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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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More Information
Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you
to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article
KBA86521, How to Design with PSoC 3, PSoC 4, and PSoC 5LP. Following is an abbreviated list for PSoC 5LP:

Overview: PSoC Portfolio, PSoC Roadmap

 Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP
In addition, PSoC Creator includes a device selection tool.

 Application notes: Cypress offers a large number of PSoC 
application notes and code examples covering a broad range 
of topics, from basic to advanced level. Recommended appli-
cation notes for getting started with PSoC 5LP are:
 AN77759: Getting Started With PSoC 5LP
 AN77835: PSoC 3 to PSoC 5LP Migration Guide
 AN61290: Hardware Design Considerations
 AN57821: Mixed Signal Circuit Board Layout
 AN58304: Pin Selection for Analog Designs
 AN81623: Digital Design Best Practices
 AN73854: Introduction To Bootloaders

 Development Kits:
 CY8CKIT-059 is a low-cost platform for prototyping, with a 

unique snap-away programmer and debugger on the USB 
connector.

 CY8CKIT-050 is designed for analog performance, for devel-
oping high-precision analog, low-power, and low-voltage ap-
plications.

 CY8CKIT-001 provides a common development platform for 
any one of the PSoC 1, PSoC 3, PSoC 4, or PSoC 5LP 
families of devices.

 The MiniProg3 device provides an interface for flash pro-
gramming and debug.

 Technical Reference Manuals (TRM)
 Architecture TRM
 Registers TRM

 Programming Specification

PSoC Creator

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design 
of PSoC 3, PSoC 4, and PSoC 5LP based systems. Create designs using classic, familiar schematic capture supported by over 100 
pre-verified, production-ready PSoC Components; see the list of component datasheets. With PSoC Creator, you can:

1. Drag and drop component icons to build your hardware 
system design in the main design workspace

2. Codesign your application firmware with the PSoC hardware, 
using the PSoC Creator IDE C compiler

3. Configure components using the configuration tools

4. Explore the library of 100+ components

5. Review component datasheets

Figure 1.  Multiple-Sensor Example Project in PSoC Creator
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Table 2-2 shows the pinout for the 99-pin CSP package. Since there are four VDDIO pins, the set of I/O pins associated with any VDDIO 
may sink up to 100 mA total, same as for the 100-pin and 68-pin devices.

Table 2-2.  CSP Pinout

Ball Name Ball Name Ball Name Ball Name

E5 P2[5] L2 VIO1 B2 P3[6] C8 VIO0

G6 P2[6] K2 P1[6] B3 P3[7] D7 P0[4]

G5 P2[7] C9 P4[2] C3 P12[0] E7 P0[5]

H6 P12[4] E8 P4[3] C4 P12[1] B9 P0[6]

K7 P12[5] K1 P1[7] E3 P15[2] D8 P0[7]

L8 P6[4] H2 P12[6] E4 P15[3] D9 P4[4]

J6 P6[5] F4 P12[7] A1 NC F8 P4[5]

H5 P6[6] J1 P5[4] A9 NC F7 P4[6]

J5 P6[7] H1 P5[5] L1 NC E6 P4[7]

L7 VSSB F3 P5[6] L9 NC E9 VCCD

K6 Ind G1 P5[7] A3 VCCA F9 VSSD

L6 VBOOST G2 P15[6] A4 VSSA G9 VDDD

K5 VBAT F2 P15[7] B7 VSSA H9 P6[0]

L5 VSSD E2 VDDD B8 VSSA G8 P6[1]

L4 XRES F1 VSSD C7 VSSA H8 P6[2]

J4 P5[0] E1 VCCD A5 VDDA J9 P6[3]

K4 P5[1] D1 P15[0] A6 VSSD G7 P15[4]

K3 P5[2] D2 P15[1] B5 P12[2] F6 P15[5]

L3 P5[3] C1 P3[0] A7 P12[3] F5 P2[0]

H4 P1[0] C2 P3[1] C5 P4[0] J7 P2[1]

J3 P1[1] D3 P3[2] D5 P4[1] J8 P2[2]

H3 P1[2] D4 P3[3] B6 P0[0] K9 P2[3]

J2 P1[3] B4 P3[4] C6 P0[1] H7 P2[4]

G4 P1[4] A2 P3[5] A8 P0[2] K8 VIO2

G3 P1[5] B1 VIO3 D6 P0[3]
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6.1.3  Clock Distribution 

All seven clock sources are inputs to the central clock distribution
system. The distribution system is designed to create multiple
high precision clocks. These clocks are customized for the
design’s requirements and eliminate the common problems
found with limited resolution prescalers attached to peripherals.
The clock distribution system generates several types of clock
trees.

 The system clock is used to select and supply the fastest clock 
in the system for general system clock requirements and clock 
synchronization of the PSoC device. 

 Bus clock 16-bit divider uses the system clock to generate the 
system’s bus clock used for data transfers and the CPU. The 
CPU clock is directly derived from the bus clock.

 Eight fully programmable 16-bit clock dividers generate digital 
system clocks for general use in the digital system, as 
configured by the design’s requirements. Digital system clocks 
can generate custom clocks derived from any of the seven 
clock sources for any purpose. Examples include baud rate 
generators, accurate PWM periods, and timer clocks, and 
many others. If more than eight digital clock dividers are 
required, the UDBs and fixed function timer/counter/PWMs can 
also generate clocks. 

 Four 16-bit clock dividers generate clocks for the analog system 
components that require clocking, such as the ADC. The 
analog clock dividers include skew control to ensure that critical 
analog events do not occur simultaneously with digital 
switching events. This is done to reduce analog system noise.

