
Lattice Semiconductor Corporation - LAXP2-5E-5TN144E Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Figure 2-3. Slice Diagram

Table 2-2. Slice Signal Descriptions

Function Type Signal Names Description 

Input Data signal A0, B0, C0, D0 Inputs to LUT4 

Input Data signal A1, B1, C1, D1 Inputs to LUT4 

Input Multi-purpose M0 Multipurpose Input 

Input Multi-purpose M1 Multipurpose Input 

Input Control signal CE Clock Enable 

Input Control signal LSR Local Set/Reset 

Input Control signal CLK System Clock 

Input Inter-PFU signal FCI Fast Carry-In1 

Input Inter-slice signal FXA Intermediate signal to generate LUT6 and LUT7

Input Inter-slice signal FXB Intermediate signal to generate LUT6 and LUT7

Output Data signals F0, F1 LUT4 output register bypass signals 

Output Data signals Q0, Q1 Register outputs 

Output Data signals OFX0 Output of a LUT5 MUX 

Output Data signals OFX1 Output of a LUT6, LUT7, LUT82 MUX depending on the slice 

Output Inter-PFU signal FCO Slice 2 of each PFU is the fast carry chain output1

1. See Figure 2-3 for connection details. 
2. Requires two PFUs. 

LUT4 &
CARRY*

LUT4 &
CARRY*

SLICE

A0

C0
D0

FF*

OFX0

F0

Q0

A1
B1
C1
D1

CI

CI

CO

CO

CE
CLK
LSR

FF*

OFX1

F1

Q1

F/SUM

F/SUM D

D

M1

FCI into Slice/PFU, FCO from Different Slice/PFU

FCO from Slice/PFU, FCI into Different Slice/PFU

LUT5
Mux

M0
From

Routing

To
Routing

FXB
FXA

B0

For Slices 0 and 2, memory control signals are generated from Slice 1 as follows:
         WCK is CLK
         WRE is from LSR
         DI[3:2] for Slice 2 and DI[1:0] for Slice 0 data
         WAD [A:D] is a 4bit address from Slice 1 LUT input

* Not in Slice 3
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Modes of Operation
Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM. 

Logic Mode
In this mode, the LUTs in each slice are configured as LUT4s. A LUT4 has 16 possible input combinations. Four-
input logic functions are generated by programming the LUT4. Since there are two LUT4s per slice, a LUT5 can be 
constructed within one slice. Larger LUTs such as LUT6, LUT7 and LUT8, can be constructed by concatenating 
two or more slices. Note that a LUT8 requires more than four slices.

Ripple Mode
Ripple mode allows efficient implementation of small arithmetic functions. In ripple mode, the following functions 
can be implemented by each slice: 

• Addition 2-bit 

• Subtraction 2-bit 

• Add/Subtract 2-bit using dynamic control 

• Up counter 2-bit 

• Down counter 2-bit

• Up/Down counter with async clear

• Up/Down counter with preload (sync) 

• Ripple mode multiplier building block

• Multiplier support 

• Comparator functions of A and B inputs
– A greater-than-or-equal-to B
– A not-equal-to B
– A less-than-or-equal-to B

Two carry signals, FCI and FCO, are generated per slice in this mode, allowing fast arithmetic functions to be con-
structed by concatenating slices. 

RAM Mode
In this mode, a 16x4-bit distributed Single Port RAM (SPR) can be constructed using each LUT block in Slice 0 and 
Slice 2 as a 16x1-bit memory. Slice 1 is used to provide memory address and control signals. A 16x2-bit Pseudo 
Dual Port RAM (PDPR) memory is created by using one slice as the read-write port and the other companion slice 
as the read-only port.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the soft-
ware will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 
shows the number of slices required to implement different distributed RAM primitives. For more information on 
using RAM in LA-LatticeXP2 devices, see TN1137, LatticeXP2 Memory Usage Guide.

Table 2-3. Number of Slices Required For Implementing Distributed RAM 

ROM Mode
ROM mode uses the LUT logic; hence, Slices 0 through 3 can be used in the ROM mode. Preloading is accom-
plished through the programming interface during PFU configuration. 

