
Microchip Technology - ATMEGA644P-20MU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 32

Program Memory Size 64KB (32K x 16)

Program Memory Type FLASH

EEPROM Size 2K x 8

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 44-VFQFN Exposed Pad

Supplier Device Package 44-VQFN (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega644p-20mu

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega644p-20mu-4386183
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers


ATmega164P/324P/644P
5.4 EEPROM Data Memory

The ATmega164P/324P/644P contains 512B/1K/2K bytes of data EEPROM memory. It is orga-
nized as a separate data space, in which single bytes can be read and written. The EEPROM
has an endurance of at least 100,000 write/erase cycles. The access between the EEPROM and
the CPU is described in the following, specifying the EEPROM Address Registers, the EEPROM
Data Register, and the EEPROM Control Register.

For a detailed description of SPI, JTAG and Parallel data downloading to the EEPROM, see
page 308, page 312, and page 297 respectively.

5.4.1 EEPROM Read/Write Access

The EEPROM Access Registers are accessible in the I/O space. See ”Register Description” on
page 23 for details.

The write access time for the EEPROM is given in Table 5-2 on page 25. A self-timing function,
however, lets the user software detect when the next byte can be written. If the user code con-
tains instructions that write the EEPROM, some precautions must be taken. In heavily filtered
power supplies, VCC is likely to rise or fall slowly on power-up/down. This causes the device for
some period of time to run at a voltage lower than specified as minimum for the clock frequency
used. See Section “5.4.2” on page 21. for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.

5.4.2 Preventing EEPROM Corruption

During periods of low VCC, the EEPROM data can be corrupted because the supply voltage is
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can
be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal
BOD does not match the needed detection level, an external low VCC reset Protection circuit can
be used. If a reset occurs while a write operation is in progress, the write operation will be com-
pleted provided that the power supply voltage is sufficient.
21
8011N–AVR–01/10



ATmega164P/324P/644P
While EEPE is set, any write to EEPMn will be ignored. During reset, the EEPMn bits will be
reset to 0b00 unless the EEPROM is busy programming.

• Bit 3 – EERIE: EEPROM Ready Interrupt Enable
Writing EERIE to one enables the EEPROM Ready Interrupt if the I bit in SREG is set. Writing
EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a constant inter-
rupt when EEPE is cleared.

• Bit 2 – EEMPE: EEPROM Master Programming Enable
The EEMPE bit determines whether setting EEPE to one causes the EEPROM to be written.
When EEMPE is set, setting EEPE within four clock cycles will write data to the EEPROM at the
selected address If EEMPE is zero, setting EEPE will have no effect. When EEMPE has been
written to one by software, hardware clears the bit to zero after four clock cycles. See the
description of the EEPE bit for an EEPROM write procedure.

• Bit 1 – EEPE: EEPROM Programming Enable
The EEPROM Write Enable Signal EEPE is the write strobe to the EEPROM. When address
and data are correctly set up, the EEPE bit must be written to one to write the value into the
EEPROM. The EEMPE bit must be written to one before a logical one is written to EEPE, other-
wise no EEPROM write takes place. The following procedure should be followed when writing
the EEPROM (the order of steps 3 and 4 is not essential):

1. Wait until EEPE becomes zero.

2. Wait until SPMEN in SPMCSR becomes zero.

3. Write new EEPROM address to EEAR (optional).

4. Write new EEPROM data to EEDR (optional).

5. Write a logical one to the EEMPE bit while writing a zero to EEPE in EECR.

6. Within four clock cycles after setting EEMPE, write a logical one to EEPE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The software
must check that the Flash programming is completed before initiating a new EEPROM write.
Step 2 is only relevant if the software contains a Boot Loader allowing the CPU to program the
Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See ”Memory Pro-
gramming” on page 293 for details about Boot programming. 

