E.J.Lattice Semiconductor Corporation - LAXP2-5E-5QN208E Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	625
Number of Logic Elements/Cells	5000
Total RAM Bits	169984
Number of I/O	146
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 125°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/laxp2-5e-5qn208e

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LA-LatticeXP2 Family Data Sheet Architecture

February 2015

Data Sheet DS1024

Architecture Overview

Each LA-LatticeXP2 device contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM[™] Embedded Block RAM (EBR) and a row of sys-DSP[™] Digital Signal Processing blocks as shown in Figure 2-1.

On the left and right sides of the Programmable Functional Unit (PFU) array, there are Non-volatile Memory Blocks. In configuration mode the nonvolatile memory is programmed via the IEEE 1149.1 TAP port or the sysCONFIG[™] peripheral port. On power up, the configuration data is transferred from the Non-volatile Memory Blocks to the configuration SRAM. With this technology, expensive external configuration memory is not required, and designs are secured from unauthorized read-back. This transfer of data from non-volatile memory to configuration SRAM via wide busses happens in microseconds, providing an "instant-on" capability that allows easy interfacing in many applications. LA-LatticeXP2 devices can also transfer data from the sysMEM EBR blocks to the Non-volatile Memory Blocks at user request.

There are two kinds of logic blocks, the PFU and the PFU without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM and ROM functions. The PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for flexibility allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array. Only one type of block is used per row.

LA-LatticeXP2 devices contain one or more rows of sysMEM EBR blocks. sysMEM EBRs are large dedicated 18 kbit memory blocks. Each sysMEM block can be configured in a variety of depths and widths of RAM or ROM. In addition, LA-LatticeXP2 devices contain up to two rows of DSP Blocks. Each DSP block has multipliers and adder/accumulators, which are the building blocks for complex signal processing capabilities.

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysIO buffers. The sysIO buffers of the LA-LatticeXP2 devices are arranged into eight banks, allowing the implementation of a wide variety of I/O standards. PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs. The PIC logic also includes pre-engineered support to aid in the implementation of high speed source synchronous standards such as 7:1 LVDS interfaces, found in many display applications, and memory interfaces including DDR and DDR2.

Other blocks provided include PLLs and configuration functions. The LA-LatticeXP2 architecture provides up to four General Purpose PLLs (GPLL) per device. The GPLL blocks are located in the corners of the device.

The configuration block that supports features such as configuration bit-stream de-encryption, transparent updates and dual boot support is located between banks two and three. Every device in the LA-LatticeXP2 family supports a sysCONFIG port, muxed with bank seven I/Os, which supports serial device configuration. A JTAG port is provided between banks two and three.

This family also provides an on-chip oscillator. LA-LatticeXP2 devices use 1.2 V as their core voltage.

Figure 2-15. Edge Clock Mux Connections

sysMEM Memory

LA-LatticeXP2 devices contains a number of sysMEM Embedded Block RAM (EBR). The EBR consists of 18 Kbit RAM with dedicated input and output registers.

sysMEM Memory Block

The sysMEM block can implement single port, dual port or pseudo dual port memories. Each block can be used in a variety of depths and widths as shown in Table 2-5. FIFOs can be implemented in sysMEM EBR blocks by using support logic with PFUs. The EBR block supports an optional parity bit for each data byte to facilitate parity checking. EBR blocks provide byte-enable support for configurations with18-bit and 36-bit data widths.

IPexpress[™]

The user can access the sysDSP block via the Lattice IPexpress tool, which provides the option to configure each DSP module (or group of modules), or by direct HDL instantiation. In addition, Lattice has partnered with The Math-Works[®] to support instantiation in the Simulink[®] tool, a graphical simulation environment. Simulink works with Diamond to dramatically shorten the DSP design cycle in Lattice FPGAs.

Optimized DSP Functions

Lattice provides a library of optimized DSP IP functions. Some of the IP cores planned for the LA-LatticeXP2 DSP include the Bit Correlator, FFT functions, FIR Filter, Reed-Solomon Encoder/Decoder, Turbo Encoder/Decoder and Convolutional Encoder/Decoder. Please contact Lattice to obtain the latest list of available DSP IP cores.