Each clock divider consists of an 8-input multiplexer, a 16-bit
clock divider (divide by 2 and higher) that generates ~50% duty
cycle clocks, system clock resynchronization logic, and deglitch
logic. The outputs from each digital clock tree can be routed into
the digital system interconnect and then brought back into the
clock system as an input, allowing clock chaining of up to 32 bits. 

6.1.4  USB Clock Domain

The USB clock domain is unique in that it operates largely
asynchronously from the main clock network. The USB logic
contains a synchronous bus interface to the chip, while running
on an asynchronous clock to process USB data. The USB logic
requires a 48 MHz frequency. This frequency can be generated
from different sources, including DSI clock at 48 MHz or doubled
value of 24 MHz from internal oscillator, DSI signal, or crystal
oscillator.
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6.2  Power System

The power system consists of separate analog, digital, and I/O supply pins, labeled VDDA, VDDD, and VDDIOX, respectively. It also
includes two internal 1.8 V regulators that provide the digital (VCCD) and analog (VCCA) supplies for the internal core logic. The output
pins of the regulators (VCCD and VCCA) and the VDDIO pins must have capacitors connected as shown in Figure 6-4. The two VCCD
pins must be shorted together, with as short a trace as possible, and connected to a 1 µF ±10% X5R capacitor. The power system
also contains a sleep regulator, an I2C regulator, and a hibernate regulator.

Figure 6-4. PSoC Power System

Notes

 The two VCCD pins must be connected together with as short a trace as possible. A trace under the device is recommended, as 
shown in Figure 2-6.

 You can power the device in internally regulated mode, where the voltage applied to the VDDx pins is as high as 5.5 V, and the 
internal regulators provide the core voltages. In this mode, do not apply power to the VCCx pins, and do not tie the VDDx pins 
to the VCCx pins.

 You can also power the device in externally regulated mode, that is, by directly powering the VCCD and VCCA pins. In this configuration, 
the VDDD pins should be shorted to the VCCD pins and the VDDA pin should be shorted to the VCCA pin. The allowed supply range 
in this configuration is 1.71 V to 1.89 V. After power up in this configuration, the internal regulators are on by default, and should be 
disabled to reduce power consumption.

 It is good practice to check the datasheets for your bypass capacitors, specifically the working voltage and the DC bias specifications. 
With some capacitors, the actual capacitance can decrease considerably when the DC bias (VDDX or VCCX in Figure 6-4) is a 
significant percentage of the rated working voltage.

VSSB

V
S

S
D

V
D

D
IO

1
V

D
D

IO
2 VDDIO0

V
D

D
IO

3

V
C

C
D

V
D

D
D

V
S

S
D

V
C

C
D

V
D

D
D

VSSA

VCCA

VDDA

Digital 
Regulators

Analog 
Regulator

Analog 
Domain

Digital 
Domain

I2C 
Regulator

Sleep 
Regulator

Hibernate 
Regulator

I/O Supply I/O Supply

I/O SupplyI/O Supply

.

VDDIO2

VDDIO0

VDDIO3VDDIO1

0.1µF

0.1µF

0.1 µF

0.1µF

VDDD

VDDD

1 µF

1 µF

VDDA

0.1µF

0.1µF

0.1µF



PSoC® 5LP: CY8C54LP Family
Datasheet

Document Number: 001-84934 Rev. *J Page 28 of 126

6.2.1  Power Modes

PSoC 5LP devices have four different power modes, as shown
in Table 6-2 and Table 6-3. The power modes allow a design to
easily provide required functionality and processing power while
simultaneously minimizing power consumption and maximizing
battery life in low power and portable devices. 

PSoC 5LP power modes, in order of decreasing power
consumption are: 

 Active

 Alternate Active

 Sleep 

 Hibernate

Active is the main processing mode. Its functionality is
configurable. Each power controllable subsystem is enabled or
disabled by using separate power configuration template
registers. In alternate active mode, fewer subsystems are
enabled, reducing power. In sleep mode most resources are
disabled regardless of the template settings. Sleep mode is
optimized to provide timed sleep intervals and Real Time Clock
functionality. The lowest power mode is hibernate, which retains
register and SRAM state, but no clocks, and allows wakeup only
from I/O pins. Figure 6-5 illustrates the allowable transitions
between power modes. Sleep and hibernate modes should not
be entered until all VDDIO supplies are at valid voltage levels.

Note
7. Bus clock off. Execute from CPU instruction buffer at 6 MHz. See Table 11-2 on page 66.

Table 6-2.  Power Modes

Power Modes Description Entry 
Condition 

Wakeup 
Source Active Clocks  Regulator

Active Primary mode of operation, all periph-
erals available (programmable)

Wakeup, 
reset, 
manual 
register entry 

Any interrupt Any (program-
mable)

All regulators available. 
Digital and analog 
regulators can be disabled if 
external regulation used.

Alternate 
Active

Similar to Active mode, and is typically 
configured to have fewer peripherals 
active to reduce power. One possible 
configuration is to use the UDBs for 
processing, with the CPU turned off

Manual 
register entry

Any interrupt Any (program-
mable)

All regulators available. 
Digital and analog 
regulators can be disabled if 
external regulation used.

Sleep All subsystems automatically disabled Manual 
register entry

Comparator, 
PICU, I2C, RTC, 
CTW, LVD

ILO/kHzECO Both digital and analog 
regulators buzzed. 
Digital and analog 
regulators can be disabled if 
external regulation used.

Hibernate All subsystems automatically disabled 
Lowest power consuming mode with all 
peripherals and internal regulators 
disabled, except hibernate regulator is 
enabled
Configuration and memory contents 
retained

Manual 
register entry 

PICU Only hibernate regulator 
active.