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is
interrupting another EEPROM access, the EEAR or EEDR Register will be modified, causing the
interrupted EEPROM access to fail. It is recommended to have the Global Interrupt Flag cleared
during all the steps to avoid these problems.

Table 5-1. EEPROM Mode Bits

EEPM1 EEPM0
Programming 

Time Operation

0 0 3.4 ms Erase and Write in one operation (Atomic Operation)

0 1 1.8 ms Erase Only

1 0 1.8 ms Write Only

1 1 – Reserved for future use
24
8011N–AVR–01/10



ATmega164P/324P/644P
11.3.3 Alternate Functions of Port C

The Port C pins with alternate functions are shown in Table 11-9.

• TOSC2/PCINT23 – Port C, Bit7 
TOSC2, Timer Oscillator pin 2. The PC7 pin can serve as an external interrupt source to the
MCU.

PCINT23, Pin Change Interrupt source 23: The PC7 pin can serve as an external interrupt
source.

• TOSC1/PCINT22 – Port C, Bit 6
TOSC1, Timer Oscillator pin 1. The PC6 pin can serve as an external interrupt source to the
MCU.

PCINT22, Pin Change Interrupt source 22: The PC6 pin can serve as an external interrupt
source.

• TDI/PCINT21 – Port C, Bit 5
TDI, JTAG Test Data Input. 

PCINT21, Pin Change Interrupt source 21: The PC5 pin can serve as an external interrupt
source.

• TDO/PCINT20 – Port C, Bit 4
TDO, JTAG Test Data Output.

PCINT20, Pin Change Interrupt source 20: The PC4 pin can serve as an external interrupt
source.

Table 11-9. Port C Pins Alternate Functions

Port Pin Alternate Function

PC7
TOSC2 (Timer Oscillator pin 2)

PCINT23 (Pin Change Interrupt 23)

PC6
TOSC1 (Timer Oscillator pin 1)
PCINT22 (Pin Change Interrupt 22)

PC5
TDI (JTAG Test Data Input)
PCINT21 (Pin Change Interrupt 21)

PC4
TDO (JTAG Test Data Output)
PCINT20 (Pin Change Interrupt 20)

PC3
TMS (JTAG Test Mode Select)
PCINT19 (Pin Change Interrupt 19)

PC2
TCK (JTAG Test Clock)
PCINT18 (Pin Change Interrupt 18)

PC1
SDA (2-wire Serial Bus Data Input/Output Line)
PCINT17 (Pin Change Interrupt 17)

PC0
SCL (2-wire Serial Bus Clock Line)
PCINT16 (Pin Change Interrupt 16)
85
8011N–AVR–01/10



ATmega164P/324P/644P
• Bits 2:0 – CS02:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter.

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

12.9.3 TCNT0 – Timer/Counter Register

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNT0 Register blocks (removes) the Compare
Match on the following timer clock. Modifying the counter (TCNT0) while the counter is running,
introduces a risk of missing a Compare Match between TCNT0 and the OCR0x Registers.

12.9.4 OCR0A – Output Compare Register A

The Output Compare Register A contains an 8-bit value that is continuously compared with the
counter value (TCNT0). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC0A pin.

Table 12-9. Clock Select Bit Description 

CS02 CS01 CS00 Description

0 0 0 No clock source (Timer/Counter stopped)

0 0 1 clkI/O/(No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T0 pin. Clock on falling edge.

1 1 1 External clock source on T0 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

0x26 (0x46) TCNT0[7:0] TCNT0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x27 (0x47) OCR0A[7:0] OCR0A

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
108
8011N–AVR–01/10



ATmega164P/324P/644P
Figure 13-13. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

13.11 Register Description

13.11.1 TCCR1A – Timer/Counter1 Control Register A

• Bit 7:6 – COMnA1:0: Compare Output Mode for Channel A

• Bit 5:4 – COMnB1:0: Compare Output Mode for Channel B
The COMnA1:0 and COMnB1:0 control the Output Compare pins (OCnA and OCnB respec-
tively) behavior. If one or both of the COMnA1:0 bits are written to one, the OCnA output
overrides the normal port functionality of the I/O pin it is connected to. If one or both of the
COMnB1:0 bit are written to one, the OCnB output overrides the normal port functionality of the
I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit correspond-
ing to the OCnA or OCnB pin must be set in order to enable the output driver.