Resources Available in the LA-LatticeXP2 Family

Table 2-8 shows the maximum number of multipliers for each member of the LA-LatticeXP2 family. Table 2-9 shows the maximum available EBR RAM Blocks and Serial TAG Memory bits in each LA-LatticeXP2 device. EBR blocks, together with Distributed RAM can be used to store variables locally for fast DSP operations.

	Table 2-8. Maximum	Number of DSP	Blocks in the L	A-LatticeXP2 Family
--	--------------------	---------------	-----------------	---------------------

Device	DSP Block	9 x 9 Multiplier	18 x 18 Multiplier	36 x 36 Multiplier
LA-XP2-5	3	24	12	3
LA-XP2-8	4	32	16	4
LA-XP2-17	5	40	20	5

Table 2-9. Embedded SRAM/TAG Memory in the LA-LatticeXP2 Family

Device	EBR SRAM Block	Total EBR SRAM (kbits)	TAG Memory (Bits)
LA-XP2-5	9	166	632
LA-XP2-8	12	221	768
LA-XP2-17	15	276	2184

LA-LatticeXP2 DSP Performance

Table 2-10 lists the maximum performance in Millions of MAC (MMAC) operations per second for each member of the LA-LatticeXP2 family.

Table 2-10. DSP Performance

Device	DSP Block	DSP Performance MMAC
LA-XP2-5	3	3,900
LA-XP2-8	4	5,200
LA-XP2-17	5	6,500

For further information on the sysDSP block, see TN1140, LatticeXP2 sysDSP Usage Guide.

Programmable I/O Cells (PIC)

Each PIC contains two PIOs connected to their respective sysIO buffers as shown in Figure 2-25. The PIO Block supplies the output data (DO) and the tri-state control signal (TO) to the sysIO buffer and receives input from the buffer. Table 2-11 provides the PIO signal list.

Table 2-11. PIO Signal List

Name	Туре	Description
CE	Control from the core	Clock enables for input and output block flip-flops
CLK	Control from the core	System clocks for input and output blocks
ECLK1, ECLK2	Control from the core	Fast edge clocks
LSR	Control from the core	Local Set/Reset
GSRN	Control from routing	Global Set/Reset (active low)
INCK ²	Input to the core	Input to Primary Clock Network or PLL reference inputs
DQS	Input to PIO	DQS signal from logic (routing) to PIO
INDD	Input to the core	Unregistered data input to core
INFF	Input to the core	Registered input on positive edge of the clock (CLK0)
IPOS0, IPOS1	Input to the core	Double data rate registered inputs to the core
QPOS0 ¹ , QPOS1 ¹	Input to the core	Gearbox pipelined inputs to the core
QNEG0 ¹ , QNEG1 ¹	Input to the core	Gearbox pipelined inputs to the core
OPOS0, ONEG0, OPOS2, ONEG2	Output data from the core	Output signals from the core for SDR and DDR operation
OPOS1 ONEG1	Tristate control from the core	Signals to Tristate Register block for DDR operation
DEL[3:0]	Control from the core	Dynamic input delay control bits
TD	Tristate control from the core	Tristate signal from the core used in SDR operation
DDRCLKPOL	Control from clock polarity bus	Controls the polarity of the clock (CLK0) that feed the DDR input block
DQSXFER	Control from core	Controls signal to the Output block

1. Signals available on left/right/bottom only.

2. Selected I/O.

PIO

The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic block. These blocks contain registers for operating in a variety of modes along with necessary clock and selection logic.

Input Register Block

The input register blocks for PIOs contain delay elements and registers that can be used to condition high-speed interface signals, such as DDR memory interfaces and source synchronous interfaces, before they are passed to the device core. Figure 2-26 shows the diagram of the input register block.

Input signals are fed from the sysIO buffer to the input register block (as signal DI). If desired, the input signal can bypass the register and delay elements and be used directly as a combinatorial signal (INDD), a clock (INCK) and, in selected blocks, the input to the DQS delay block. If an input delay is desired, designers can select either a fixed delay or a dynamic delay DEL[3:0]. The delay, if selected, reduces input register hold time requirements when using a global clock.