Table 6-3.  Power Modes Wakeup Time and Power Consumption

Sleep 
Modes

Wakeup 
Time

Current 
(Typ)

Code 
Execution

Digital 
Resources

Analog 
Resources

Clock Sources 
Available

Wakeup 
Sources

Reset 
Sources

Active  – 3.1 mA[7] Yes All All All – All

Alternate 
Active 

 – – User 
defined

All All All – All

Sleep

<25 µs 2 µA No I2C Comparator ILO/kHzECO Comparator, 
PICU, I2C, 
RTC, CTW, 

LVD

XRES, LVD, 
WDR

Hibernate <200 µs 300 nA No None None None PICU XRES
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Figure 6-5. Power Mode Transitions 

6.2.1.1 Active Mode 

Active mode is the primary operating mode of the device. When
in active mode, the active configuration template bits control
which available resources are enabled or disabled. When a
resource is disabled, the digital clocks are gated, analog bias
currents are disabled, and leakage currents are reduced as
appropriate. User firmware can dynamically control subsystem
power by setting and clearing bits in the active configuration
template. The CPU can disable itself, in which case the CPU is
automatically reenabled at the next wakeup event.

When a wakeup event occurs, the global mode is always
returned to active, and the CPU is automatically enabled,
regardless of its template settings. Active mode is the default
global power mode upon boot.

6.2.1.2 Alternate Active Mode

Alternate Active mode is very similar to active mode. In alternate
active mode, fewer subsystems are enabled, to reduce power
consumption. One possible configuration is to turn off the CPU
and flash, and run peripherals at full speed.

6.2.1.3 Sleep Mode 

Sleep mode reduces power consumption when a resume time of
15 µs is acceptable. The wake time is used to ensure that the
regulator outputs are stable enough to directly enter active
mode.

6.2.1.4 Hibernate Mode 

In hibernate mode nearly all of the internal functions are
disabled. Internal voltages are reduced to the minimal level to
keep vital systems alive. Configuration state is preserved in
hibernate mode and SRAM memory is retained. GPIOs
configured as digital outputs maintain their previous values and
external GPIO pin interrupt settings are preserved. The device
can only return from hibernate mode in response to an external
I/O interrupt. The resume time from hibernate mode is less than
100 µs.

To achieve an extremely low current, the hibernate regulator has
limited capacity. This limits the frequency of any signal present
on the input pins; no GPIO should toggle at a rate greater than
10 kHz while in hibernate mode. If pins must be toggled at a high
rate while in a low power mode, use sleep mode instead.

6.2.1.5 Wakeup Events

Wakeup events are configurable and can come from an interrupt
or device reset. A wakeup event restores the system to active
mode. Firmware enabled interrupt sources include internally
generated interrupts, power supervisor, central timewheel, and
I/O interrupts. Internal interrupt sources can come from a variety
of peripherals, such as analog comparators and UDBs. The
central timewheel provides periodic interrupts to allow the
system to wake up, poll peripherals, or perform real-time
functions. Reset event sources include the external reset pin
(XRES), WDT, and Precision Reset (PRES). 

6.2.2  Boost Converter

Applications that use a supply voltage of less than 1.71 V, such
as solar panels or single cell battery supplies, may use the
on-chip boost converter to generate a minimum of 1.8 V supply
voltage. The boost converter may also be used in any system
that requires a higher operating voltage than the supply provides
such as driving 5.0 V LCD glass in a 3.3 V system. With the
addition of an inductor, Schottky diode, and capacitors, it
produces a selectable output voltage sourcing enough current to
operate the PSoC and other on-board components. 

The boost converter accepts an input voltage VBAT from 0.5 V to
3.6 V, and can start up with VBAT as low as 0.5 V. The converter
provides a user configurable output voltage of 1.8 to 5.0 V (VOUT)
in 100 mV increments. VBAT is typically less than VOUT; if VBAT is
greater than or equal to VOUT, then VOUT will be slightly less than
VBAT due to resistive losses in the boost converter. The block can
deliver up to 50 mA (IBOOST) depending on configuration to both
the PSoC device and external components. The sum of all
current sinks in the design including the PSoC device, PSoC I/O
pin loads, and external component loads must be less than the
IBOOST specified maximum current.

Four pins are associated with the boost converter: VBAT, VSSB,
VBOOST, and IND. The boosted output voltage is sensed at the
VBOOST pin and must be connected directly to the chip’s supply
inputs; VDDA, VDDD, and VDDIO if used to power the PSoC
device. 

The boost converter requires four components in addition to
those required in a non-boost design, as shown in Figure 6-6 on
page 30. A 22 µF capacitor (CBAT) is required close to the VBAT
pin to provide local bulk storage of the battery voltage and
provide regulator stability. A diode between the battery and VBAT
pin should not be used for reverse polarity protection because
the diodes forward voltage drop reduces the VBAT voltage.
Between the VBAT and IND pins, an inductor of 4.7 µH, 10 µH, or
22 µH is required. The inductor value can be optimized to
increase the boost converter efficiency based on input voltage,
output voltage, temperature, and current. Inductor size is
determined by following the design guidance in this chapter and
electrical specifications. The Inductor must be placed within
1 cm of the VBAT and IND pins and have a minimum saturation
current of 750 mA. Between the IND and VBOOST pins a Schottky
diode must be placed within 1 cm of the pins. The Schottky diode
shall have a forward current rating of at least 1.0 A and a reverse
voltage of at least 20 V. A 22 µF bulk capacitor (CBOOST) must
be connected close to VBOOST to provide regulator output
stability. It is important to sum the total capacitance connected to
the VBOOST pin and ensure the maximum CBOOST specification
is not exceeded. All capacitors must be rated for a minimum of
10 V to minimize capacitive losses due to voltage de-rating.