SPR 16x4 PDPR 16x4

Number of slices 3 3

Note: SPR = Single Port RAM, PDPR = Pseudo Dual Port RAM

www.latticesemi.com/dynamic/view_document.cfm?document_id=23976
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Routing
There are many resources provided in the LA-LatticeXP2 devices to route signals individually or as busses with 
related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) 
segments. 

The inter-PFU connections are made with x1 (spans two PFU), x2 (spans three PFU) or x6 (spans seven PFU) 
connections. The x1 and x2 connections provide fast and efficient connections in horizontal and vertical directions. 
The x2 and x6 resources are buffered to allow both short and long connections routing between PFUs. 

The LA-LatticeXP2 family has an enhanced routing architecture to produce a compact design. The Diamond 
design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route 
tool is completely automatic, although an interactive routing editor is available to optimize the design. 

sysCLOCK Phase Locked Loops (PLL)
The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The LA-LatticeXP2 family supports 
between two and four full featured General Purpose PLLs (GPLL). The architecture of the GPLL is shown in 
Figure 2-4.

CLKI, the PLL reference frequency, is provided either from the pin or from routing; it feeds into the Input Clock 
Divider block. CLKFB, the feedback signal, is generated from CLKOP (the primary clock output) or from a user 
clock pin/logic. CLKFB feeds into the Feedback Divider and is used to multiply the reference frequency.

Both the input path and feedback signals enter the Voltage Controlled Oscillator (VCO) block. The phase and fre-
quency of the VCO are determined from the input path and feedback signals. A LOCK signal is generated by the 
VCO to indicate that the VCO is locked with the input clock signal.

The output of the VCO feeds into the CLKOP Divider, a post-scalar divider. The duty cycle of the CLKOP Divider 
output can be fine tuned using the Duty Trim block, which creates the CLKOP signal. By allowing the VCO to oper-
ate at higher frequencies than CLKOP, the frequency range of the GPLL is expanded. The output of the CLKOP 
Divider is passed through the CLKOK Divider, a secondary clock divider, to generate lower frequencies for the 
CLKOK output. For applications that require even lower frequencies, the CLKOP signal is passed through a divide-
by-three divider to produce the CLKOK2 output. The CLKOK2 output is provided for applications that use source 
synchronous logic. The Phase/Duty Cycle/Duty Trim block is used to adjust the phase and duty cycle of the CLKOP 
Divider output to generate the CLKOS signal. The phase/duty cycle setting can be pre-programmed or dynamically 
adjusted. 

The clock outputs from the GPLL; CLKOP, CLKOK, CLKOK2 and CLKOS, are fed to the clock distribution network.

For further information on the GPLL see TN1126, LatticeXP2 sysCLOCK PLL Design and Usage Guide.

www.latticesemi.com/dynamic/view_document.cfm?document_id=23975
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Figure 2-4. General Purpose PLL (GPLL) Diagram

Table 2-4 provides a description of the signals in the GPLL blocks. 

Table 2-4. GPLL Block Signal Descriptions

Clock Dividers
LA-LatticeXP2 devices have two clock dividers, one on the left side and one on the right side of the device. These 
are intended to generate a slower-speed system clock from a high-speed edge clock. The block operates in a ÷2, 
÷4 or ÷8 mode and maintains a known phase relationship between the divided down clock and the high-speed 
clock based on the release of its reset signal. The clock dividers can be fed from the CLKOP output from the 
GPLLs or from the Edge Clocks (ECLK). The clock divider outputs serve as primary clock sources and feed into the 
clock distribution network. The Reset (RST) control signal resets the input and forces all outputs to low. The 
RELEASE signal releases outputs to the input clock. For further information on clock dividers, see TN1126, 
LatticeXP2 sysCLOCK PLL Design and Usage Guide. Figure 2-5 shows the clock divider connections.

