

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	800MHz
Co-Processors/DSP	Signal Processing; SPE, Security; SEC
RAM Controllers	DDR, DDR2, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (4)
SATA	-
USB	-
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8543ehxang

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

- Up to 32 simultaneous open pages for DDR2
- Contiguous or discontiguous memory mapping
- Read-modify-write support for RapidIO atomic increment, decrement, set, and clear transactions
- Sleep mode support for self-refresh SDRAM
- On-die termination support when using DDR2
- Supports auto refreshing
- On-the-fly power management using CKE signal
- Registered DIMM support
- Fast memory access via JTAG port
- 2.5-V SSTL_2 compatible I/O (1.8-V SSTL_1.8 for DDR2)
- Support for battery-backed main memory
- Programmable interrupt controller (PIC)
 - Programming model is compliant with the OpenPIC architecture.
 - Supports 16 programmable interrupt and processor task priority levels
 - Supports 12 discrete external interrupts
 - Supports 4 message interrupts with 32-bit messages
 - Supports connection of an external interrupt controller such as the 8259 programmable interrupt controller
 - Four global high-resolution timers/counters that can generate interrupts
 - Supports a variety of other internal interrupt sources
 - Supports fully nested interrupt delivery
 - Interrupts can be routed to external pin for external processing.
 - Interrupts can be routed to the e500 core's standard or critical interrupt inputs.
 - Interrupt summary registers allow fast identification of interrupt source.
- Integrated security engine (SEC) optimized to process all the algorithms associated with IPSec, IKE, WTLS/WAP, SSL/TLS, and 3GPP
 - Four crypto-channels, each supporting multi-command descriptor chains
 - Dynamic assignment of crypto-execution units via an integrated controller
 - Buffer size of 256 bytes for each execution unit, with flow control for large data sizes
 - PKEU—public key execution unit
 - RSA and Diffie-Hellman; programmable field size up to 2048 bits
 - Elliptic curve cryptography with F₂m and F(p) modes and programmable field size up to 511 bits
 - DEU—Data Encryption Standard execution unit
 - DES, 3DES
 - Two key (K1, K2) or three key (K1, K2, K3)
 - ECB and CBC modes for both DES and 3DES

MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 9

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the device. This device is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

2.1 Overall DC Electrical Characteristics

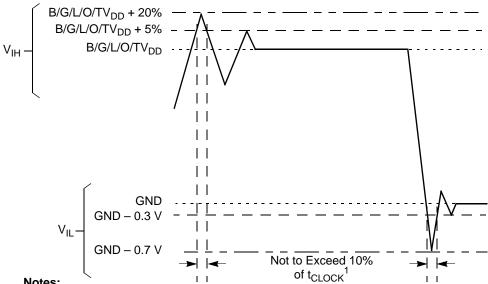
This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings

The following table provides the absolute maximum ratings.

Table 1. Absolute Maximum Ratings ¹

	Characteristic	Symbol	Max Value	Unit	Notes
Core supply v	oltage	V _{DD}	-0.3 to 1.21	V	_
PLL supply vo	ltage	AV_DD	-0.3 to 1.21	V	_
Core power su	upply for SerDes transceivers	SV _{DD}	-0.3 to 1.21	V	_
Pad power su	pply for SerDes transceivers	XV_{DD}	-0.3 to 1.21	V	_
DDR and DDF	R2 DRAM I/O voltage	GV _{DD}	-0.3 to 2.75 -0.3 to 1.98	V	2
Three-speed I	Ethernet I/O voltage	LV _{DD} (for eTSEC1 and eTSEC2)	-0.3 to 3.63 -0.3 to 2.75	V	
		TV _{DD} (for eTSEC3 and eTSEC4)	-0.3 to 3.63 -0.3 to 2.75		3
	JART, system control and power management, MII management, and JTAG I/O voltage	OV _{DD}	-0.3 to 3.63	V	_
Local bus I/O	voltage	BV _{DD}	-0.3 to 3.63 -0.3 to 2.75	V	_
Input voltage	DDR/DDR2 DRAM signals	MV _{IN}	-0.3 to (GV _{DD} + 0.3)	V	4
	DDR/DDR2 DRAM reference	MV _{REF}	-0.3 to $(GV_{DD}/2 + 0.3)$	V	_
	Three-speed Ethernet I/O signals	LV _{IN} TV _{IN}	-0.3 to (LV _{DD} + 0.3) -0.3 to (TV _{DD} + 0.3)	V	4
	Local bus signals	BV _{IN}	-0.3 to (BV _{DD} + 0.3)	_	_
	DUART, SYSCLK, system control and power management, I ² C, Ethernet MII management, and JTAG signals	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	4
	PCI/PCI-X	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	4


Table 2. Recommended Operating Conditions (continued)

Characteristic	Symbol	Recommended Value	Unit	Notes
Junction temperature range	Tj	0 to 105	°C	-

Notes:

- 1. This voltage is the input to the filter discussed in Section 22.2, "PLL Power Supply Filtering," and not necessarily the voltage at the AV_{DD} pin, which may be reduced from V_{DD} by the filter.
- 2. Caution: MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 3. Caution: OVIN must not exceed OVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 4. Caution: L/TV_{IN} must not exceed L/TV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.