Active

Manual

Hibernate

Alternate 
Active

Sleep
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The switching frequency is set to 400 kHz using an oscillator
integrated into the boost converter. The boost converter can be
operated in two different modes: active and standby. Active
mode is the normal mode of operation where the boost regulator
actively generates a regulated output voltage. In standby mode,
most boost functions are disabled, thus reducing power
consumption of the boost circuit. Only minimal power is provided,
typically < 5 µA to power the PSoC device in Sleep mode. The
boost typically draws 250 µA in active mode and 25 µA in
standby mode. The boost operating modes must be used in
conjunction with chip power modes to minimize total power
consumption. Table 6-4 lists the boost power modes available in
different chip power modes.

6.2.2.1 Boost Firmware Requirements

To ensure boost inrush current is within specification at startup,
the Enable Fast IMO During Startup value must be unchecked
in the PSoC Creator IDE. The Enable Fast IMO During Startup
option is found in PSoC Creator in the design wide resources
(cydwr) file System tab. Un-checking this option configures the
device to run at 12 MHz vs 48 MHz during startup while
configuring the device. The slower clock speed results in
reduced current draw through the boost circuit.

6.2.2.2 Boost Design Process

Correct operation of the boost converter requires specific
component values determined for each designs unique
operating conditions. The CBAT capacitor, Inductor, Schottky
diode, and CBOOST capacitor components are required with the
values specified in the electrical specifications, Table 11-7 on
page 71. The only variable component value is the inductor
LBOOST which is primarily sized for correct operation of the boost
across operating conditions and secondarily for efficiency.
Additional operating region constraints exist for VOUT, VBAT, IOUT,
and TA. 

The following steps must be followed to determine boost
converter operating parameters and LBOOST value.

1. Choose desired VBAT, VOUT, TA, and IOUT operating condition 
ranges for the application.

2. Determine if VBAT and VOUT ranges fit the boost operating 
range based on the TA range over VBAT and VOUT chart, 
Figure 11-8 on page 71. If the operating ranges are not met, 
modify the operating conditions or use an external boost 
regulator.

3. Determine if the desired ambient temperature (TA) range fits 
the ambient temperature operating range based on the TA 
range over VBAT and VOUT chart, Figure 11-8 on page 71. If 
the temperature range is not met, modify the operating condi-
tions and return to step 2, or use an external boost regulator.

4. Determine if the desired output current (IOUT) range fits the 
output current operating range based on the IOUT range over 
VBAT and VOUT chart, Figure 11-9 on page 71. If the output 
current range is not met, modify the operating conditions and 
return to step 2, or use an external boost regulator.

5. Find the allowed inductor values based on the LBOOST values 
over VBAT and VOUT chart, Figure 11-10 on page 71.

6. Based on the allowed inductor values, inductor dimensions, 
inductor cost, boost efficiency, and VRIPPLE choose the 
optimum inductor value for the system. Boost efficiency and 
VRIPPLE typical values are provided in the Efficiency vs VBAT 
and VRIPPLE vs VBAT charts, Figure 11-11 on page 72 through 
Figure 11-14 on page 72. In general, if high efficiency and low 
VRIPPLE are most important, then the highest allowed inductor 
value should be used. If low inductor cost or small inductor 
size are most important, then one of the smaller allowed 
inductor values should be used. If the allowed inductor(s) 
efficiency, VRIPPLE, cost or dimensions are not acceptable for 
the application than an external boost regulator should be 
used.

6.3  Reset

CY8C54LP has multiple internal and external reset sources
available. The reset sources are:

 Power source monitoring - The analog and digital power 
voltages, VDDA, VDDD, VCCA, and VCCD are monitored in 
several different modes during power up, active mode, and 
sleep mode (buzzing). If any of the voltages goes outside 
predetermined ranges then a reset is generated. The monitors 
are programmable to generate an interrupt to the processor 
under certain conditions before reaching the reset thresholds.

 External - The device can be reset from an external source by 
pulling the reset pin (XRES) low. The XRES pin includes an 
internal pull-up to VDDIO1. VDDD, VDDA, and VDDIO1 must 
all have voltage applied before the part comes out of reset.

Watchdog timer - A watchdog timer monitors the execution of 
instructions by the processor. If the watchdog timer is not reset 
by firmware within a certain period of time, the watchdog timer 
generates a reset.

 Software - The device can be reset under program control. 

Table 6-4.  Chip and Boost Power Modes Compatibility

Chip Power Modes Boost Power Modes

Chip-active or alternate 
active mode 

Boost must be operated in its active 
mode.

Chip-sleep mode Boost can be operated in either active 
or standby mode. In boost standby 
mode, the chip must wake up periodi-
cally for boost active-mode refresh. 

Chip-hibernate mode Boost can be operated in its active 
mode. However, it is recommended not 
to use the boost in chip hibernate mode 
due to the higher current consumption 
in boost active mode.



PSoC® 5LP: CY8C54LP Family
Datasheet

Document Number: 001-84934 Rev. *J Page 32 of 126

Figure 6-8. Resets 

The term system reset indicates that the processor as well as 
analog and digital peripherals and registers are reset.

A reset status register shows some of the resets or power voltage
monitoring interrupts. The program may examine this register to
detect and report certain exception conditions. This register is
cleared after a power-on reset. For details see the Technical
Reference Manual.

