2nd  | R:W NEXT                          | W:B EA   |          |        |   |   |   |   |
| MOV.B Rs,@aa:32          | R:W 2nd  | R:W 3rd                           | R:W NEXT | W:B EA   |        |   |   |   |   |
| MOV.W #xx:16,Rd          | R:W 2nd  | R:W NEXT                          |          |          |        |   |   |   |   |
| MOV.W Rs,Rd              | R:W NEXT |                                   |          |          |        |   |   |   |   |
| MOV.W @ERs,Rd            | R:W NEXT | R:W EA                            |          |          |        |   |   |   |   |
| MOV.W<br>@(d:16,ERs),Rd  | R:W 2nd  | R:W NEXT                          | R:W EA   |          |        |   |   |   |   |
| MOV.W<br>@(d:32,ERs),Rd  | R:W 2nd  | R:W 3rd                           | R:W 4th  | R:W NEXT | R:W EA |   |   |   |   |
| MOV.W @ERs+,Rd           | R:W NEXT | Internal<br>operation,<br>1 state | R:W EA   |          |        |   |   |   |   |
| MOV.W @aa:16,Rd          | R:W 2nd  | R:W NEXT                          | R:W EA   |          |        |   |   |   |   |
| MOV.W @aa:32,Rd          | R:W 2nd  | R:W 3rd                           | R:W NEXT | R:B EA   |        |   |   |   |   |
| MOV.W Rs,@ERd            | R:W NEXT | W:W EA                            |          |          |        |   |   |   |   |
| MOV.W Rs,<br>@(d:16,ERd) | R:W 2nd  | R:W NEXT                          | W:W EA   |          |        |   |   |   |   |
| MOV.W Rs,<br>@(d:32,ERd) | R:W 2nd  | R:W 3rd                           | R:W 4th  | R:W NEXT | W:W EA |   |   |   |   |
| MOV.W Rs,@-ERd           | R:W NEXT | Internal<br>operation,<br>1 state | W:W EA   |          |        |   |   |   |   |
| MOV.W Rs,@aa:16          | R:W 2nd  | R:W NEXT                          | W:W EA   |          |        |   |   |   |   |
| MOV.W Rs,@aa:32          | R:W 2nd  | R:W 3rd                           | R:W NEXT | W:W EA   |        |   |   |   |   |

| Instruction                                 | 1         | 2                           | 3                                 | 4                                    | 5                                  | 6      | 7 | 8 | 9 |
|---------------------------------------------|-----------|-----------------------------|-----------------------------------|--------------------------------------|------------------------------------|--------|---|---|---|
| SLEEP                                       | R:W NEXT  | Internal<br>operation<br>:M |                                   |                                      |                                    |        |   |   |   |
| STC CCR,Rd                                  | R:W NEXT  |                             |                                   |                                      |                                    |        |   |   |   |
| STC EXR,Rd                                  | R:W NEXT  |                             |                                   |                                      |                                    |        |   |   |   |
| STC CCR,@ERd                                | R:W 2nd   | R:W NEXT                    | W:W EA                            |                                      |                                    |        |   |   |   |
| STC EXR,@ERd                                | R:W 2nd   | R:W NEXT                    | W:W EA                            |                                      | -                                  |        |   |   |   |
| STC CCR,<br>@(d:16,ERd)                     | R:W 2nd   | R:W 3rd                     | R:W NEXT                          | W:W EA                               |                                    |        |   |   |   |
| STC EXR,<br>@(d:16,ERd)                     | R:W 2nd   | R:W 3rd                     | R:W NEXT                          | W:W EA                               |                                    |        |   |   |   |
| STC CCR,<br>@(d:32,ERd)                     | R:W 2nd   | R:W 3rd                     | R:W 4th                           | R:W 5th                              | R:W NEXT                           | W:W EA |   |   |   |
| STC EXR,<br>@(d:32,ERd)                     | R:W 2nd   | R:W 3rd                     | R:W 4th                           | R:W 5th                              | R:W NEXT                           | W:W EA |   |   |   |
| STC CCR,@-ERd                               | R:W 2nd   | R:W NEXT                    | Internal<br>operation,<br>1 state | W:W EA                               |                                    |        |   |   |   |
| STC EXR,@-ERd                               | R:W 2nd   | R:W NEXT                    | Internal<br>operation,<br>1 state | W:W EA                               |                                    |        |   |   |   |
| STC CCR,@aa:16                              | R:W 2nd   | R:W 3rd                     | R:W NEXT                          | W:W EA                               |                                    |        |   |   |   |
| STC EXR,@aa:16                              | R:W 2nd   | R:W 3rd                     | R:W NEXT                          | W:W EA                               |                                    |        |   |   |   |
| STC CCR,@aa:32                              | R:W 2nd   | R:W 3rd                     | R:W 4th                           | R:W NEXT                             | W:W EA                             |        |   |   |   |
| STC EXR,@aa:32                              | R:W 2nd   | R:W 3rd                     | R:W 4th                           | R:W NEXT                             | W:W EA                             |        |   |   |   |
| STM.L<br>(ERn-ERn+1),<br>@-SP* <sup>9</sup> | R:W 2nd   | R:W:M<br>NEXT               | Internal<br>operation,<br>1 state | W:W:M<br>Stack (H)<br>* <sup>3</sup> | W:W<br>Stack (L)<br>* <sup>3</sup> |        |   |   |   |
| STM.L<br>(ERn-ERn+2),<br>@-SP* <sup>9</sup> | R:W 2nd   | R:W:M<br>NEXT               | Internal<br>operation,<br>1 state | W:W:M<br>Stack (H)<br>* <sup>3</sup> | W:W<br>Stack (L)<br>* <sup>3</sup> |        |   |   |   |
| STM.L<br>(ERn-ERn+3),<br>@-SP* <sup>9</sup> | R:W 2nd   | R:W:M<br>NEXT               | Internal<br>operation,<br>1 state | W:W:M<br>Stack (H)<br>* <sup>3</sup> | W:W<br>Stack (L)<br>* <sup>3</sup> |        |   |   |   |
| STMAC MACH, ERd                             | Cannot be | used in the l               | H8S/2128 S                        | eries and H8                         | 3S/2124 Ser                        | ies    |   |   |   |
| STMAC MACL,ERd                              |           |                             |                                   | •                                    |                                    |        | • |   |   |
| SUB.B Rs,Rd                                 | R:W NEXT  |                             |                                   |                                      |                                    |        |   |   |   |
| SUB.W #xx:16,Rd                             | R:W 2nd   | R:W NEXT                    |                                   |                                      |                                    |        |   |   |   |
| SUB.W Rs,Rd                                 | R:W NEXT  |                             |                                   |                                      |                                    |        |   |   |   |
| SUB.L #xx:32,ERd                            | R:W 2nd   | R:W 3rd                     | R:W NEXT                          |                                      |                                    |        |   |   |   |
| SUB.L ERs,ERd                               | R:W NEXT  |                             |                                   |                                      |                                    |        |   |   |   |