When the OCnA or OCnB is connected to the pin, the function of the COMnx1:0 bits is depen-
dent of the WGMn3:0 bits setting. Table 13-2 on page 132 shows the COMnx1:0 bit functionality
when the WGMn3:0 bits are set to a Normal or a CTC mode (non-PWM).

TOVn (FPWM)
and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

Bit 7 6 5 4 3 2 1 0

(0x80) COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 TCCR1A

Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 13-2. Compare Output Mode, non-PWM

COMnA1/COMnB1 COMnA0/COMnB0 Description

0 0 Normal port operation, OCnA/OCnB disconnected.

0 1 Toggle OCnA/OCnB on Compare Match.

1 0
Clear OCnA/OCnB on Compare Match (Set output to 
low level).

1 1
Set OCnA/OCnB on Compare Match (Set output to 
high level).
132
8011N–AVR–01/10



ATmega164P/324P/644P
16.12 Examples of Baud Rate Setting

For standard crystal and resonator frequencies, the most commonly used baud rates for asyn-
chronous operation can be generated by using the UBRR settings in Table 16-9 to Table 16-12.
UBRR values which yield an actual baud rate differing less than 0.5% from the target baud rate,
are bold in the table. Higher error ratings are acceptable, but the Receiver will have less noise
resistance when the error ratings are high, especially for large serial frames (see ”Asynchronous
Operational Range” on page 186). The error values are calculated using the following equation:

Error[%]
BaudRateClosest Match

BaudRate
-------------------------------------------------------- 1–⎝ ⎠

⎛ ⎞ 100%•=

Table 16-9. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies

Baud 
Rate 
(bps)

fosc = 1.0000 MHz fosc = 1.8432 MHz fosc = 2.0000 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%

4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%

9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%

14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%

19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%

28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%

38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%

57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%

76.8k – – 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%

115.2k – – 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%

230.4k – – – – – – 0 0.0% – – – –

250k – – – – – – – – – – 0 0.0%

Max. (1) 62.5 kbps 125 kbps 115.2 kbps 230.4 kbps 125 kbps 250 kbps

1. UBRR = 0, Error = 0.0%
194
8011N–AVR–01/10



ATmega164P/324P/644P
The Power Reduction TWI bit, PRTWI bit in ”PRR – Power Reduction Register” on page 48 must
be written to zero to enable the 2-wire Serial Interface.

18.2.2 Electrical Interconnection

As depicted in Figure 18-1, both bus lines are connected to the positive supply voltage through
pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or open-collector.
This implements a wired-AND function which is essential to the operation of the interface. A low
level on a TWI bus line is generated when one or more TWI devices output a zero. A high level
is output when all TWI devices trim-state their outputs, allowing the pull-up resistors to pull the
line high. Note that all AVR devices connected to the TWI bus must be powered in order to allow
any bus operation. 

The number of devices that can be connected to the bus is only limited by the bus capacitance
limit of 400 pF and the 7-bit slave address space. A detailed specification of the electrical char-
acteristics of the TWI is given in ”SPI Timing Characteristics” on page 332. Two different sets of
specifications are presented there, one relevant for bus speeds below 100 kHz, and one valid for
bus speeds up to 400 kHz.

18.3 Data Transfer and Frame Format

18.3.1 Transferring Bits

Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level
of the data line must be stable when the clock line is high. The only exception to this rule is for
generating start and stop conditions.