6.3.1  Reset Sources

6.3.1.1 Power Voltage Level Monitors

 IPOR - Initial Power-on-Reset
At initial power on, IPOR monitors the power voltages VDDD, 
VDDA, VCCD and VCCA. The trip level is not precise. It is set to 
approximately 1 volt (0.75 V to 1.45 V). This is below the lowest 
specified operating voltage but high enough for the internal 
circuits to be reset and to hold their reset state. The monitor 
generates a reset pulse that is at least 150 ns wide. It may be 
much wider if one or more of the voltages ramps up slowly.

After boot, the IPOR circuit is disabled and voltage supervision
is handed off to the precise low-voltage reset (PRES) circuit.

 PRES - Precise Low-Voltage Reset

This circuit monitors the outputs of the analog and digital
internal regulators after power up. The regulator outputs are
compared to a precise reference voltage. The response to a
PRES trip is identical to an IPOR reset.

In normal operating mode, the program cannot disable the
digital PRES circuit. The analog regulator can be disabled,
which also disables the analog portion of the PRES. The PRES
circuit is disabled automatically during sleep and hibernate
modes, with one exception: During sleep mode the regulators
are periodically activated (buzzed) to provide supervisory
services and to reduce wakeup time. At these times the PRES
circuit is also buzzed to allow periodic voltage monitoring.

 ALVI, DLVI, AHVI - Analog/Digital Low Voltage Interrupt, Analog 
High Voltage Interrupt 

Interrupt circuits are available to detect when VDDA and
VDDD go outside a voltage range. For AHVI, VDDA is
compared to a fixed trip level. For ALVI and DLVI, VDDA and
VDDD are compared to trip levels that are programmable, as
listed in Table 6-5. ALVI and DLVI can also be configured to
generate a device reset instead of an interrupt.

The monitors are disabled until after IPOR. During sleep mode
these circuits are periodically activated (buzzed). If an interrupt
occurs during buzzing then the system first enters its wakeup
sequence. The interrupt is then recognized and may be
serviced. 

The buzz frequency is adjustable, and should be set to be less
than the minimum time that any voltage is expected to be out
of range. For details on how to adjust the buzz frequency, see
the TRM.

6.3.1.2 Other Reset Sources

 XRES - External Reset 

PSoC 5LP has a dedicated XRES pin, which holds the part in
reset while held active (low). The response to an XRES is the
same as to an IPOR reset.

The external reset is active low. It includes an internal pull-up
resistor. XRES is active during sleep and hibernate modes.

After XRES has been deasserted, at least 10 µs must elapse
before it can be reasserted.

 SRES - Software Reset 

A reset can be commanded under program control by setting
a bit in the software reset register. This is done either directly
by the program or indirectly by DMA access. The response to
a SRES is the same as after an IPOR reset.

Another register bit exists to disable this function. 

WRES - Watchdog Timer Reset 

The watchdog reset detects when the software program is no
longer being executed correctly. To indicate to the watchdog
timer that it is running correctly, the program must periodically
reset the timer. If the timer is not reset before a user-specified
amount of time, then a reset is generated. 

Note IPOR disables the watchdog function. The program must
enable the watchdog function at an appropriate point in the
code by setting a register bit. When this bit is set, it cannot be
cleared again except by an IPOR power on reset event.

Reset 
Controller

Watchdog 
Timer

External 
Reset

Power 
Voltage 
Level 

Monitors

Software 
Reset 

Register

VDDD VDDA

Reset 
Pin

System
Reset

Processor
Interrupt

Table 6-5.  Analog/Digital Low Voltage Interrupt, Analog High 
Voltage Interrupt

Interrupt Supply Normal Voltage 
Range Available Trip Settings

DLVI VDDD 1.71 V-5.5 V 1.70 V-5.45 V in 250 mV 
increments

ALVI VDDA 1.71 V-5.5 V 1.70 V-5.45 V in 250 mV 
increments

AHVI VDDA 1.71 V-5.5 V 5.75 V
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7.2  Universal Digital Block

The Universal Digital Block (UDB) represents an evolutionary
step to the next generation of PSoC embedded digital peripheral
functionality. The architecture in first generation PSoC digital
blocks provides coarse programmability in which a few fixed
functions with a small number of options are available. The new
UDB architecture is the optimal balance between configuration
granularity and efficient implementation. A cornerstone of this
approach is to provide the ability to customize the devices digital
operation to match application requirements.

To achieve this, UDBs consist of a combination of uncommitted
logic (PLD), structured logic (Datapath), and a flexible routing
scheme to provide interconnect between these elements, I/O
connections, and other peripherals. UDB functionality ranges
from simple self contained functions that are implemented in one
UDB, or even a portion of a UDB (unused resources are
available for other functions), to more complex functions that
require multiple UDBs. Examples of basic functions are timers,
counters, CRC generators, PWMs, dead band generators, and
communications functions, such as UARTs, SPI, and I2C. Also,
the PLD blocks and connectivity provide full featured general
purpose programmable logic within the limits of the available
resources. 

Figure 7-2. UDB Block Diagram

The main component blocks of the UDB are:

 PLD blocks - There are two small PLDs per UDB. These blocks 
take inputs from the routing array and form registered or 
combinational sum-of-products logic. PLDs are used to 
implement state machines, state bits, and combinational logic 
equations. PLD configuration is automatically generated from 
graphical primitives.

 Datapath Module - This 8-bit wide datapath contains structured 
logic to implement a dynamically configurable ALU, a variety 
of compare configurations and condition generation. This block 
also contains input/output FIFOs, which are the primary parallel 
data interface between the CPU/DMA system and the UDB.

 Status and Control Module - The primary role of this block is to 
provide a way for CPU firmware to interact and synchronize 
with UDB operation.

 Clock and Reset Module - This block provides the UDB clocks 
and reset selection and control.