The following figure shows the undershoot and overshoot voltages at the interfaces of this device.

Notes:

- 1. t_{CLOCK} refers to the clock period associated with the respective interface:
 - For I²C and JTAG, t_{CLOCK} references SYSCLK. For DDR, t_{CLOCK} references MCLK.

 - For eTSEC, t_{CLOCK} references EC_GTX_CLK125.
 - For LBIU, t_{CLOCK} references LCLK.
 - For PCI, t_{CLOCK} references PCIn_CLK or SYSCLK.
 - For SerDes, t_{CLOCK} references SD_REF_CLK.
- 2. Note that with the PCI overshoot allowed (as specified above), the device does not fully comply with the maximum AC ratings and device protection guideline outlined in the PCI rev. 2.2 standard (section 4.2.2.3).

Figure 2. Overshoot/Undershoot Voltage for GV_{DD}/OV_{DD}/LV_{DD}/BV_{DD}/TV_{DD}

The core voltage must always be provided at nominal 1.1 V. Voltage to the processor interface I/Os are provided through separate sets of supply pins and must be provided at the voltages shown in Table 2. The input voltage threshold scales with respect to the associated I/O supply voltage. OV_{DD} and LV_{DD} based receivers are simple CMOS I/O circuits and satisfy appropriate LVCMOS type specifications. The DDR SDRAM interface uses a single-ended differential receiver referenced the externally supplied MV_{RFF} signal (nominally set to GV_{DD}/2) as is appropriate for the SSTL2 electrical signaling standard.

MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 9

6.2 DDR SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR SDRAM interface. The DDR controller supports both DDR1 and DDR2 memories. DDR1 is supported with the following AC timings at data rates of 333 MHz. DDR2 is supported with the following AC timings at data rates down to 333 MHz.

6.2.1 DDR SDRAM Input AC Timing Specifications

This table provides the input AC timing specifications for the DDR SDRAM when $GV_{DD}(typ) = 1.8 \text{ V}$.

Table 16. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface

At recommended operating conditions

Parameter	Symbol	Min	Max	Unit
AC input low voltage	V _{IL}	_	MV _{REF} - 0.25	V
AC input high voltage	V _{IH}	MV _{REF} + 0.25	_	V

Table 17 provides the input AC timing specifications for the DDR SDRAM when $GV_{DD}(typ) = 2.5 \text{ V}$.

Table 17. DDR SDRAM Input AC Timing Specifications for 2.5-V Interface

At recommended operating conditions.

Parameter	Symbol	Min	Max	Unit
AC input low voltage	V _{IL}	_	MV _{REF} – 0.31	V
AC input high voltage	V _{IH}	MV _{REF} + 0.31	_	V

This table provides the input AC timing specifications for the DDR SDRAM interface.

Table 18. DDR SDRAM Input AC Timing Specifications

At recommended operating conditions.

Parameter	Symbol	Min	Max	Unit	Notes
Controller Skew for MDQS—MDQ/MECC 533 MHz 400 MHz 333 MHz		-300 -365 -390	300 365 390	ps	1, 2

Notes:

- 1. t_{CISKEW} represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that is captured with MDQS[n]. This must be subtracted from the total timing budget.
- 2. The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t_{DISKEW}. This can be determined by the following equation: t_{DISKEW} = ± (T/4 abs(t_{CISKEW})) where T is the clock period and abs(t_{CISKEW}) is the absolute value of t_{CISKEW}.

MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 9

Figure 14 shows the TBI transmit AC timing diagram.

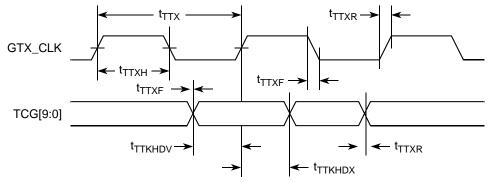


Figure 14. TBI Transmit AC Timing Diagram

8.2.4.2 TBI Receive AC Timing Specifications

This table provides the TBI receive AC timing specifications.

Table 31. TBI Receive AC Timing Specifications

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
TSECn_RX_CLK[0:1] clock period	t _{TRX}	_	16.0	_	ns
TSECn_RX_CLK[0:1] skew	t _{SKTRX}	7.5	_	8.5	ns
TSECn_RX_CLK[0:1] duty cycle	t _{TRXH} /t _{TRX}	40	_	60	%
RCG[9:0] setup time to rising TSECn_RX_CLK	t _{TRDVKH}	2.5	_	_	ns
RCG[9:0] hold time to rising TSECn_RX_CLK	t _{TRDXKH}	1.5	_	_	ns
TSECn_RX_CLK[0:1] clock rise time (20%–80%)	t _{TRXR} ²	0.7	_	2.4	ns
TSECn_RX_CLK[0:1] clock fall time (80%–20%)	t _{TRXF} ²	0.7	_	2.4	ns

Notes:

- 1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)} for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t_{TRDVKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{TRX} clock reference (K) going to the high (H) state or setup time. Also, t_{TRDXKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) went invalid (X) relative to the t_{TRX} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{TRX} represents the TBI (T) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall). For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (TRX).
- 2. Guaranteed by design.