Figure 18-2. Data Validity

18.3.2 START and STOP Conditions

The Master initiates and terminates a data transmission. The transmission is initiated when the
Master issues a START condition on the bus, and it is terminated when the Master issues a
STOP condition. Between a START and a STOP condition, the bus is considered busy, and no
other master should try to seize control of the bus. A special case occurs when a new START
condition is issued between a START and STOP condition. This is referred to as a REPEATED
START condition, and is used when the Master wishes to initiate a new transfer without relin-
quishing control of the bus. After a REPEATED START, the bus is considered busy until the next
STOP. This is identical to the START behavior, and therefore START is used to describe both
START and REPEATED START for the remainder of this datasheet, unless otherwise noted. As

SDA

SCL

Data Stable Data Stable

Data Change
208
8011N–AVR–01/10



ATmega164P/324P/644P
18.3.4 Data Packet Format

All data packets transmitted on the TWI bus are nine bits long, consisting of one data byte and
an acknowledge bit. During a data transfer, the Master generates the clock and the START and
STOP conditions, while the Receiver is responsible for acknowledging the reception. An
Acknowledge (ACK) is signalled by the Receiver pulling the SDA line low during the ninth SCL
cycle. If the Receiver leaves the SDA line high, a NACK is signalled. When the Receiver has
received the last byte, or for some reason cannot receive any more bytes, it should inform the
Transmitter by sending a NACK after the final byte. The MSB of the data byte is transmitted first. 

Figure 18-5. Data Packet Format

18.3.5 Combining Address and Data Packets into a Transmission

A transmission basically consists of a START condition, a SLA+R/W, one or more data packets
and a STOP condition. An empty message, consisting of a START followed by a STOP condi-
tion, is illegal. Note that the Wired-ANDing of the SCL line can be used to implement
handshaking between the Master and the Slave. The Slave can extend the SCL low period by
pulling the SCL line low. This is useful if the clock speed set up by the Master is too fast for the
Slave, or the Slave needs extra time for processing between the data transmissions. The Slave
extending the SCL low period will not affect the SCL high period, which is determined by the
Master. As a consequence, the Slave can reduce the TWI data transfer speed by prolonging the
SCL duty cycle.

Figure 18-6 on page 210 shows a typical data transmission. Note that several data bytes can be
transmitted between the SLA+R/W and the STOP condition, depending on the software protocol
implemented by the application software.

Figure 18-6. Typical Data Transmission

1 2 7 8 9

Data MSB Data LSB ACK

Aggregate
SDA

SDA from
Transmitter

SDA from
Receiver

SCL from
Master

SLA+R/W Data Byte
STOP, REPEATED

START or Next
Data Byte

1 2 7 8 9

Data Byte

Data MSB Data LSB ACK

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

SLA+R/W
210
8011N–AVR–01/10



ATmega164P/324P/644P
bits. If several masters are trying to address the same Slave, arbitration will continue into the
data packet.

Figure 18-8. Arbitration Between Two Masters

Note that arbitration is not allowed between:

• A REPEATED START condition and a data bit.

• A STOP condition and a data bit.

• A REPEATED START and a STOP condition.

It is the user software’s responsibility to ensure that these illegal arbitration conditions never
occur. This implies that in multi-master systems, all data transfers must use the same composi-
tion of SLA+R/W and data packets. In other words: All transmissions must contain the same
number of data packets, otherwise the result of the arbitration is undefined.

SDA from
Master A

SDA from
Master B

SDA Line

Synchronized
SCL Line

START Master A Loses
Arbitration, SDAA   SDA
212
8011N–AVR–01/10



ATmega164P/324P/644P
Table 18-4. Status Codes for Slave Receiver Mode
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the 2-wire Serial Bus and
2-wire Serial Interface Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR
STA STO TWINT TWEA

0x60 Own SLA+W has been received;
ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x68 Arbitration lost in SLA+R/W as
Master; own SLA+W has been 
received; ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x70 General call address has been 
received; ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x78 Arbitration lost in SLA+R/W as
Master; General call address has
been received; ACK has been 
returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x80 Previously addressed with own
SLA+W; data has been received;
ACK has been returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x88 Previously addressed with own
SLA+W; data has been received;
NOT ACK has been returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free