For details, see section 11.2.3, Input Capture Registers A to D (ICRA to ICRD).)

#### Renesas

DACR—PWM (D/A) Control Register

H'FFA0



| 0 | PWM (D/A) in user state, normal operation                        |
|---|------------------------------------------------------------------|
| 1 | PWM (D/A) in test state, correct conversion results unobtainable |

MDCR—Mode Control Register

H'FFC5

System



Note: \* Determined by pins MD1 and MD0.

| PWSL-PWM      | Register | Select |   |   | H'FFD6 |            |         |        |           |         |  |
|---------------|----------|--------|---|---|--------|------------|---------|--------|-----------|---------|--|
| Bit           | 7        | 6      | 5 | 4 | ;      | 3          |         | 2      | 1         | 0       |  |
|               | PWCKE    | PWCKS  | _ |   | R      | S3         |         | RS2    | RS1       | RS0     |  |
| Initial value | 0        | 0      | 1 | 1 | . (    | 0          |         | 0      | 0         | 0       |  |
| Read/Write    | R/W      | R/W    | — | — | R      | /W         |         | R/W    | R/W       | R/W     |  |
|               |          |        |   |   | Reg    | ister<br>0 | Se<br>0 | lect – | PWDR0 sel | ected   |  |
|               |          |        |   |   |        |            |         | 1 F    | PWDR1 sel | ected   |  |
|               |          |        |   |   |        |            |         | 0 F    | PWDR2 sel | ected   |  |
|               |          |        |   |   |        |            |         | 1 F    | PWDR3 sel | ected   |  |
|               |          |        |   |   | 1      |            | 0       | 0 F    | PWDR4 sel | ected   |  |
|               |          |        |   |   |        |            |         | 1 F    | PWDR5 sel | ected   |  |
|               |          |        |   |   |        |            | 1       | 0 F    | PWDR6 sel | ected   |  |
|               |          |        |   |   |        |            |         | 1 F    | PWDR7 sel | ected   |  |
|               |          |        |   |   | 1      | 0          | 0       | 0 F    | PWDR8 sel | ected   |  |
|               |          |        |   |   |        |            |         | 1 F    | PWDR9 sel | ected   |  |
|               |          |        |   |   |        |            | 1       | 0 F    | PWDR10 se | elected |  |
|               |          |        |   |   |        |            |         | 1 F    | PWDR11 se | elected |  |
|               |          |        |   |   |        | 1          | 0       | 0 F    | PWDR12 se | elected |  |
|               |          |        |   |   |        |            |         | 1 F    | PWDR13 se | elected |  |
|               |          |        |   |   |        |            | 1       | 0 F    | PWDR14 se | elected |  |
|               |          |        |   |   |        |            |         | 1   F  | PWDR15 se | lected  |  |

PWM clock enable, PWM clock select

| PV    | /SL   | PC    | SR    |                           |
|-------|-------|-------|-------|---------------------------|
| Bit 7 | Bit 6 | Bit 2 | Bit 1 | Description               |
| PWCKE | PWCKS | PWCKB | PWCKA |                           |
| 0     | —     | —     |       | Clock input disabled      |
| 1     | 0     |       |       | ø (system clock) selected |
|       | 1     | 0     | 0     | ø/2 selected              |
|       |       |       | 1     | ø/4 selected              |
|       |       | 1     | 0     | ø/8 selected              |
|       |       |       | 1     | ø/16 selected             |

Figures G.1, G.2 and G.3 show the package dimensions of the H8S/2128 Series and H8S/2124 Series.



Figure G.1 Package Dimensions (DP-64S)