The input block allows three modes of operation. In the Single Data Rate (SDR) mode, the data is registered, by one of the registers in the SDR Sync register block, with the system clock. In DDR mode two registers are used to sample the data on the positive and negative edges of the DQS signal which creates two data streams, D0 and D2. D0 and D2 are synchronized with the system clock before entering the core. Further information on this topic can be found in the DDR Memory Support section of this data sheet.

By combining input blocks of the complementary PIOs and sharing registers from output blocks, a gearbox function can be implemented, that takes a double data rate signal applied to PIOA and converts it as four data streams, IPOS0A, IPOS1A, IPOS0B and IPOS1B. Figure 2-26 shows the diagram using this gearbox function. For more information on this topic, see TN1138, LatticeXP2 High Speed I/O Interface.

CLKB

ECLK1 ECLK2 CLK1 (CLKB) DQSXFER Clock Transfer Registers

* Shared with input register

то

DO

то

DO

Programmable Control

Output Logic

Note: Simplified version does not show CE and SET/RESET details

To sysIO Buffer

To sysIO Buffer

shows the diagram using this gearbox function. For more information on this topic, see TN1138, LatticeXP2 High Speed I/O Interface.

Figure 2-27. Output and Tristate Block

DQSXFER

LA-LatticeXP2 devices provide a DQSXFER signal to the output buffer to assist it in data transfer to DDR memories that require DQS strobe be shifted 90°. This shifted DQS strobe is generated by the DQSDEL block. The DQSXFER signal runs the span of the data bus.

sysIO Buffer

Each I/O is associated with a •exible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, SSTL, HSTL, LVDS and LVPECL.

sysIO Buffer Banks

LA-LatticeXP2 devices have eight sysIO buffer banks for user I/Os arranged two per side. Each bank is capable of supporting multiple I/O standards. Each sysIO bank has its own I/O supply voltage (V_{CCIO}). In addition, each bank has voltage references, V_{REF1} and V_{REF2} , that allow it to be completely independent from the others. Figure 2-32 shows the eight banks and their associated supplies.

In LA-LatticeXP2 devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are powered using V_{CCIO} . LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as fixed threshold inputs independent of V_{CCIO} .

Each bank can support up to two separate V_{REF} voltages, V_{REF1} and V_{REF2} , that set the threshold for the referenced input buffers. Some dedicated I/O pins in a bank can be configured to be a reference voltage supply pin. Each I/O is individually configurable based on the bank's supply and reference voltages.

тор

Figure 2-32. LA-LatticeXP2 Banks

воттом

Table 2-12. Supported Input Standards

Input Standard	V _{REF} (Nom.)	V _{CCIO} ¹ (Nom.)					
Single Ended Interfaces							
LVTTL	_	—					
LVCMOS33	_	_					
LVCMOS25	_	_					
LVCMOS18	_	1.8					
LVCMOS15	_	1.5					
LVCMOS12	_	_					
PCI33	_	_					
HSTL18 Class I, II	0.9	_					
HSTL15 Class I	0.75	_					
SSTL33 Class I, II	1.5	_					
SSTL25 Class I, II	1.25	_					
SSTL18 Class I, II	0.9	_					
Differential Interfaces							
Differential SSTL18 Class I, II	_	_					
Differential SSTL25 Class I, II		—					
Differential SSTL33 Class I, II		—					
Differential HSTL15 Class I	_	—					
Differential HSTL18 Class I, II		—					
LVDS, MLVDS, LVPECL, BLVDS, RSDS	_	—					

1. When not specified, V_{CCIO} can be set anywhere in the valid operating range (page 3-1).

be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for veri• cation. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port has its own supply voltage V_{CCJ} and can operate with LVCMOS3.3, 2.5, 1.8, 1.5 and 1.2 standards. For more information, see TN1141, LatticeXP2 sysCONFIG Usage Guide.

flexiFLASH Device Configuration

The LA-LatticeXP2 devices combine Flash and SRAM on a single chip to provide users with flexibility in device programming and configuration. Figure 2-33 provides an overview of the arrangement of Flash and SRAM configuration cells within the device. The remainder of this section provides an overview of these capabilities. See TN1141, LatticeXP2 sysCONFIG Usage Guide for a more detailed description.