0x90 Previously addressed with 
general call; data has been re-
ceived; ACK has been returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x98 Previously addressed with 
general call; data has been 
received; NOT ACK has been 
returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free

0xA0 A STOP condition or repeated
START condition has been 
received while still addressed as
Slave

No action 0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free
226
8011N–AVR–01/10



ATmega164P/324P/644P
instruction is executed within three CPU cycles. When SIGRD and SPMEN are cleared, LPM will
work as described in the Instruction set Manual.

Note: All other addresses are reserved for future use.

23.8.11 Preventing Flash Corruption

During periods of low VCC, the Flash program can be corrupted because the supply voltage is
too low for the CPU and the Flash to operate properly. These issues are the same as for board
level systems using the Flash, and the same design solutions should be applied. 

A Flash program corruption can be caused by two situations when the voltage is too low. First, a
regular write sequence to the Flash requires a minimum voltage to operate correctly. Secondly,
the CPU itself can execute instructions incorrectly, if the supply voltage for executing instructions
is too low.

Flash corruption can easily be avoided by following these design recommendations (one is
sufficient):

1. If there is no need for a Boot Loader update in the system, program the Boot Loader Lock 
bits to prevent any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply voltage. 
This can be done by enabling the internal Brown-out Detector (BOD) if the operating volt-
age matches the detection level. If not, an external low VCC reset protection circuit can be 
used. If a reset occurs while a write operation is in progress, the write operation will be 
completed provided that the power supply voltage is sufficient.

3. Keep the AVR core in Power-down sleep mode during periods of low VCC. This will pre-
vent the CPU from attempting to decode and execute instructions, effectively protecting 
the SPMCSR Register and thus the Flash from unintentional writes.

23.8.12 Programming Time for Flash when Using SPM

The calibrated RC Oscillator is used to time Flash accesses. Table 23-6 on page 285 shows the
typical programming time for Flash accesses from the CPU.

Note: 1. Minimum and maximum programming times is per individual operation.

Table 23-5. Signature Row Addressing

Signature Byte Z-Pointer Address

Device Signature Byte 1 0x0000

Device Signature Byte 2 0x0002

Device Signature Byte 3 0x0004

RC Oscillator Calibration Byte 0x0001

Table 23-6. SPM Programming Time(1)

Symbol Min Programming Time Max Programming Time

Flash write (Page Erase, Page Write, and 
write Lock bits by SPM)

3.7 ms 4.5 ms
285
8011N–AVR–01/10



ATmega164P/324P/644P
23.9 Register Description

23.9.1 SPMCSR – Store Program Memory Control and Status Register

The Store Program Memory Control and Status Register contains the control bits needed to con-
trol the Boot Loader operations.

• Bit 7 – SPMIE: SPM Interrupt Enable
When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the SPM
ready interrupt will be enabled. The SPM ready Interrupt will be executed as long as the SPMEN
bit in the SPMCSR Register is cleared.

• Bit 6 – RWWSB: Read-While-Write Section Busy
When a Self-Programming (Page Erase or Page Write) operation to the RWW section is initi-
ated, the RWWSB will be set (one) by hardware. When the RWWSB bit is set, the RWW section
cannot be accessed. The RWWSB bit will be cleared if the RWWSRE bit is written to one after a
Self-Programming operation is completed. Alternatively the RWWSB bit will automatically be
cleared if a page load operation is initiated.

• Bit 5 – SIGRD: Signature Row Read
If this bit is written to one at the same time as SPMEN, the next LPM instruction within three
clock cycles will read a byte from the signature row into the destination register. see ”Reading
the Signature Row from Software” on page 284 for details. An SPM instruction within four cycles
after SIGRD and SPMEN are set will have no effect. This operation is reserved for future use
and should not be used.