Table 42. Local Bus Timing Parameters—PLL Bypassed (continued)

Parameter	Symbol ¹	Min	Max	Unit	Notes
LGTA/LUPWAIT input hold from local bus clock	t _{LBIXKL2}	-1.3	_	ns	4, 5
LALE output transition to LAD/LDP output transition (LATCH hold time)	t _{LBOTOT}	1.5	_	ns	6
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKLOV1}	_	-0.3	ns	_
Local bus clock to data valid for LAD/LDP	t _{LBKLOV2}	_	-0.1	ns	4
Local bus clock to address valid for LAD	t _{LBKLOV3}	1	0	ns	4
Local bus clock to LALE assertion	t _{LBKLOV4}	1	0	ns	4
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKLOX1}	-3.7	_	ns	4
Output hold from local bus clock for LAD/LDP	t _{LBKLOX2}	-3.7	1	ns	4
Local bus clock to output high Impedance (except LAD/LDP and LALE)	t _{LBKLOZ1}	_	0.2	ns	7
Local bus clock to output high impedance for LAD/LDP	t _{LBKLOZ2}	_	0.2	ns	7

Notes:

- 1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
- 2. All timings are in reference to local bus clock for PLL bypass mode. Timings may be negative with respect to the local bus clock because the actual launch and capture of signals is done with the internal launch/capture clock, which precedes LCLK by t_{LBKHKT}.
- 3. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at BV_{DD}/2.
- 4. All signals are measured from BV_{DD}/2 of the rising edge of local bus clock for PLL bypass mode to 0.4 × BV_{DD} of the signal in question for 3.3-V signaling levels.
- 5. Input timings are measured at the pin.
- 6. The value of t_{LBOTOT} is the measurement of the minimum time between the negation of LALE and any change in LAD.
- 7. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 8. Guaranteed by characterization.
- 9. Guaranteed by design.

Table 46. I²C AC Electrical Specifications (continued)

Parameter	Symbol ¹	Min	Max	Unit	Notes
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times \text{OV}_{\text{DD}}$	_	V	_
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times \text{OV}_{\text{DD}}$	_	V	_

Notes:

- 1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)} for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t_{I2DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{I2C} clock reference (K) going to the high (H) state or setup time. Also, t_{I2SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{I2C} clock reference (K) going to the low (L) state or hold time. Also, t_{I2PVKH} symbolizes I²C timing (I2) for the time that the data with respect to the stop condition (P) reaching the valid state (V) relative to the t_{I2C} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 2. As a transmitter, the device provides a delay time of at least 300 ns for the SDA signal (see the V_{IH}(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL to avoid unintended generation of Start or Stop condition. When the device acts as the I²C bus master while transmitting, the device drives both SCL and SDA. As long as the load on SCL and SDA are balanced, the device would not cause unintended generation of Start or Stop condition. Therefore, the 300 ns SDA output delay time is not a concern. If, under some rare condition, the 300 ns SDA output delay time is required for the device as a transmitter, the following setting is recommended for the FDR bit field of the I2CFDR register to ensure both the desired I²C SCL clock frequency and SDA output delay time are achieved, assuming that the desired I²C SCL clock frequency is 400 kHz and the Digital Filter Sampling Rate Register (I2CDFSRR) is programmed with its default setting of 0x10 (decimal 16):

I ² C source clock frequency	333 MHz	266 MHz	200 MHz	133 MHz
FDR bit setting	0x2A	0x05	0x26	0x00
Actual FDR divider selected	896	704	512	384
Actual I ² C SCL frequency generated	371 kHz	378 kHz	390 kHz	346 kHz

For the detail of I^2C frequency calculation, see *Determining the* I^2C *Frequency Divider Ratio for SCL* (AN2919). Note that the I^2C source clock frequency is half of the CCB clock frequency for the device.

- The maximum t_{I2DXKI} has only to be met if the device does not stretch the LOW period (t_{I2CI}) of the SCL signal.
- 4. Guaranteed by design.

Figure 33 provides the AC test load for the I²C.

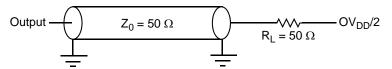


Figure 33. I²C AC Test Load

59

14 GP_{OUT}/GP_{IN}

This section describes the DC and AC electrical specifications for the GP_{OUT}/GP_{IN} bus of the device.

14.1 **GP_{OUT}/GP_{IN} Electrical Characteristics**

Table 47 and Table 48 provide the DC electrical characteristics for the GP_{OUT} interface.