Signal I/O Description 

CLKI I Clock input from external pin or routing 

CLKFB I PLL feedback input from CLKOP (PLL internal), from clock net (CLKOP) or from a user clock 
(PIN or logic) 

RST I “1” to reset PLL counters, VCO, charge pumps and M-dividers

RSTK I “1” to reset K-divider

DPHASE [3:0] I DPA Phase Adjust input

DDDUTY [3:0] I DPA Duty Cycle Select input

WRDEL I DPA Fine Delay Adjust input

CLKOS O PLL output clock to clock tree (phase shifted/duty cycle changed) 

CLKOP O PLL output clock to clock tree (no phase shift) 

CLKOK O PLL output to clock tree through secondary clock divider 

CLKOK2 O PLL output to clock tree (CLKOP divided by 3)

LOCK O “1” indicates PLL LOCK to CLKI 
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www.latticesemi.com/dynamic/view_document.cfm?document_id=23975
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Secondary Clock/Control Sources 
LA-LatticeXP2 devices derive secondary clocks (SC0 through SC7) from eight dedicated clock input pads and the 
rest from routing. Figure 2-7 shows the secondary clock sources.

Figure 2-7. Secondary Clock Sources
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Slice Clock Selection
Figure 2-13 shows the clock selections and Figure 2-14 shows the control selections for Slice 0 through Slice 2. All 
the primary clocks and the four secondary clocks are routed to this clock selection mux. Other signals, via routing, 
can be used as clock inputs to the slices. Slice controls are generated from the secondary clocks or other signals 
connected via routing.

If none of the signals are selected for both clock and control, then the default value of the mux output is 1. Slice 3 
does not have any registers; therefore it does not have the clock or control muxes.

Figure 2-13. Slice 0 through Slice 2 Clock Selection

Figure 2-14. Slice 0 through Slice 2 Control Selection

Edge Clock Routing
LA-LatticeXP2 devices have eight high-speed edge clocks that are intended for use with the PIOs in the implemen-
tation of high-speed interfaces. Each device has two edge clocks per edge. Figure 2-15 shows the selection muxes 
for these clocks.
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MAC sysDSP Element 
In this case, the two operands, A and B, are multiplied and the result is added with the previous accumulated value. 
This accumulated value is available at the output. The user can enable the input and pipeline registers but the out-
put register is always enabled. The output register is used to store the accumulated value. The Accumulators in the 
DSP blocks in LA-LatticeXP2 family can be initialized dynamically. A registered overflow signal is also available. 
The over• ow conditions are provided later in this document. Figure 2-21 shows the MAC sysDSP element. 

Figure 2-21. MAC sysDSP
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MULTADDSUBSUM sysDSP Element 
In this case, the operands A0 and B0 are multiplied and the result is added/subtracted with the result of the multi-
plier operation of operands A1 and B1. Additionally the operands A2 and B2 are multiplied and the result is added/ 
subtracted with the result of the multiplier operation of operands A3 and B3. The result of both addition/subtraction 
are added in a summation block. The user can enable the input, output and pipeline registers. Figure 2-23 shows 
the MULTADDSUBSUM sysDSP element. 

Figure 2-23. MULTADDSUBSUM
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shows the diagram using this gearbox function. For more information on this topic, see TN1138, LatticeXP2 High 
Speed I/O Interface.

Figure 2-27. Output and Tristate Block

Clock Transfer
Registers

ONEG1

CLKA

TO

OPOS1

F
ro

m
 R

o
u

ti
n

g

TD

D Q

D QD Q

0

1

0

1

0

1

D Q

D QD Q

0

1

0

1

D Q

D-Type*

D Q

Latch
D Q

0

1

0

1

0

1

0

1
ONEG0

OPOS0

DO

Programmable
Control

Programmable
Control

0

1

ECLK1
ECLK2

CLK1

Tristate Logic

Tristate Logic

Output Logic

True PIO (A) in LVDS I/O Pair

To
 sysIO

 B
u

ffer

ONEG1

CLKB

TO

OPOS1

F
ro

m
 R

o
u

ti
n

g

TD

D Q

D QD Q

0

1

0

1

0

1

D Q
D-Type
/LATCH

D-Type
/LATCH

D-Type
/LATCH

D-Type
/LATCH

D QD Q

0

1

0

1

D Q

D Q

Latch D-Type

D-Type Latch

Latch

D-Type Latch

D-Type Latch

D Q

ONEG0

OPOS0

DO

ECLK1
ECLK2

CLK1

Output Logic

To
 sysIO

 B
u

ffer

Comp PIO (B) in LVDS I/O Pair

(CLKB)