• Bit 4 – RWWSRE: Read-While-Write Section Read Enable
When programming (Page Erase or Page Write) to the RWW section, the RWW section is
blocked for reading (the RWWSB will be set by hardware). To re-enable the RWW section, the
user software must wait until the programming is completed (SPMEN will be cleared). Then, if
the RWWSRE bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles re-enables the RWW section. The RWW section cannot be re-enabled while
the Flash is busy with a Page Erase or a Page Write (SPMEN is set). If the RWWSRE bit is writ-
ten while the Flash is being loaded, the Flash load operation will abort and the data loaded will
be lost.

• Bit 3 – BLBSET: Boot Lock Bit Set
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles sets Boot Lock bits, according to the data in R0. The data in R1 and the address in the Z-
pointer are ignored. The BLBSET bit will automatically be cleared upon completion of the Lock
bit set, or if no SPM instruction is executed within four clock cycles. 

An (E)LPM instruction within three cycles after BLBSET and SPMEN are set in the SPMCSR
Register, will read either the Lock bits or the Fuse bits (depending on Z0 in the Z-pointer) into the
destination register. See ”Reading the Fuse and Lock Bits from Software” on page 284 for
details.

Bit 7 6 5 4 3 2 1 0

0x37 (0x57) SPMIE RWWSB SIGRD RWWSRE BLBSET PGWRT PGERS SPMEN SPMCSR

Read/Write R/W R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
291
8011N–AVR–01/10



ATmega164P/324P/644P
24.7.15 Parallel Programming Characteristics

Notes: 1.  tWLRH is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock bits 
commands.

2.  tWLRH_CE is valid for the Chip Erase command.

Table 24-14. Parallel Programming Characteristics, VCC = 5V ± 10% 

Symbol Parameter Min Typ Max Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250 μA

tDVXH Data and Control Valid before XTAL1 High 67 ns

tXLXH XTAL1 Low to XTAL1 High 200 ns

tXHXL XTAL1 Pulse Width High 150 ns

tXLDX Data and Control Hold after XTAL1 Low 67 ns

tXLWL XTAL1 Low to WR Low 0 ns

tXLPH XTAL1 Low to PAGEL high 0 ns

tPLXH PAGEL low to XTAL1 high 150 ns

tBVPH BS1 Valid before PAGEL High 67 ns

tPHPL PAGEL Pulse Width High 150 ns

tPLBX BS1 Hold after PAGEL Low 67 ns

tWLBX BS2/1 Hold after WR Low 67 ns

tPLWL PAGEL Low to WR Low 67 ns

tBVWL BS2/1 Valid to WR Low 67 ns

tWLWH WR Pulse Width Low 150 ns

tWLRL WR Low to RDY/BSY Low 0 1 μs

tWLRH WR Low to RDY/BSY High(1) 3.7 4.5 ms

tWLRH_CE WR Low to RDY/BSY High for Chip Erase(2) 7.5 9 ms

tXLOL XTAL1 Low to OE Low 0 ns

tBVDV BS1 Valid to DATA valid 0 250 ns

tOLDV OE Low to DATA Valid 250 ns

tOHDZ OE High to DATA Tri-stated 250 ns
306
8011N–AVR–01/10



ATmega164P/324P/644P
Table 24-18. JTAG Programming Instruction 
Set  a = address high bits, b = address low bits, c = address extended bits, H = 0 - Low byte, 1 - High Byte, o = data out, 
i = data in, x = don’t care

Instruction TDI Sequence TDO Sequence Notes

1a. Chip Erase

0100011_10000000

0110001_10000000
0110011_10000000

0110011_10000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

1b. Poll for Chip Erase Complete 0110011_10000000 xxxxxox_xxxxxxxx (2)