Figure 2-33. Overview of Flash and SRAM Configuration Cells Within LA-LatticeXP2 Devices

At power-up, or on user command, data is transferred from the on-chip Flash memory to the SRAM configuration cells that control the operation of the device. This is done with massively parallel buses enabling the parts to operate within microseconds of the power supplies reaching valid levels; this capability is referred to as Instant-On.

The on-chip Flash enables a single-chip solution eliminating the need for external boot memory. This Flash can be programmed through either the JTAG or Slave SPI ports of the device. The SRAM configuration space can also be infinitely reconfigured through the JTAG and Master SPI ports. The JTAG port is IEEE 1149.1 and IEEE 1532 compliant.

As described in the EBR section of the data sheet, the FlashBAK capability of the parts enables the contents of the EBR blocks to be written back into the Flash storage area without erasing or reprogramming other aspects of the device configuration. Serial TAG memory is also available to allow the storage of small amounts of data such as calibration coefficients and error codes.

For applications where security is important, the lack of an external bitstream provides a solution that is inherently more secure than SRAM only FPGAs. This is further enhanced by device locking. The device can be in one of three modes:

Density Shifting

The LA-LatticeXP2 family is designed to ensure that different density devices in the same family and in the same package have the same pinout. Furthermore, the architecture ensures a high success rate when performing design migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

Initialization Supply Current^{1, 2, 3, 4, 5}

Over Recommended Operating Conditions

Symbol	Parameter	Device	Typical (25 °C, Max. Supply) ⁶	Units
		LA-XP2-5	20	mA
I _{CC}	Core Power Supply Current	LA-XP2-8	21	mA
		LA-XP2-17	44	mA
		LA-XP2-5	67	mA
I _{CCAUX}	Auxiliary Power Supply Current ⁷	LA-XP2-8	74	mA
		LA-XP2-17	112	mA
I _{CCPLL}	PLL Power Supply Current (per PLL)		1.8	mA
I _{CCIO}	Bank Power Supply Current (per Bank)		6.4	mA
ICCJ	VCCJ Power Supply Current		1.2	mA

1. For further information on supply current, see TN1139, Power Estimation and Management for LatticeXP2 Devices.

2. Assumes all outputs are tristated, all inputs are con•gured as LVCMOS and held at the V_{CCIO} or GND.

3. Frequency 0 MHz.

4. Does not include additional current from bypass or decoupling capacitor across the supply.

5. A specific configuration pattern is used that scales with the size of the device; consists of 75% PFU utilization, 50% EBR, and 25% I/O configuration.

6. $T_J = 25$ °C, power supplies at nominal voltage.

In fpBGA packages the PLLs are connected to and powered from the auxiliary power supply. For these packages, the actual auxiliary supply current is the sum of I_{CCAUX} and I_{CCPLL}. For csBGA, PQFP and TQFP packages the PLLs are powered independent of the auxiliary power supply.