(CLKA)

D-Type*

D-Type*

D-Type*

Clock Transfer
Registers

DDR Output
Registers

DDR Output
Registers

* Shared with input register Note: Simplified version does not show CE and SET/RESET details

0

1

DQSXFER

DQSXFER

0

1
0

1

www.latticesemi.com/dynamic/view_document.cfm?document_id=23977
www.latticesemi.com/dynamic/view_document.cfm?document_id=23977


2-31

Architecture
LatticeXP2 Family Data Sheet

Figure 2-28. DQS Input Routing (Left and Right)

Figure 2-29. DQS Input Routing (Top and Bottom)
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Figure 2-31. DQS Local Bus
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1. Unlocked

2. Key Locked – Presenting the key through the programming interface allows the device to be unlocked.

3. Permanently Locked – The device is permanently locked.

To further complement the security of the device a One Time Programmable (OTP) mode is available. Once the 
device is set in this mode it is not possible to erase or re-program the Flash portion of the device.

Serial TAG Memory
LA-LatticeXP2 devices offer 0.6 to 3.3kbits of Flash memory in the form of Serial TAG memory. The TAG memory is 
an area of the on-chip Flash that can be used for non-volatile storage including electronic ID codes, version codes, 
date stamps, asset IDs and calibration settings. A block diagram of the TAG memory is shown in Figure 2-34. The 
TAG memory is accessed in the same way as external SPI Flash and it can be read or programmed either through 
JTAG, an external Slave SPI Port, or directly from FPGA logic. To read the TAG memory, a start address is speci-
fied and the entire TAG memory contents are read sequentially in a first-in-first-out manner. The TAG memory is 
independent of the Flash used for device configuration and given its use for general-purpose storage functions is 
always accessible regardless of the device security settings. For more information, see TN1137, LatticeXP2 Mem-
ory Usage Guide and TN1141, LatticeXP2 sysCONFIG Usage Guide.

Figure 2-34. Serial TAG Memory Diagram

Live Update Technology
Many applications require field updates of the FPGA. LA-LatticeXP2 devices provide three features that enable this 
configuration to be done in a secure and failsafe manner while minimizing impact on system operation.

1. Decryption Support
LA-LatticeXP2 devices provide on-chip, non-volatile key storage to support decryption of a 128-bit AES 
encrypted bitstream, securing designs and deterring design piracy. 

2. TransFR (Transparent Field Reconfiguration)
TransFR I/O (TFR) is a unique Lattice technology that allows users to update their logic in the field without 
interrupting system operation using a single ispVM command. TransFR I/O allows I/O states to be frozen dur-
ing device configuration. This allows the device to be field updated with a minimum of system disruption and 
downtime. For more information please see TN1143, LatticeXP2 TransFR I/O.

3. Dual Boot Image Support
Dual boot images are supported for applications requiring reliable remote updates of configuration data for the 
system FPGA. After the system is running with a basic configuration, a new boot image can be downloaded 
remotely and stored in a separate location in the configuration storage device. Any time after the update the 
LA-LatticeXP2 can be re-booted from this new configuration file. If there is a problem such as corrupt data dur-
ing download or incorrect version number with this new boot image, the LA-LatticeXP2 device can revert back 
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Programming and Erase Flash Supply Current1, 2, 3, 4, 5