7.2.1  PLD Module

The primary purpose of the PLD blocks is to implement logic
expressions, state machines, sequencers, look up tables, and
decoders. In the simplest use model, consider the PLD blocks as
a standalone resource onto which general purpose RTL is
synthesized and mapped. The more common and efficient use
model is to create digital functions from a combination of PLD
and datapath blocks, where the PLD implements only the
random logic and state portion of the function while the datapath
(ALU) implements the more structured elements.

Figure 7-3. PLD 12C4 Structure

One 12C4 PLD block is shown in Figure 7-3. This PLD has 12
inputs, which feed across eight product terms. Each product term
(AND function) can be from 1 to 12 inputs wide, and in a given
product term, the true (T) or complement (C) of each input can
be selected. The product terms are summed (OR function) to
create the PLD outputs. A sum can be from 1 to 8 product terms
wide. The 'C' in 12C4 indicates that the width of the OR gate (in
this case 8) is constant across all outputs (rather than variable
as in a 22V 10 device). This PLA like structure gives maximum
flexibility and insures that all inputs and outputs are permutable
for ease of allocation by the software tools. There are two 12C4
PLDs in each UDB.
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8.  Analog Subsystem

The analog programmable system creates application specific
combinations of both standard and advanced analog signal
processing blocks. These blocks are then interconnected to
each other and also to any pin on the device, providing a high
level of design flexibility and IP security. The features of the
analog subsystem are outlined here to provide an overview of
capabilities and architecture.

 Flexible, configurable analog routing architecture provided by 
analog globals, analog mux bus, and analog local buses

 High resolution Delta-Sigma ADC

 Successive approximation (SAR) ADC

 Two 8-bit DACs that provide either voltage or current output

 Four comparators with optional connection to configurable LUT 
outputs

 Two configurable switched capacitor/continuos time (SC/CT) 
blocks for functions that include opamp, unity gain buffer, 
programmable gain amplifier, transimpedance amplifier, and 
mixer

 Two opamps for internal use and connection to GPIO that can 
be used as high current output buffers

 CapSense subsystem to enable capacitive touch sensing

 Precision reference for generating an accurate analog voltage 
for internal analog blocks

Figure 8-1. Analog Subsystem Block Diagram
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8.2  Delta-sigma ADC

Some CY8C36 devices offer a delta-sigma ADC. This ADC 
offers differential input, high resolution and excellent linearity, 
making it a good ADC choice for measurement applications. The 
converter can be configured to output 12-bit resolution at data 
rates of up to 192 ksps. At a fixed clock rate, resolution can be 
traded for faster data rates as shown in Table 8-1 and Figure 8-3.

Figure 8-3. Delta-sigma ADC Sample Rates, Range = ±1.024 V

8.2.1  Functional Description

The ADC connects and configures three basic components,
input buffer, delta-sigma modulator, and decimator. The basic
block diagram is shown in Figure 8-4. The signal from the input
muxes is delivered to the delta-sigma modulator either directly or
through the input buffer. The delta-sigma modulator performs the
actual analog to digital conversion. The modulator over-samples
the input and generates a serial data stream output. This high
speed data stream is not useful for most applications without
some type of post processing, and so is passed to the decimator
through the Analog Interface block. The decimator converts the
high speed serial data stream into parallel ADC results. The
modulator/decimator frequency response is [(sin x)/x]4. 

Figure 8-4. Delta-sigma ADC Block Diagram

Resolution and sample rate are controlled by the Decimator.
Data is pipelined in the decimator; the output is a function of the
last four samples. When the input multiplexer is switched, the
output data is not valid until after the fourth sample after the
switch.

8.2.2  Operational Modes

The ADC can be configured by the user to operate in one of four
modes: Single Sample, Multi Sample, Continuous, or Multi
Sample (Turbo). All four modes are started by either a write to
the start bit in a control register or an assertion of the Start of
Conversion (SoC) signal. When the conversion is complete, a
status bit is set and the output signal End of Conversion (EoC)
asserts high and remains high until the value is read by either the
DMA controller or the CPU.

8.2.2.1 Single Sample

In Single Sample mode, the ADC performs one sample
conversion on a trigger. In this mode, the ADC stays in standby
state waiting for the SoC signal to be asserted. When SoC is
signaled the ADC performs four successive conversions. The
first three conversions prime the decimator. The ADC result is
valid and available after the fourth conversion, at which time the
EoC signal is generated. To detect the end of conversion, the
system may poll a control register for status or configure the
external EoC signal to generate an interrupt or invoke a DMA
request. When the transfer is done the ADC reenters the standby
state where it stays until another SoC event.

8.2.2.2 Continuous

Continuous sample mode is used to take multiple successive
samples of a single input signal. Multiplexing multiple inputs
should not be done with this mode. There is a latency of three
conversion times before the first conversion result is available.
This is the time required to prime the decimator. After the first
result, successive conversions are available at the selected
sample rate.

8.2.2.3 Multi Sample

Multi sample mode is similar to continuous mode except that the
ADC is reset between samples. This mode is useful when the
input is switched between multiple signals. The decimator is
re-primed between each sample so that previous samples do not
affect the current conversion. Upon completion of a sample, the
next sample is automatically initiated. The results can be
transferred using either firmware polling, interrupt, or DMA. 

More information on output formats is provided in the Technical
Reference Manual.