2a. Enter Flash Write 0100011_00010000 xxxxxxx_xxxxxxxx

2b. Load Address Extended High Byte 0001011_cccccccc xxxxxxx_xxxxxxxx (10)

2c. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx

2d. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

2e. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

2f. Load Data High Byte 0010111_iiiiiiii xxxxxxx_xxxxxxxx

2g. Latch Data
0110111_00000000
1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2h. Write Flash Page

0110111_00000000

0110101_00000000

0110111_00000000
0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

(1)

2i. Poll for Page Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

3a. Enter Flash Read 0100011_00000010 xxxxxxx_xxxxxxxx

3b. Load Address Extended High Byte 0001011_cccccccc xxxxxxx_xxxxxxxx (10)

3c. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx

3d. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

3e. Read Data Low and High Byte

0110010_00000000

0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

xxxxxxx_oooooooo

Low byte

High byte

4a. Enter EEPROM Write 0100011_00010001 xxxxxxx_xxxxxxxx

4b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (10)

4c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

4d. Load Data Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

4e. Latch Data

0110111_00000000

1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4f. Write EEPROM Page

0110011_00000000

0110001_00000000

0110011_00000000
0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

(1)

4g. Poll for Page Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2)
317
8011N–AVR–01/10



ATmega164P/324P/644P
5a. Enter EEPROM Read 0100011_00000011 xxxxxxx_xxxxxxxx

5b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (10)

5c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

5d. Read Data Byte

0110011_bbbbbbbb

0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

6a. Enter Fuse Write 0100011_01000000 xxxxxxx_xxxxxxxx

6b. Load Data Low Byte(6) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

6c. Write Fuse Extended Byte

0111011_00000000
0111001_00000000

0111011_00000000

0111011_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6d. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

6e. Load Data Low Byte(7) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

6f. Write Fuse High Byte

0110111_00000000
0110101_00000000

0110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6g. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

6h. Load Data Low Byte(7) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

6i. Write Fuse Low Byte

0110011_00000000
0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6j. Poll for Fuse Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

7a. Enter Lock Bit Write 0100011_00100000 xxxxxxx_xxxxxxxx

7b. Load Data Byte(9) 0010011_11iiiiii xxxxxxx_xxxxxxxx (4)

7c. Write Lock Bits

0110011_00000000

0110001_00000000
0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

7d. Poll for Lock Bit Write complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

8a. Enter Fuse/Lock Bit Read 0100011_00000100 xxxxxxx_xxxxxxxx

8b. Read Extended Fuse Byte(6) 0111010_00000000

0111011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

8c. Read Fuse High Byte(7) 0111110_00000000

0111111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

8d. Read Fuse Low Byte(8) 0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

Table 24-18. JTAG Programming Instruction  (Continued)
Set  (Continued) a = address high bits, b = address low bits, c = address extended bits, H = 0 - Low byte, 1 - High Byte, 
o = data out, i = data in, x = don’t care

Instruction TDI Sequence TDO Sequence Notes
318
8011N–AVR–01/10



ATmega164P/324P/644P
Figure 26-10. Idle Supply Current vs. VCC (Internal RC Oscillator, 128 kHz). 

26.1.3 Supply Current of IO modules

The tables and formulas below can be used to calculate the additional current consumption for
the different I/O modules in Active and Idle mode. The enabling or disabling of the I/O modules
are controlled by the Power Reduction Register. See ”PRR – Power Reduction Register” on
page 48 for details.