sysIO Single-Ended DC Electrical Characteristics

Input/Output		V _{IL}	VII	1	V _{OL}	V _{OH}			
Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	Max. (V)	Min. (V)	l _{OL} 1 (mA)	I _{OH} ¹ (mA)	
LVCMOS33	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4	
					0.2	V _{CCIO} - 0.2	0.1	-0.1	
LVTTL33	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4	
					0.2	V _{CCIO} - 0.2	0.1	-0.1	
LVCMOS25	-0.3	0.7	1.7	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4	
					0.2	V _{CCIO} - 0.2	0.1	-0.1	
LVCMOS18	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-16, -12, -8, -4	
		0010	0010		0.2	V _{CCIO} - 0.2	0.1	-0.1	
	0.2	0.25 \/	0.65 \	26	0.4	V _{CCIO} - 0.4	8, 4	-8, -4	
LV CIVIOS IS	-0.3	0.35 V _{CCIO}	0.05 V CCIO	3.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
	_0.3	0.35 V	0.65 V	36	0.4	V _{CCIO} - 0.4	6, 2	-6, -2	
LV CIVICO 12	-0.5	0.33 V _{CC}	0.03 VCC	5.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
PCI33	-0.3	0.3 V _{CCIO}	0.5 V _{CCIO}	3.6	0.1 V _{CCIO}	0.9 V _{CCIO}	1.5	-0.5	
SSTL33_I	-0.3	V _{REF} - 0.2	V _{REF} + 0.2	3.6	0.7	V _{CCIO} - 1.1	8	-8	
SSTL33_II	-0.3	V _{REF} - 0.2	V _{REF} + 0.2	3.6	0.5	V _{CCIO} - 0.9	16	-16	
SSTI 25 I	-0.3	Vp== - 0.18	$V_{D=0} \pm 0.18$	36	0.54	Vacua - 0.62	7.6	-7.6	
001220_1	0.0	VREF 0.10	VREF 1 0.10	0.0	0.04	VCCI0 0.02	12	-12	
SSTI 25 II	-0.3	Vp== - 0.18	$V_{D=2} \pm 0.18$	3.6	0.35	Vacia - 0.43	15.2	-15.2	
001220_11	0.0	VREF 0.10	VREF 1 0.10	0.0	0.00	VCCIO 0.40	20	-20	
SSTL18_I	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	3.6	0.4	V _{CCIO} - 0.4	6.7	-6.7	
SSTI 18 II	-0.3	Vp== - 0 125	Vpcc ± 0 125	3.6	0.28	Vacia - 0.28	8	-8	
001210_1	0.0	VREF 0.120	VREF 1 0.120	0.0	0.20	VCCI0 0.20	11	-11	
HSTI 15 I	-0.3	Vpcc - 0.1		36	0.4	$V_{000} = 0.4$	4	-4	
	0.0	VREF 0.1	REF 1 0.1	0.0	0.1	VCCIO 0.1	8	-8	
HSTI 18 I	-0.3	Vprr - 0 1	Vprr + 0 1	36	0.4	Vocio - 0.4	8	-8	
	0.0	TREF 0.1	TREF 1 0.1	5.5	0.1		12	-12	
HSTL18_II	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCIO} - 0.4	16	-16	

Over Recommended Operating Conditions

 The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O bank and the end of an I/O bank, as shown in the logic signal connections table shall not exceed n * 8 mA, where n is the number of I/Os between bank GND connections or between the last GND in a bank and the end of a bank.

BLVDS

The LA-LatticeXP2 devices support the BLVDS standard. This standard is emulated using complementary LVC-MOS outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

Figure 3-2. BLVDS Multi-point Output Example

Table 3-2. BLVDS DC Conditions¹

		Typical		
Parameter	Description	Ζο = 45 Ω	Ζο = 45 Ω	Units
V _{CCIO}	Output Driver Supply (+/- 5%)	2.50	2.50	V
Z _{OUT}	Driver Impedance	10.00	10.00	Ω
R _S	Driver Series Resistor (+/- 1%)	90.00	90.00	Ω
R _{TL}	Driver Parallel Resistor (+/- 1%)	45.00	90.00	Ω
R _{TR}	Receiver Termination (+/- 1%)	45.00	90.00	Ω
V _{OH}	Output High Voltage (After R _{TL})	1.38	1.48	V
V _{OL}	Output Low Voltage (After R _{TL})	1.12	1.02	V
V _{OD}	Output Differential Voltage (After R _{TL})	0.25	0.46	V
V _{CM}	Output Common Mode Voltage	1.25	1.25	V
I _{DC}	DC Output Current	11.24	10.20	mA

Over Recommended Operating Conditions

1. For input buffer, see LVDS table.

Register-to-Register Performance (Continued)

Function	–5 Timing	Units
DSP IP Functions		
16-Tap Fully-Parallel FIR Filter	136	MHz
1024-pt FFT	152	MHz
8 X 8 Matrix Multiplication	137	MHz

1. These timing numbers were generated using the ispLEVER design tool. Exact performance may vary with device, design and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

Timing v. A 0.12

Derating Timing Tables

Logic timing provided in the following sections of this data sheet and the Diamond design tools are worst case numbers in the operating range. Actual delays at nominal temperature and voltage for best case process, can be much better than the values given in the tables. The Diamond design software can provide logic timing numbers at a particular temperature and voltage.