Table 8-1.  Delta-sigma ADC Performance

Bits Maximum Sample Rate 
(sps) SINAD (dB)

12 192 k 66

8 384 k 43

100

1,000

10,000

100,000

1,000,000

7 8 9 10 11 12 13

Continuous

Multi-Sample

S
am

p
le

 r
at

es
, s

p
s

Resolution, bits

Delta 
Sigma 

Modulator
Decimator 12 to 20 Bit 

Result

EOC

SOC

Positive
Input Mux

Negative
Input Mux

(Analog Routing)
Input
Buffer



PSoC® 5LP: CY8C54LP Family
Datasheet

Document Number: 001-84934 Rev. *J Page 57 of 126

8.6.3  PGA

The PGA amplifies an external or internal signal. The PGA can
be configured to operate in inverting mode or noninverting mode.
The PGA function may be configured for both positive and
negative gains as high as 50 and 49 respectively. The gain is
adjusted by changing the values of R1 and R2 as illustrated in
Figure 8-9. The schematic in Figure 8-9 shows the configuration
and possible resistor settings for the PGA. The gain is switched
from inverting and non inverting by changing the shared select
value of the both the input muxes. The bandwidth for each gain
case is listed in Table 8-3. 

Figure 8-9. PGA Resistor Settings

The PGA is used in applications where the input signal may not
be large enough to achieve the desired resolution in the ADC, or
dynamic range of another SC/CT block such as a mixer. The gain
is adjustable at runtime, including changing the gain of the PGA
prior to each ADC sample.

8.6.4  TIA

The Transimpedance Amplifier (TIA) converts an internal or
external current to an output voltage. The TIA uses an internal
feedback resistor in a continuous time configuration to convert
input current to output voltage. For an input current Iin, the output
voltage is VREF - Iin x Rfb, where VREF is the value placed on the
non inverting input. The feedback resistor Rfb is programmable
between 20 K and 1 M through a configuration register.
Table 8-4 shows the possible values of Rfb and associated
configuration settings.

Figure 8-10. Continuous Time TIA Schematic

The TIA configuration is used for applications where an external
sensor's output is current as a function of some type of stimulus
such as temperature, light, magnetic flux etc. In a common
application, the voltage DAC output can be connected to the
VREF TIA input to allow calibration of the external sensor bias
current by adjusting the voltage DAC output voltage.

8.7  LCD Direct Drive

The PSoC Liquid Crystal Display (LCD) driver system is a highly
configurable peripheral designed to allow PSoC to directly drive
a broad range of LCD glass. All voltages are generated on chip,
eliminating the need for external components. With a high
multiplex ratio of up to 1/16, the CY8C54LP family LCD driver
system can drive a maximum of 736 segments. The PSoC LCD
driver module was also designed with the conservative power
budget of portable devices in mind, enabling different LCD drive
modes and power down modes to conserve power.

PSoC Creator provides an LCD segment drive component. The
component wizard provides easy and flexible configuration of
LCD resources. You can specify pins for segments and
commons along with other options. The software configures the
device to meet the required specifications. This is possible
because of the programmability inherent to PSoC devices.

Table 8-3.  Bandwidth

Gain Bandwidth

1 6.0 MHz

24 340 kHz

48 220 kHz

50 215 kHz

R1 R2

20 k to 980 k

S

20 k or 40 k
1

0

1

0

Vin

Vref

Vref

Vin

Table 8-4.  Feedback Resistor Settings

Configuration Word Nominal Rfb (K)

000b 20

001b 30

010b 40

011b 60

100b 120

101b 250

110b 500

111b 1000

Vref
Vout

I in

R fb
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9.1  JTAG Interface

The IEEE 1149.1 compliant JTAG interface exists on four or five
pins (the nTRST pin is optional). The JTAG clock frequency can
be up to 12 MHz, or 1/3 of the CPU clock frequency for 8 and
16-bit transfers, or 1/5 of the CPU clock frequency for 32-bit

transfers, whichever is least. By default, the JTAG pins are
enabled on new devices but the JTAG interface can be disabled,
allowing these pins to be used as General Purpose I/O (GPIO)
instead. The JTAG interface is used for programming the flash
memory, debugging, I/O scan chains, and JTAG device chaining.

Figure 9-1.  JTAG Interface Connections between PSoC 5LP and Programmer

TCK (P1[1]

TMS (P1[0])  5

GND

GND

TCK

TMS  5

XRES

Host Programmer  PSoC 5

TDO TDI (P1[4])

TDI TDO (P1[3])

nTRST 6 nTRST (P1[5]) 6

 
1 The voltage levels of Host Programmer and the PSoC 5  voltage domains involved in Programming should be same.   
  The Port 1 JTAG  pins  and XRES pin are powered by VDDIO1. So, VDDIO1 of PSoC 5  should be at same  
   voltage level as host VDD. Rest of PSoC 5  voltage domains ( VDDD, VDDA, VDDIO0, VDDIO2, VDDIO3) need not be at the same  
   voltage level as host Programmer.

2  Vdda must be greater than or equal to all other power supplies (Vddd, Vddio’s) in PSoC 5.

3  For Power cycle mode Programming, XRES pin is not required. But the Host programmer must have  
   the capability to toggle power (Vddd, Vdda, All Vddio’s) to PSoC 5. This may typically require external   
   interface circuitry to toggle power which will depend on the programming setup. The power supplies can  
   be brought up in any sequence, however, once stable, VDDA must be greater than or equal to all other   
   supplies.

4  For JTAG Programming, Device reset can also be done without connecting to the XRES pin or Power cycle mode by  
   using the TMS,TCK,TDI, TDO pins of PSoC 5, and writing to a specific register. But this requires that the DPS setting  
   in NVL is not equal to “Debug Ports Disabled”.

5  By default, PSoC 5 is configured for 4-wire JTAG mode unless user changes the DPS setting. So the TMS pin is  
   unidirectional. But if the  DPS setting is changed to non-JTAG mode, the TMS pin in JTAG is bi-directional as the SWD  
   Protocol has to be used for acquiring the  PSoC 5 device initially. After switching from SWD to JTAG mode, the TMS 
   pin will be uni-directional. In such a case, unidirectional buffer should not be used on TMS line.