85 °C
25 °C

-40 °C

0

0.02

0.04

0.06

0.08

0.1

0.12

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C 

(m
A
)

Table 26-1. Additional Current Consumption for the different I/O modules (absolute values)

PRR bit Typical numbers

VCC = 2V, F = 1MHz VCC = 3V, F = 4MHz VCC = 5V, F = 8MHz

PRUSART1 6.0 uA 38.5 uA 150.0 uA

PRUSART0 7.9 uA 50.3 uA 197.0 uA

PRTWI 16.9 uA  116.2 uA 489.3 uA

PRTIM2 14.4 uA 95.8 uA 393.2 uA

PRTIM1  9.0 uA 57.3 uA 234.8 uA

PRTIM0  5.1uA 33.3 uA 132.5 uA

PRADC  18.1 uA 86.3 uA 335.3 uA

PRSPI  11.1 uA 70.5 uA 285.0 uA
343
8011N–AVR–01/10



ATmega164P/324P/644P
Figure 26-12. Power-down Supply Current vs. VCC (Watchdog Timer Enabled). 
 

26.1.5 Power-save Supply Current

Figure 26-13. Power-save Supply Current vs. VCC (Watchdog Timer Disabled and 32 kHz Crys-
tal Oscillator Running). 

85 °C
25 °C

-40 °C

0

2

4

6

8

10

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C 

(u
A

)

25 °C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C 
(u

A
)

345
8011N–AVR–01/10



ATmega164P/324P/644P
Figure 26-22. I/O Pin Output Voltage vs. Sink Current (VCC = 5V). 
 

Figure 26-23. I/O Pin Output Voltage vs. Sink Current (VCC = 3V). 

85 °C

25 °C

-40 °C

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

IOL (mA)

V
O

L (
V)

85 °C
25 °C

-40 °C

1.5

2

2.5

3

3.5

0 5 10 15 20

IOH (mA)

V O
H 
(V

)

350
8011N–AVR–01/10



ATmega164P/324P/644P
26.2.8 Pin Driver Strength

Figure 26-68. I/O Pin Output Voltage vs. Sink Current (VCC = 3V).

Figure 26-69. I/O Pin Output Voltage vs. Sink Current (VCC = 5V).

85 °C

25 °C

-40 °C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

IOL (mA)

V O
L (

V
)

85 °C

25 °C

-40 °C

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

IOL (mA)

V O
L (

V
)

374
8011N–AVR–01/10



ATmega164P/324P/644P
Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses 
should never be written.

2. I/O registers within the address range $00 - $1F are directly bit-accessible using the SBI and CBI instructions. In these reg-
isters, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on 
all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions 
work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses $00 - $3F must be used. When addressing I/O regis-
ters as data space using LD and ST instructions, $20 must be added to these addresses. The ATmega164P/324P/644P is a 
complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the 
IN and OUT instructions. For the Extended I/O space from $60 - $FF, only the ST/STS/STD and LD/LDS/LDD instructions 
can be used.

0x1C (0x3C) EIFR - - - - - INTF2 INTF1 INTF0 68

0x1B (0x3B) PCIFR - - - - PCIF3 PCIF2 PCIF1 PCIF0 69

0x1A (0x3A) Reserved - - - - - - - -

0x19 (0x39) Reserved - - - - - - - -

0x18 (0x38) Reserved - - - - - - - -

0x17 (0x37) TIFR2 - - - - - OCF2B OCF2A TOV2 159

0x16 (0x36) TIFR1 - - ICF1 - - OCF1B OCF1A TOV1 138

0x15 (0x35) TIFR0 - - - - - OCF0B OCF0A TOV0 109

0x14 (0x34) Reserved - - - - - - - -

0x13 (0x33) Reserved - - - - - - - -

0x12 (0x32) Reserved - - - - - - - -

0x11 (0x31) Reserved - - - - - - - -

0x10 (0x30) Reserved - - - - - - - -

0x0F (0x2F) Reserved - - - - - - - -

0x0E (0x2E) Reserved - - - - - - - -

0x0D (0x2D) Reserved - - - - - - - -

0x0C (0x2C) Reserved - - - - - - - -

0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 92

0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 92

0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 92

0x08 (0x28) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 92

0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 92

0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 92

0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 91

0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 91

0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 91

0x02 (0x22) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 91

0x01 (0x21) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 91

0x00 (0x20) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 91

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
416
8011N–AVR–01/10