LA-LatticeXP2 External Switching Characteristics (Continued)

			-	-5	
Parameter	Description	Device	Min.	Max.	Units
		LA-XP2-5	1.32		ns
t _{HPLL}	Clock to Data Hold - PIO Input Register	LA-XP2-8	1.32	—	ns
			1.32		ns
		LA-XP2-5	2.16	—	ns
t _{SU_DELPLL}	Clock to Data Setup - PIO Input Register with Data Input Delay	LA-XP2-8	2.18	—	ns
		LA-XP2-17	2.14	—	ns
		LA-XP2-5	0.00	—	ns
t _{H_DELPLL}	Clock to Data Hold - PIO Input Register with Input Data Delay	LA-XP2-8	0.00	—	ns
		LA-XP2-17	0.00	—	ns
DDR ² and DDR2 ³	I/O Pin Parameters				
t _{DVADQ}	Data Valid After DQS (DDR Read)	LA-XP2	_	0.29	UI
t _{DVEDQ}	Data Hold After DQS (DDR Read)	LA-XP2	0.71	—	UI
t _{DQVBS}	Data Valid Before DQS	LA-XP2	0.25	—	UI
t _{DQVAS}	Data Valid After DQS	LA-XP2	0.25	—	UI
f _{MAX_DDR}	DDR Clock Frequency	LA-XP2	95	133	MHz
f _{MAX_DDR2}	DDR Clock Frequency	LA-XP2	133	166	MHz
Primary Clock					
f _{MAX_PRI}	Frequency for Primary Clock Tree	LA-XP2		311	MHz
t _{W_PRI}	Clock Pulse Width for Primary Clock	LA-XP2	1	—	ns
t _{SKEW_PRI}	Primary Clock Skew Within a Bank	LA-XP2	_	160	ps
Edge Clock (ECLK1 and ECLK2)					
f _{MAX_ECLK}	Frequency for Edge Clock	LA-XP2	_	311	MHz
tw_ECLK	Clock Pulse Width for Edge Clock	LA-XP2	1		ns
t _{SKEW_ECLK}	Edge Clock Skew Within an Edge of the Device	LA-XP2	_	130	ps

Over Recommended Operating Conditions

1. General timing numbers based on LVCMOS 2.5, 12mA, 0pf load.

2. DDR timing numbers based on SSTL25.

3. DDR2 timing numbers based on SSTL18.

Timing v. A 0.12

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

LA-LatticeXP2 Family Timing Adders^{1, 2, 3}

Over Recommended	Operating	Conditions
-------------------------	-----------	------------