6  nTRST JTAG pin (P1[5]) cannot be used to reset the JTAG TAP controlller during first time programming of PSoC 5  
   as the default setting is 4-wire JTAG (nTRST disabled). Use the TMS, TCK pins to do a reset of JTAG TAP controller.

VDDD, VDDA, VDDIO0, VDDIO1, VDDIO2, VDDIO3 
1, 2, 3, 4

VSSD, VSSA

XRES 4

VDD

VDD



PSoC® 5LP: CY8C54LP Family
Datasheet

Document Number: 001-84934 Rev. *J Page 69 of 126

11.3  Power Regulators

Specifications are valid for –40 °C  TA  85 °C and TJ  100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V,
except where noted.

11.3.1  Digital Core Regulator

Figure 11-5. Analog and Digital Regulators, VCC vs VDD, 
10 mA Load

Figure 11-6. Digital Regulator PSRR vs Frequency and VDD

11.3.2  Analog Core Regulator

Figure 11-7. Analog Regulator PSRR vs Frequency and VDD

Table 11-4.  Digital Core Regulator DC Specifications

Parameter Description Conditions Min Typ Max Units
VDDD Input voltage 1.8 – 5.5 V
VCCD Output voltage – 1.80 – V

Regulator output capacitor ±10%, X5R ceramic or better. The two VCCD 
pins must be shorted together, with as short 
a trace as possible, see Power System on 
page 27

0.9 1 1.1 µF
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Table 11-5.  Analog Core Regulator DC Specifications

Parameter Description Conditions Min Typ Max Units
VDDA Input voltage 1.8 – 5.5 V
VCCA Output voltage – 1.80 – V

Regulator output capacitor ±10%, X5R ceramic or better 0.9 1 1.1 µF
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Figure 11-30. Opamp Noise vs Frequency, Power Mode = 
High, VDDA = 5 V

Figure 11-31. Opamp Step Response, Rising

Figure 11-32. Opamp Step Response, Falling
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Figure 11-34. SAR ADC DNL vs Output Code, 
Bypassed Internal Reference Mode

Figure 11-35. SAR ADC INL vs Output Code, 
Bypassed Internal Reference Mode

Figure 11-36. SAR ADC IDD vs sps, VDDA = 5 V, Continuous 
Sample Mode, External Reference Mode
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Table 11-25.  SAR ADC AC Specifications[47]

Parameter Description Conditions Min Typ Max Units

A_SAMP_1 Sample rate with external reference 
bypass cap

– – 1 Msps

A_SAMP_2 Sample rate with no bypass cap. 
Reference = VDD

– – 500 Ksps

A_SAMP_3 Sample rate with no bypass cap. 
Internal reference

– – 100 Ksps

Startup time – – 10 µs

SINAD Signal-to-noise ratio 68 – – dB

THD Total harmonic distortion – – 0.02 %
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Figure 11-37. SAR ADC Noise Histogram, 100 ksps, Internal 
Reference No Bypass

Figure 11-38. SAR ADC Noise Histogram, 1 msps, Internal 
Reference Bypassed

Figure 11-39. SAR ADC Noise Histogram, 1 msps, External 
Reference
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Figure 11-46. IDAC Full Scale Error vs Temperature, 
Range = 255 µA, Source Mode

Figure 11-47. IDAC Full Scale Error vs Temperature, 
Range = 255 µA, Sink Mode

Figure 11-48. IDAC Operating Current vs Temperature, 
Range = 255 µA, Code = 0, Source Mode

Figure 11-49. IDAC Operating Current vs Temperature, 
Range = 255 µA, Code = 0, Sink Mode
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Note
54. Based on device characterization (Not production tested).

Table 11-31.  IDAC AC Specifications[54]

Parameter Description Conditions Min Typ Max Units

FDAC Update rate – – 8 Msps

TSETTLE Settling time to 0.5 LSB Range = 31.875 µA, full scale 
transition, fast mode, 600  15-pF 
load

– – 125 ns

Range = 255 µA, full scale 
transition, fast mode, 600  15-pF 
load

– – 125 ns

Current noise Range = 255 µA, source mode, fast 
mode, VDDA = 5 V, 10 kHz

– 340 – pA/sqrtHz
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11.6.6  Universal Digital Blocks (UDBs)

PSoC Creator provides a library of pre-built and tested standard digital peripherals (UART, SPI, LIN, PRS, CRC, timer, counter, PWM,
AND, OR, and so on) that are mapped to the UDB array. See the component datasheets in PSoC Creator for full AC/DC specifications,
APIs, and example code.

Figure 11-69. Clock to Output Performance

Note
68. Based on device characterization (Not production tested).

Table 11-52.  UDB AC Specifications[68]

Parameter Description Conditions Min Typ Max Units

Datapath Performance

FMAX_TIMER Maximum frequency of 16-bit timer in 
a UDB pair

– – 67.01 MHz

FMAX_ADDER Maximum frequency of 16-bit adder in 
a UDB pair

– – 67.01 MHz

FMAX_CRC Maximum frequency of 16-bit 
CRC/PRS in a UDB pair

– – 67.01 MHz

PLD Performance

FMAX_PLD Maximum frequency of a two-pass 
PLD function in a UDB pair

– – 67.01 MHz

Clock to Output Performance

tCLK_OUT Propagation delay for clock in to data 
out, see Figure 11-69.

25 °C, VDDD  2.7 V – 20 25 ns

tCLK_OUT Propagation delay for clock in to data 
out, see Figure 11-69.

Worst-case placement, routing, 
and pin selection

– – 55 ns
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