Over Recommended Operating Conditions

Symbol Parameter Device
Typical 

(25 °C, Max. Supply)6 Units 

ICC Core Power Supply Current

LA-XP2-5 17 mA

LA-XP2-8 21 mA

LA-XP2-17 28 mA

ICCAUX Auxiliary Power Supply Current7
LA-XP2-5 64 mA

LA-XP2-8 66 mA

LA-XP2-17 83 mA

ICCPLL PLL Power Supply Current (per PLL) 0.1 mA

ICCIO Bank Power Supply Current (per Bank) 5 mA

ICCJ VCCJ Power Supply Current8 14 mA

1. For further information on supply current, see TN1139, Power Estimation and Management for LatticeXP2 Devices. 
2. Assumes all outputs are tristated, all inputs are con• gured as LVCMOS and held at the VCCIO or GND. 
3. Frequency 0 MHz (excludes dynamic power from FPGA operation). 
4. A specific configuration pattern is used that scales with the size of the device; consists of 75% PFU utilization, 50% EBR, and 25% I/O con-

figuration. 
5. Bypass or decoupling capacitor across the supply.
6. TJ = 25 °C, power supplies at nominal voltage.
7. In fpBGA packages the PLLs are connected to and powered from the auxiliary power supply. For these packages, the actual auxiliary sup-

ply current is the sum of ICCAUX and ICCPLL. For csBGA, PQFP and TQFP packages the PLLs are powered independent of the auxiliary 
power supply.

8. When programming via JTAG.

www.latticesemi.com/dynamic/view_document.cfm?document_id=24561
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RSDS
The LA-LatticeXP2 devices support differential RSDS standard. This standard is emulated using complementary 
LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The RSDS input standard is sup-
ported by the LVDS differential input buffer. The scheme shown in Figure 3-4 is one possible solution for RSDS 
standard implementation. Resistor values in Figure 3-4 are industry standard values for 1% resistors. 

Figure 3-4. RSDS (Reduced Swing Differential Standard)

Table 3-4. RSDS DC Conditions1

Over Recommended Operating Conditions

Parameter  Description Typical Units

VCCIO Output Driver Supply (+/–5%) 2.50 V

ZOUT Driver Impedance 20 

RS Driver Series Resistor (+/–1%) 294 

RP Driver Parallel Resistor (+/–1%) 121 

RT Receiver Termination (+/–1%) 100 

VOH Output High Voltage (After RP) 1.35 V

VOL Output Low Voltage (After RP) 1.15 V

VOD Output Differential Voltage (After RP) 0.20 V

VCM Output Common Mode Voltage 1.25 V

ZBACK Back Impedance 101.5 

IDC DC Output Current 3.66 mA

1. For input buffer, see LVDS table.

RS = 294 Ohms
(+/–1%)

RS = 294 Ohms
(+/–1%)

RP = 121 Ohms
(+/–1%)

RT = 100 Ohms
(+/–1%)

On-chip On-chip

8 mA

8 mA

VCCIO = 2.5 V
(+/–5%)

VCCIO = 2.5 V
(+/–5%)

Transmission line, 
Zo = 100 Ohm differential

+

–

Off-chipOff-chip
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Typical Building Block Function Performance1

Over Recommended Operating Conditions

Pin-to-Pin Performance (LVCMOS25 12 mA Drive)

 Function –5 Timing Units

Basic Functions

16-bit Decoder 5.7 ns

32-bit Decoder 6.9 ns

64-bit Decoder 7.7 ns

4:1 MUX 4.8 ns

8:1 MUX 5.1 ns

16:1 MUX 5.6 ns

32:1 MUX 5.8 ns

Register-to-Register Performance  

 Function –5 Timing Units

Basic Functions

16-bit Decoder 354 MHz

32-bit Decoder 318 MHz

64-bit Decoder 280 MHz

4:1 MUX 493 MHz

8:1 MUX 458 MHz

16:1 MUX 424 MHz

32:1 MUX 364 MHz

8-bit Adder 326 MHz

16-bit Adder 306 MHz

64-bit Adder 178 MHz

16-bit Counter 312 MHz

32-bit Counter 257 MHz

64-bit Counter 191 MHz

64-bit Accumulator 161 MHz

Embedded Memory Functions

512 x 36 Single Port RAM, EBR Output Registers 252 MHz

1024 x 18 True-Dual Port RAM (Write Through or Normal, EBR Output Registers) 252 MHz

1024 x 18 True-Dual Port RAM (Write Through or Normal, PLC Output Registers) 173 MHz