Buffer Type	Description	-5	Units			
Input Adjusters						
LVDS25	LVDS	0.05	ns			
BLVDS25	BLVDS	0.05	ns			
MLVDS	LVDS	0.05	ns			
RSDS	RSDS	0.05	ns			
LVPECL33	LVPECL	0.05	ns			
HSTL18_I	HSTL_18 class I	0.07	ns			
HSTL18_II	HSTL_18 class II	0.07	ns			
HSTL18D_I	Differential HSTL 18 class I	0.02	ns			
HSTL18D_II	Differential HSTL 18 class II	0.02	ns			
HSTL15_I	HSTL_15 class I	0.06	ns			
HSTL15D_I	Differential HSTL 15 class I	0.01	ns			
SSTL33_I	SSTL_3 class I	0.12	ns			
SSTL33_II	SSTL_3 class II	0.12	ns			
SSTL33D_I	Differential SSTL_3 class I	0.04	ns			
SSTL33D_II	Differential SSTL_3 class II	0.04	ns			
SSTL25_I	SSTL_2 class I	0.10	ns			
SSTL25_II	SSTL_2 class II	0.10	ns			
SSTL25D_I	Differential SSTL_2 class I	0.03	ns			
SSTL25D_II	Differential SSTL_2 class II	0.03	ns			
SSTL18_I	SSTL_18 class I	0.07	ns			
SSTL18_II	SSTL_18 class II	0.07	ns			
SSTL18D_I	Differential SSTL_18 class I	0.02	ns			
SSTL18D_II	Differential SSTL_18 class II	0.02	ns			
LVTTL33	LVTTL	0.19	ns			
LVCMOS33	LVCMOS 3.3	0.19	ns			
LVCMOS25	LVCMOS 2.5	0.00	ns			
LVCMOS18	LVCMOS 1.8	0.10	ns			
LVCMOS15	LVCMOS 1.5	0.17	ns			
LVCMOS12	LVCMOS 1.2	-0.04	ns			
PCI33	3.3V PCI	0.19	ns			
Output Adjusters						
LVDS25E	LVDS 2.5 E ⁴	0.32	ns			
LVDS25	LVDS 2.5	0.32	ns			
BLVDS25	BLVDS 2.5	0.29	ns			
MLVDS	MLVDS 2.5 ⁴	0.29	ns			
RSDS	RSDS 2.5⁴	0.32	ns			
LVPECL33	LVPECL 3.34	0.19	ns			
HSTL18_I	HSTL_18 class I 8mA drive	0.45	ns			
HSTL18_II	HSTL_18 class II	0.31	ns			
HSTL18D_I	Differential HSTL 18 class I 8mA drive	0.45	ns			
HSTL18D_II	Differential HSTL 18 class II	0.31	ns			

Switching Test Conditions

Figure 3-11 shows the output test load that is used for AC testing. The speciec values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-6.

Figure 3-11. Output Test Load, LVTTL and LVCMOS Standards

*CL Includes Test Fixture and Probe Capacitance

Test Condition	R ₁	R ₂	CL	Timing Ref.	V _T
				LVCMOS 3.3 = 1.5 V	
				LVCMOS 2.5 = $V_{CCIO}/2$	
LVTTL and other LVCMOS settings (L -> H, H -> L)	∞	∞	0pF	LVCMOS 1.8 = $V_{CCIO}/2$	
				LVCMOS 1.5 = $V_{CCIO}/2$	_
				LVCMOS 1.2 = $V_{CCIO}/2$	
LVCMOS 2.5 I/O (Z -> H)	∞	1MΩ		V _{CCIO} /2	_
LVCMOS 2.5 I/O (Z -> L)	1MΩ	8 S		V _{CCIO} /2	V _{CCIO}
LVCMOS 2.5 I/O (H -> Z)	∞	100		V _{OH} – 0.10	
LVCMOS 2.5 I/O (L -> Z)	100	∞		V _{OL} + 0.10	V _{CCIO}

Note: Output test conditions for all other interfaces are determined by the respective standards.