Table 47. GP_{OUT} DC Electrical Characteristics (3.3 V DC)

Parameter	Symbol	Min	Max	Unit
Supply voltage 3.3 V	BV _{DD}	3.13	3.47	V
High-level output voltage (BV _{DD} = min, I _{OH} = -2 mA)	V _{OH}	BV _{DD} – 0.2	_	V
Low-level output voltage (BV _{DD} = min, I _{OL} = 2 mA)	V _{OL}	_	0.2	V

Table 48. GP_{OUT} DC Electrical Characteristics (2.5 V DC)

Parameter	Symbol	Min	Max	Unit
Supply voltage 2.5 V	BV _{DD}	2.37	2.63	V
High-level output voltage (BV _{DD} = min, I _{OH} = -1 mA)	V _{OH}	2.0	BV _{DD} + 0.3	V
Low-level output voltage (BV _{DD} min, I _{OL} = 1 mA)	V _{OL}	GND – 0.3	0.4	V

Table 49 and Table 50 provide the DC electrical characteristics for the GP_{IN} interface.

Table 49. GP_{IN} DC Electrical Characteristics (3.3 V DC)

Parameter	Symbol	Min	Max	Unit
Supply voltage 3.3 V	BV _{DD}	3.13	3.47	V
High-level input voltage	V_{IH}	2	BV _{DD} + 0.3	V
Low-level input voltage	V_{IL}	-0.3	0.8	V
Input current (BV _{IN} ¹ = 0 V or BV _{IN} = BV _{DD})	I _{IN}		±5	μΑ

Note:

1. The symbol ${\rm BV_{IN}}$, in this case, represents the ${\rm BV_{IN}}$ symbol referenced in Table 1.

PCI/PCI-X

Figure 36 shows the PCI/PCI-X input AC timing conditions.

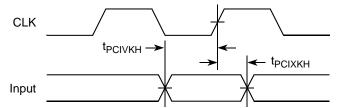


Figure 36. PCI/PCI-X Input AC Timing Measurement Conditions

Figure 37 shows the PCI/PCI-X output AC timing conditions.

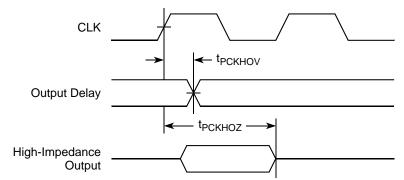


Figure 37. PCI/PCI-X Output AC Timing Measurement Condition

Table 53 provides the PCI-X AC timing specifications at 66 MHz.

Table 53. PCI-X AC Timing Specifications at 66 MHz

Parameter	Symbol	Min	Max	Unit	Notes
SYSCLK to signal valid delay	^t PCKHOV	_	3.8	ns	1, 2, 3, 7, 8
Output hold from SYSCLK	t _{PCKHOX}	0.7	_	ns	1, 10
SYSCLK to output high impedance	t _{PCKHOZ}	_	7	ns	1, 4, 8, 11
Input setup time to SYSCLK	t _{PCIVKH}	1.7	_	ns	3, 5
Input hold time from SYSCLK	t _{PCIXKH}	0.5	_	ns	10
REQ64 to HRESET setup time	t _{PCRVRH}	10	_	clocks	11
HRESET to REQ64 hold time	t _{PCRHRX}	0	50	ns	11
HRESET high to first FRAME assertion	t _{PCRHFV}	10	_	clocks	9, 11
PCI-X initialization pattern to HRESET setup time	^t PCIVRH	10	_	clocks	11

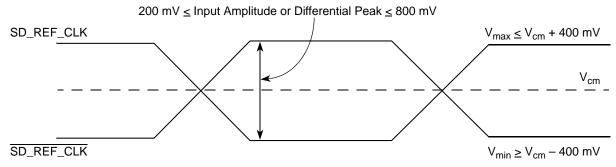


Figure 41. Differential Reference Clock Input DC Requirements (External AC-Coupled)

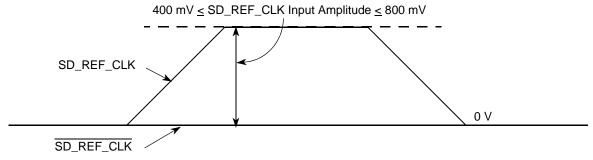


Figure 42. Single-Ended Reference Clock Input DC Requirements

16.2.3 Interfacing with Other Differential Signaling Levels

- With on-chip termination to SGND_SRDSn (xcorevss), the differential reference clocks inputs are HCSL (high-speed current steering logic) compatible DC-coupled.
- Many other low voltage differential type outputs like LVDS (low voltage differential signaling) can
 be used but may need to be AC-coupled due to the limited common mode input range allowed (100
 to 400 mV) for DC-coupled connection.
- LVPECL outputs can produce signal with too large amplitude and may need to be DC-biased at clock driver output first, then followed with series attenuation resistor to reduce the amplitude, in addition to AC-coupling.

NOTE

Figure 43 through Figure 46 below are for conceptual reference only. Due to the fact that clock driver chip's internal structure, output impedance, and termination requirements are different between various clock driver chip manufacturers, it is very possible that the clock circuit reference designs provided by clock driver chip vendor are different from what is shown below. They might also vary from one vendor to the other. Therefore, Freescale Semiconductor can neither provide the optimal clock driver reference circuits, nor guarantee the correctness of the following clock driver connection reference circuits. The system designer is recommended to contact the selected clock driver chip vendor for the optimal reference circuits with the SerDes reference clock receiver requirement provided in this document.

MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 9

PCI Express

The eye diagram must be valid for any 250 consecutive UIs.

A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI.

NOTE

The reference impedance for return loss measurements is 50. to ground for both the D+ and D- line (that is, as measured by a vector network analyzer with $50-\Omega$ probes—see Figure 50). Note that the series capacitors, CTX, are optional for the return loss measurement.

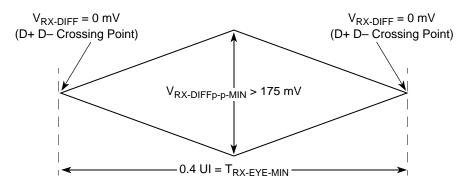


Figure 49. Minimum Receiver Eye Timing and Voltage Compliance Specification

17.5.1 Compliance Test and Measurement Load

The AC timing and voltage parameters must be verified at the measurement point, as specified within 0.2 inches of the package pins, into a test/measurement load shown in Figure 50.

NOTE

The allowance of the measurement point to be within 0.2 inches of the package pins is meant to acknowledge that package/board routing may benefit from D+ and D- not being exactly matched in length at the package pin boundary.

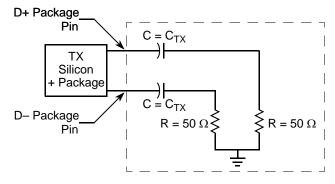


Figure 50. Compliance Test/Measurement Load

MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 9

87

components are included in this requirement. The reference impedance for return loss measurements is $100-\Omega$ resistive for differential return loss and $25-\Omega$ resistive for common mode.

Table 66. Receiver AC Timing Specifications—1.25 GBaud

Characteristic	Symbol Range		nge	Unit	Notes
Characteristic	Symbol	Min	Max	Oilit	Notes
Differential input voltage	V _{IN}	200	1600	mVp-p	Measured at receiver
Deterministic jitter tolerance	J_D	0.37	_	UI p-p	Measured at receiver
Combined deterministic and random jitter tolerance	J _{DR}	0.55	_	UI p-p	Measured at receiver
Total jitter tolerance ¹	J _T	0.65	_	UI p-p	Measured at receiver
Multiple input skew	S _{MI}	_	24	ns	Skew at the receiver input between lanes of a multilane link
Bit error rate	BER	_	10 ⁻¹²	_	_
Unit interval	UI	800	800	ps	±100 ppm

Note:

Table 67. Receiver AC Timing Specifications—2.5 GBaud

Characteristic	Range Symbol		Unit	Notes	
Gharacteristic	Gymbol	Min	Max	Oilit	Notes
Differential input voltage	V _{IN}	200	1600	mVp-p	Measured at receiver
Deterministic jitter tolerance	J_D	0.37	_	UI p-p	Measured at receiver
Combined deterministic and random jitter tolerance	J _{DR}	0.55	_	UI p-p	Measured at receiver
Total jitter tolerance ¹	J _T	0.65	_	UI p-p	Measured at receiver
Multiple input skew	S _{MI}	_	24	ns	Skew at the receiver input between lanes of a multilane link
Bit error rate	BER	_	10 ⁻¹²		_
Unit interval	UI	400	400	ps	±100 ppm

Note:

^{1.} Total jitter is composed of three components, deterministic jitter, random jitter, and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 53. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk, and other variable system effects.

^{1.} Total jitter is composed of three components, deterministic jitter, random jitter, and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 53. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk, and other variable system effects.

Table 71. MPC8548E Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MWE	E7	0	GV _{DD}	_
MCAS	H7	0	GV _{DD}	_
MRAS	L8	0	GV _{DD}	_
MCKE[0:3]	F10, C10, J11, H11	0	GV _{DD}	11
MCS[0:3]	K8, J8, G8, F8	0	GV _{DD}	_
MCK[0:5]	H9, B15, G2, M9, A14, F1	0	GV _{DD}	<u> </u>
MCK[0:5]	J9, A15, G1, L9, B14, F2	0	GV _{DD}	<u> </u>
MODT[0:3]	E6, K6, L7, M7	0	GV _{DD}	<u> </u>
MDIC[0:1]	A19, B19	I/O	GV _{DD}	36
	Local Bus Controller Interface		GV _{DD}	
LAD[0:31]	E27, B20, H19, F25, A20, C19, E28, J23, A25, K22, B28, D27, D19, J22, K20, D28, D25, B25, E22, F22, F21, C25, C22, B23, F20, A23, A22, E19, A21, D21, F19, B21	I/O	BV _{DD}	_
LDP[0:3]	K21, C28, B26, B22	I/O	BV _{DD}	<u> </u>
LA[27]	H21	0	BV _{DD}	5, 9
LA[28:31]	H20, A27, D26, A28	0	BV _{DD}	5, 7, 9
LCS[0:4]	J25, C20, J24, G26, A26	0	BV _{DD}	
LCS5/DMA_DREQ2	D23	I/O	BV _{DD}	1
LCS6/DMA_DACK2	G20	0	BV _{DD}	1
LCS7/DMA_DDONE2	E21	0	BV _{DD}	1
LWE0/LBS0/LSDDQM[0]	G25	0	BV _{DD}	5, 9
LWE1/LBS1/LSDDQM[1]	C23	0	BV _{DD}	5, 9
LWE2/LBS2/LSDDQM[2]	J21	0	BV _{DD}	5, 9
LWE3/LBS3/LSDDQM[3]	A24	0	BV _{DD}	5, 9
LALE	H24	0	BV _{DD}	5, 8, 9
LBCTL	G27	0	BV _{DD}	5, 8, 9
LGPL0/LSDA10	F23	0	BV _{DD}	5, 9
LGPL1/LSDWE	G22	0	BV _{DD}	5, 9
LGPL2/LOE/LSDRAS	B27	0	BV _{DD}	5, 8, 9
LGPL3/LSDCAS	F24	0	BV _{DD}	5, 9
LGPL4/LGTA/LUPWAIT/LPBSE	H23	I/O	BV _{DD}	_
LGPL5	E26	0	BV _{DD}	5, 9
LCKE	E24	0	BV _{DD}	_
LCLK[0:2]	E23, D24, H22	0	BV _{DD}	_