Distributed Memory Functions

16 x 4 Pseudo-Dual Port RAM (One PFU) 508 MHz

32 x 2 Pseudo-Dual Port RAM 313 MHz

64 x 1 Pseudo-Dual Port RAM 235 MHz

DSP Functions

18 x 18 Multiplier (All Registers) 276 MHz

9 x 9 Multiplier (All Registers) 276 MHz

36 x 36 Multiply (All Registers) 244 MHz

18 x 18 Multiply/Accumulate (Input and Output Registers) 176 MHz

18 x 18 Multiply-Add/Sub-Sum (All Registers) 235 MHz
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Figure 3-8. Write Through (SP Read/Write on Port A, Input Registers Only)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

A0 A1 A0

D0 D1

D4

tSU

tACCESS tACCESS tACCESS

tH

D2 D3 D4

D0 D1 D2Data from Prev Read
or Write

Three consecutive writes to A0

D3DOA

DIA

ADA

WEA

CSA

CLKA

tACCESS
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LA-LatticeXP2 Family Timing Adders1, 2, 3 
Over Recommended Operating Conditions

Buffer Type Description –5 Units

Input Adjusters

LVDS25 LVDS 0.05 ns

BLVDS25 BLVDS 0.05 ns

MLVDS LVDS 0.05 ns

RSDS RSDS 0.05 ns

LVPECL33 LVPECL 0.05 ns

HSTL18_I HSTL_18 class I 0.07 ns

HSTL18_II HSTL_18 class II 0.07 ns

HSTL18D_I Differential HSTL 18 class I 0.02 ns

HSTL18D_II Differential HSTL 18 class II 0.02 ns

HSTL15_I HSTL_15 class I 0.06 ns

HSTL15D_I Differential HSTL 15 class I 0.01 ns

SSTL33_I SSTL_3 class I 0.12 ns

SSTL33_II SSTL_3 class II 0.12 ns

SSTL33D_I Differential SSTL_3 class I 0.04 ns

SSTL33D_II Differential SSTL_3 class II 0.04 ns

SSTL25_I SSTL_2 class I 0.10 ns

SSTL25_II SSTL_2 class II 0.10 ns

SSTL25D_I Differential SSTL_2 class I 0.03 ns

SSTL25D_II Differential SSTL_2 class II 0.03 ns

SSTL18_I SSTL_18 class I 0.07 ns

SSTL18_II SSTL_18 class II 0.07 ns

SSTL18D_I Differential SSTL_18 class I 0.02 ns

SSTL18D_II Differential SSTL_18 class II 0.02 ns

LVTTL33 LVTTL 0.19 ns

LVCMOS33 LVCMOS 3.3 0.19 ns

LVCMOS25 LVCMOS 2.5 0.00 ns

LVCMOS18 LVCMOS 1.8 0.10 ns

LVCMOS15 LVCMOS 1.5 0.17 ns

LVCMOS12 LVCMOS 1.2 -0.04 ns

PCI33 3.3V PCI 0.19 ns

Output Adjusters

LVDS25E LVDS 2.5 E4 0.32 ns

LVDS25 LVDS 2.5 0.32 ns

BLVDS25 BLVDS 2.5 0.29 ns

MLVDS MLVDS 2.54 0.29 ns

RSDS RSDS 2.54 0.32 ns

LVPECL33 LVPECL 3.34 0.19 ns

HSTL18_I HSTL_18 class I 8mA drive 0.45 ns

HSTL18_II HSTL_18 class II 0.31 ns

HSTL18D_I Differential HSTL 18 class I 8mA drive 0.45 ns

HSTL18D_II Differential HSTL 18 class II 0.31 ns
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LA-LatticeXP2 sysCONFIG Port Timing Specifications
Over Recommended Operating Conditions