LA-LatticeXP2 Family Data Sheet Pinout Information

August 2014

Signal Descriptions

Signal Name	I/O	D Description	
General Purpose			
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top).	
	I/O	[Row/Column Number] indicates the PFU row or the column of the device on which the PIC exists. When Edge is T (Top) or B (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.	
		[A/B] indicates the PIO within the PIC to which the pad is connected. Some of these user-programmable pins are shared with special function pins. These pins, when not used as special purpose pins, can be programmed as I/Os for user logic. During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.	
GSRN	I	Global RESET signal (active low). Any I/O pin can be GSRN.	
NC		No connect.	
GND	_	Ground. Dedicated pins.	
V _{CC}		Power supply pins for core logic. Dedicated pins.	
V _{CCAUX}	_	Auxiliary power supply pin. This dedicated pin powers all the differential and referenced input buffers.	
V _{CCPLL}		PLL supply pins. csBGA, PQFP and TQFP packages only.	
V _{CCIOx}		Dedicated power supply pins for I/O bank x.	
V _{REF1_x} , V _{REF2_x}		Reference supply pins for I/O bank x. Pre-determined pins in each bank are assigned as V_{REF} inputs. When not used, they may be used as I/O pins.	
PLL and Clock Functions (Used as us	er progr	ammable I/O pins when not in use for PLL or clock pins)	
[LOC][num]_V _{CCPLL}		Power supply pin for PLL: LLC, LRC, URC, ULC, num = row from center.	
[LOC][num]_GPLL[T, C]_IN_A	Ι	General Purpose PLL (GPLL) input pads: LLC, LRC, URC, ULC, num = row from center, $T =$ true and $C =$ complement, index A,B,Cat each side.	
[LOC][num]_GPLL[T, C]_FB_A	Ι	Optional feedback GPLL input pads: LLC, LRC, URC, ULC, num = row from center, $T =$ true and C = complement, index A,B,Cat each side.	
PCLK[T, C]_[n:0]_[3:0]	Ι	Primary Clock pads, $T =$ true and $C =$ complement, n per side, indexed by bank and 0,1,2,3 within bank.	
[LOC]DQS[num]	Ι	DQS input pads: T (Top), R (Right), B (Bottom), L (Left), DQS, num = ball function number. Any pad can be configured to be output.	
Test and Programming (Dedicated Pi	ns)		
тмѕ	I	Test Mode Select input, used to control the 1149.1 state machine. Pull-up is enabled during configuration.	
тск	Ι	Test Clock input pin, used to clock the 1149.1 state machine. No pull-up enabled.	
ТОІ	I	Test Data in pin. Used to load data into device using 1149.1 state machine. After power-up, this TAP port can be activated for configuration by sending appropriate command. (Note: once a configuration port is selected it is locked. Another configuration port cannot be selected until the power-up sequence). Pull-up is enabled during configuration.	

© 2014 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Lead-Free Packaging

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LAXP2-5E-5MN132E	1.2V	-5	Lead-Free csBGA	132	AUTO	5
LAXP2-5E-5TN144E	1.2V	-5	Lead-Free TQFP	144	AUTO	5
LAXP2-5E-5QN208E	1.2V	-5	Lead-Free PQFP	208	AUTO	5
LAXP2-5E-5FTN256E	1.2V	-5	Lead-Free ftBGA	256	AUTO	5

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LAXP2-8E-5MN132E	1.2V	-5	Lead-Free csBGA	132	AUTO	8
LAXP2-8E-5TN144E	1.2V	-5	Lead-Free TQFP	144	AUTO	8
LAXP2-8E-5QN208E	1.2V	-5	Lead-Free PQFP	208	AUTO	8
LAXP2-8E-5FTN256E	1.2V	-5	Lead-Free ftBGA	256	AUTO	8

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LAXP2-17E-5QN208E	1.2V	-5	Lead-Free PQFP	208	AUTO	17
LAXP2-17E-5FTN256E	1.2V	-5	Lead-Free ftBGA	256	AUTO	17

LA-LatticeXP2 Family Data Sheet Supplemental Information

August 2014

Data Sheet DS1024

For Further Information

A variety of technical notes for the LA-LatticeXP2 FPGA family are available on the Lattice website.

- TN1136, LatticeXP2 sysIO Usage Guide
- TN1137, LatticeXP2 Memory Usage Guide
- TN1138, LatticeXP2 High Speed I/O Interface
- TN1126, LatticeXP2 sysCLOCK PLL Design and Usage Guide
- TN1139, Power Estimation and Management for LatticeXP2 Devices
- TN1140, LatticeXP2 sysDSP Usage Guide
- TN1141, LatticeXP2 sysCONFIG Usage Guide
- TN1142, LatticeXP2 Configuration Encryption and Security Usage Guide
- TN1143, LatticeXP2 TransFR I/O
- TN1087, Minimizing System Interruption During Configuration Using TransFR Technology
- TN1220, LatticeXP2 Dual Boot Feature
- TN1130, LatticeXP2 Soft Error Detection (SED) Usage Guide

For further information on interface standards refer to the following web sites:

- JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): www.jedec.org
- PCI: www.pcisig.com

© 2014 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.