Parameter Description Min Max Units

sysCONFIG POR, Initialization and Wake Up

tICFG Minimum Vcc to INITN High — 50 ms

tVMC Time from tICFG to valid Master CCLK — 2 µs

tPRGMRJ PROGRAMN Pin Pulse Rejection — 12 ns

tPRGM PROGRAMN Low Time to Start Con• guration 50 — ns

tDINIT PROGRAMN High to INITN High Delay — 1 ms

tDPPINIT Delay Time from PROGRAMN Low to INITN Low — 50 ns

tDPPDONE Delay Time from PROGRAMN Low to DONE Low — 50 ns

tIODISS User I/O Disable from PROGRAMN Low — 35 ns

tIOENSS User I/O Enabled Time from CCLK Edge During Wake-up Sequence — 25 ns

tMWC Additional Wake Master Clock Signals after DONE Pin High 0 — cycles

sysCONFIG SPI Port (Master)

tCFGX INITN High to CCLK Low — 1 µs

tCSSPI INITN High to CSSPIN Low — 2 µs

tCSCCLK CCLK Low before CSSPIN Low 0 — ns

tSOCDO CCLK Low to Output Valid — 15 ns

tCSPID CSSPIN[0:1] Low to First CCLK Edge Setup Time 2cyc 600+6cyc ns

fMAXSPI Max CCLK Frequency — 20 MHz

tSUSPI SOSPI Data Setup Time Before CCLK 7 — ns

tHSPI SOSPI Data Hold Time After CCLK 10 — ns

sysCONFIG SPI Port (Slave)

fMAXSPIS Slave CCLK Frequency — 25 MHz

tRF Rise and Fall Time 50  — mV/ns

tSTCO Falling Edge of CCLK to SOSPI Active  — 20 ns

tSTOZ Falling Edge of CCLK to SOSPI Disable  — 20 ns

tSTSU Data Setup Time (SISPI) 8  — ns

tSTH Data Hold Time (SISPI) 10  — ns

tSTCKH CCLK Clock Pulse Width, High 0.02 200 µs

tSTCKL CCLK Clock Pulse Width, Low 0.02 200 µs

tSTVO Falling Edge of CCLK to Valid SOSPI Output  — 20 ns

tSCS CSSPISN High Time  25  — ns

tSCSS CSSPISN Setup Time  25  — ns

tSCSH CSSPISN Hold Time  25  — ns
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On-Chip Oscillator and Configuration Master Clock Characteristics
Over Recommended Operating Conditions

Figure 3-9. Master SPI Configuration Waveforms

Parameter Min. Max. Units

Master Clock Frequency Selected value –30% Selected value +30% MHz

Duty Cycle 40 60 %

Timing v. A 0.12

Opcode Address

0    1    2    3      …    7    8    9   10    …   31  32  33  34    …   127  128

VCC

PROGRAMN

DONE

INITN

CSSPIN

CCLK

SISPI

SOSPI

Capture CFGxCapture CR0

Ignore Valid Bitstream
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PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin
PICs Associated with 

DQS Strobe PIO Within PIC
DDR Strobe (DQS) and 

Data (DQ) Pins

For Left and Right Edges of the Device

P[Edge] [n-4] 
A DQ 

B DQ 

P[Edge] [n-3] 
A DQ 

B DQ 

P[Edge] [n-2] 
A DQ 

B DQ 

P[Edge] [n-1] 
A DQ

B DQ 

P[Edge] [n] 
A [Edge]DQSn

B DQ 

P[Edge] [n+1] 
A DQ 

B DQ 

P[Edge] [n+2] 
A DQ 

B DQ 

P[Edge] [n+3] 
A DQ 

B DQ 

For Top and Bottom Edges of the Device

P[Edge] [n-4] 
A DQ 

B DQ 

P[Edge] [n-3] 
A DQ 

B DQ 

P[Edge] [n-2] 
A DQ 

B DQ 

P[Edge] [n-1] 
A DQ 

B DQ 

P[Edge] [n] 
A [Edge]DQSn 

B DQ 

P[Edge] [n+1] 
A DQ 

B DQ 

P[Edge] [n+2] 
A DQ 

B DQ 

P[Edge] [n+3] 
A DQ 

B DQ 

P[Edge] [n+4] 
A DQ 

B DQ 

Notes:
1. “n” is a row PIC number. 
2. The DDR interface is designed for memories that support one DQS strobe up to 16 bits 

of data for the left and right edges and up to 18 bits of data for the top and bottom 
edges. In some packages, all the potential DDR data (DQ) pins may not be available. 
PIC numbering definitions are provided in the “Signal Names” column of the Signal 
Descriptions table.