Table 71. MPC8548E Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes	
--------	--------------------	----------	-----------------	-------	--

- 25. These are test signals for factory use only and must be pulled up (100 Ω –1 k Ω) to OV_{DD} for normal machine operation.
- 26.Independent supplies derived from board V_{DD}.
- 27.Recommend a pull-up resistor (~1 k Ω) be placed on this pin to OV_{DD}.
- 29. The following pins must NOT be pulled down during power-on reset: TSEC3_TXD[3], TSEC4_TXD3/TSEC3_TXD7, HRESET_REQ, TRIG_OUT/READY/QUIESCE, MSRCID[2:4], ASLEEP.
- 30. This pin requires an external 4.7-k Ω pull-down resistor to prevent PHY from seeing a valid transmit enable before it is actively driven.
- 31. This pin is only an output in eTSEC3 FIFO mode when used as Rx flow control.
- 32. These pins must be connected to XV_{DD} .
- 33.TSEC2_TXD1, TSEC2_TX_ER are multiplexed as cfg_dram_type[0:1]. They must be valid at power-up, even before HRESET assertion.
- 34. These pins must be pulled to ground through a 300- Ω (±10%) resistor.
- 35.When a PCI block is disabled, either the POR config pin that selects between internal and external arbiter must be pulled down to select external arbiter if there is any other PCI device connected on the PCI bus, or leave the PCIn_AD pins as 'no connect' or terminated through 2–10 kΩ pull-up resistors with the default of internal arbiter if the PCIn_AD pins are not connected to any other PCI device. The PCI block drives the PCIn_AD pins if it is configured to be the PCI arbiter—through POR config pins—irrespective of whether it is disabled via the DEVDISR register or not. It may cause contention if there is any other PCI device connected on the bus.
- 36.MDIC0 is grounded through an 18.2- Ω precision 1% resistor and MDIC1 is connected to GV_{DD} through an 18.2- Ω precision 1% resistor. These pins are used for automatic calibration of the DDR IOs.
- 38. These pins must be left floating.
- 39. If PCI1 or PCI2 is configured as PCI asynchronous mode, a valid clock must be provided on pin PCI1_CLK or PCI2_CLK. Otherwise the processor will not boot up.
- 40. These pins must be connected to GND.
- 101. This pin requires an external 4.7-k Ω resistor to GND.
- 102.For Rev. 2.x silicon, DMA_DACK[0:1] must be 0b11 during POR configuration; for rev. 1.x silicon, the pin values during POR configuration are don't care.
- 103.If these pins are not used as GPINn (general-purpose input), they must be pulled low (to GND) or high (to LV_{DD}) through 2–10 k Ω resistors.
- 104. These must be pulled low to GND through 2–10 k Ω resistors if they are not used.
- 105. These must be pulled low or high to LV_{DD} through 2–10 k Ω resistors if they are not used.
- 106. For rev. 2.x silicon, DMA_DACK[0:1] must be 0b10 during POR configuration; for rev. 1.x silicon, the pin values during POR configuration are don't care.
- 107.For rev. 2.x silicon, DMA_DACK[0:1] must be 0b01 during POR configuration; for rev. 1.x silicon, the pin values during POR configuration are don't care.
- 108.For rev. 2.x silicon, DMA_DACK[0:1] must be 0b11 during POR configuration; for rev. 1.x silicon, the pin values during POR configuration are don't care.
- 109. This is a test signal for factory use only and must be pulled down (100 Ω 1 k Ω) to GND for normal machine operation.
- 110. These pins must be pulled high to OV_{DD} through 2–10 k Ω resistors.
- 111.If these pins are not used as GPINn (general-purpose input), they must be pulled low (to GND) or high (to OV_{DD}) through 2–10 k Ω resistors.
- 112. This pin must not be pulled down during POR configuration.
- 113.These should be pulled low or high to ${\rm OV_{DD}}$ through 2–10 k Ω resistors.

MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 9

Table 72. MPC8547E Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	DFT			-
L1_TSTCLK	AC25	I	OV_{DD}	25
L2_TSTCLK	AE22	I	OV_{DD}	25
LSSD_MODE	AH20	I	OV_{DD}	25
TEST_SEL	AH14	I	OV_{DD}	25
	Thermal Management			-
THERM0	AG1	_	_	14
THERM1	AH1	_	_	14
	Power Management			•
ASLEEP	AH18	0	OV_DD	9, 19, 29
	Power and Ground Signals			
GND	A11, B7, B24, C1, C3, C5, C12, C15, C26, D8, D11, D16, D20, D22, E1, E5, E9, E12, E15, E17, F4, F26, G12, G15, G18, G21, G24, H2, H6, H8, H28, J4, J12, J15, J17, J27, K7, K9, K11, K27, L3, L5, L12, L16, N11, N13, N15, N17, N19, P4, P9, P12, P14, P16, P18, R11, R13, R15, R17, R19, T4, T12, T14, T16, T18, U8, U11, U13, U15, U17, U19, V4, V12, V18, W6, W19, Y4, Y9, Y11, Y19, AA6, AA14, AA17, AA22, AA23, AB4, AC2, AC11, AC19, AC26, AD5, AD9, AD22, AE3, AE14, AF6, AF10, AF13, AG8, AG27, K28, L24, L26, N24, N27, P25, R28, T24, T26, U24, V25, W28, Y24, Y26, AA24, AA27, AB25, AC28, L21, L23, N22, P20, R23, T21, U22, V20, W23, Y21, U27		_	_
OV _{DD}	V16, W11, W14, Y18, AA13, AA21, AB11, AB17, AB24, AC4, AC9, AC21, AD6, AD13, AD17, AD19, AE10, AE8, AE24, AF4, AF12, AF22, AF27, AG26	Power for PCI and other standards (3.3 V)	OV _{DD}	_
LV _{DD}	N8, R7, T9, U6	Power for TSEC1 and TSEC2 (2.5 V, 3.3 V)	LV _{DD}	_
TV _{DD}	W9, Y6	Power for TSEC3 and TSEC4 (2,5 V, 3.3 V)	TV _{DD}	_
GV _{DD}	B3, B11, C7, C9, C14, C17, D4, D6, D10, D15, E2, E8, E11, E18, F5, F12, F16, G3, G7, G9, G11, H5, H12, H15, H17, J10, K3, K12, K16, K18, L6, M4, M8, M13	Power for DDR1 and DDR2 DRAM I/O voltage (1.8 V, 2.5 V)	GV _{DD}	_

Table 73. MPC8545E Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
FIFO1_RXC2	P5	1	LV _{DD}	104
Reserved	R1	_	_	104
Reserved	P10	_	_	105
FIFO1_TXC2	P7	0	LV _{DD}	15
cfg_dram_type1	R10	1	LV _{DD}	5
Thre	ee-Speed Ethernet Controller (Gigabit E	thernet 3)		
TSEC3_TXD[3:0]	V8, W10, Y10, W7	0	TV _{DD}	5, 9, 29
TSEC3_RXD[3:0]	Y1, W3, W5, W4	1	TV _{DD}	_
TSEC3_GTX_CLK	W8	0	TV _{DD}	_
TSEC3_RX_CLK	W2	1	TV _{DD}	_
TSEC3_RX_DV	W1	1	TV _{DD}	_
TSEC3_RX_ER	Y2	1	TV _{DD}	_
TSEC3_TX_CLK	V10	1	TV _{DD}	_
TSEC3_TX_EN	V9	0	TV _{DD}	30
TSEC3_TXD[7:4]	AB8, Y7, AA7, Y8	0	TV _{DD}	5, 9, 29
TSEC3_RXD[7:4]	AA1, Y3, AA2, AA4	1	TV _{DD}	_
Reserved	AA5	_	_	15
TSEC3_COL	Y5	1	TV _{DD}	
TSEC3_CRS	AA3	I/O	TV _{DD}	31
TSEC3_TX_ER	AB6	0	TV _{DD}	_
	DUART			
UART_CTS[0:1]	AB3, AC5	I	OV _{DD}	_
UART_RTS[0:1]	AC6, AD7	0	OV _{DD}	_
UART_SIN[0:1]	AB5, AC7	I	OV _{DD}	_
UART_SOUT[0:1]	AB7, AD8	0	OV _{DD}	_
	I ² C interface			
IIC1_SCL	AG22	I/O	OV _{DD}	4, 27
IIC1_SDA	AG21	I/O	OV _{DD}	4, 27
IIC2_SCL	AG15	I/O	OV_{DD}	4, 27
IIC2_SDA	AG14	I/O	OV_{DD}	4, 27
	SerDes			
SD_RX[0:3]	M28, N26, P28, R26	I	XV_{DD}	_
SD_RX[0:3]	M27, N25, P27, R25	I	XV_{DD}	
SD_TX[0:3]	M22, N20, P22, R20	0	XV_{DD}	_

MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 9

Table 73. MPC8545E Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
TDO	AF28	0	OV_{DD}	_
TMS	AH27	I	OV_DD	12
TRST	AH23	I	OV_{DD}	12
	DFT	•		•
L1_TSTCLK	AC25	I	OV_{DD}	25
L2_TSTCLK	AE22	I	OV_DD	25
LSSD_MODE	AH20	I	OV_{DD}	25
TEST_SEL	AH14	I	OV_{DD}	25
	Thermal Management			
THERM0	AG1	_	_	14
THERM1	AH1	_	_	14
	Power Management			
ASLEEP	AH18	0	OV _{DD}	9, 19, 29
	Power and Ground Signals			
GND	A11, B7, B24, C1, C3, C5, C12, C15, C26, D8, D11, D16, D20, D22, E1, E5, E9, E12, E15, E17, F4, F26, G12, G15, G18, G21, G24, H2, H6, H8, H28, J4, J12, J15, J17, J27, K7, K9, K11, K27, L3, L5, L12, L16, N11, N13, N15, N17, N19, P4, P9, P12, P14, P16, P18, R11, R13, R15, R17, R19, T4, T12, T14, T16, T18, U8, U11, U13, U15, U17, U19, V4, V12, V18, W6, W19, Y4, Y9, Y11, Y19, AA6, AA14, AA17, AA22, AA23, AB4, AC2, AC11, AC19, AC26, AD5, AD9, AD22, AE3, AE14, AF6, AF10, AF13, AG8, AG27, K28, L24, L26, N24, N27, P25, R28, T24, T26, U24, V25, W28, Y24, Y26, AA24, AA27, AB25, AC28, L21, L23, N22, P20, R23, T21, U22, V20, W23, Y21, U27	_	_	_
OV _{DD}	V16, W11, W14, Y18, AA13, AA21, AB11, AB17, AB24, AC4, AC9, AC21, AD6, AD13, AD17, AD19, AE10, AE8, AE24, AF4, AF12, AF22, AF27, AG26	Power for PCI and other standards (3.3 V)	OV _{DD}	
LV _{DD}	N8, R7, T9, U6	Power for TSEC1 and TSEC2 (2.5 V, 3.3 V)	LV _{DD}	_
TV _{DD}	W9, Y6	Power for TSEC3 and TSEC4 (2,5 V, 3.3 V)	TV _{DD}	_

Package Description

Table 74. MPC8543E Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
PCI1_TRDY	AG11	I/O	OV _{DD}	2
PCI1_REQ[4:1]	AH2, AG4, AG3, AH4	I	OV _{DD}	_
PCI1_REQ0	AH3	I/O	OV _{DD}	_
PCI1_CLK	AH26	I	OV_{DD}	39
PCI1_DEVSEL	AH11	I/O	OV_{DD}	2
PCI1_FRAME	AE11	I/O	OV_{DD}	2
PCI1_IDSEL	AG9	I	OV_{DD}	_
cfg_pci1_width	AF14	I/O	OV_{DD}	112
Reserved	V15	_	_	110
Reserved	AE28	_	_	2
Reserved	AD26	_	_	110
Reserved	AD25	_	_	110
Reserved	AE26	_	_	110
cfg_pci1_clk	AG24	1	OV _{DD}	5
Reserved	AF25	_	_	101
Reserved	AE25	_	_	110
Reserved	AG25	_	_	110
Reserved	AD24	_	_	110
Reserved	AF24	_	_	110
Reserved	AD27	_	_	110
Reserved	AD28, AE27, W17, AF26	_	_	110
Reserved	AH25	_	_	110
	DDR SDRAM Memory Interface	•		•
MDQ[0:63]	L18, J18, K14, L13, L19, M18, L15, L14, A17, B17, A13, B12, C18, B18, B13, A12, H18, F18, J14, F15, K19, J19, H16, K15, D17, G16, K13, D14, D18, F17, F14, E14, A7, A6, D5, A4, C8, D7, B5, B4, A2, B1, D1, E4, A3, B2, D2, E3, F3, G4, J5, K5, F6, G5, J6, K4, J1, K2, M5, M3, J3, J2, L1, M6	I/O	GV _{DD}	_
MECC[0:7]	H13, F13, F11, C11, J13, G13, D12, M12	I/O	GV _{DD}	_
MDM[0:8]	M17, C16, K17, E16, B6, C4, H4, K1, E13	0	GV _{DD}	
MDQS[0:8]	M15, A16, G17, G14, A5, D3, H1, L2, C13	I/O	GV _{DD}	_
MDQS[0:8]	L17, B16, J16, H14, C6, C2, H3, L4, D13	I/O	GV _{DD}	_
MA[0:15]	A8, F9, D9, B9, A9, L10, M10, H10, K10, G10, B8, E10, B10, G6, A10, L11	0	GV _{DD}	_
MBA[0:2]	F7, J7, M11	0	GV _{DD}	_

MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 9

Table 74. MPC8543E Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
GPOUT[0:5]	N9, N10, P8, N7, R9, N5	0	LV _{DD}	_
cfg_dram_type0/GPOUT6	R8	0	LV _{DD}	5, 9
GPOUT7	N6	0	LV _{DD}	_
Reserved	P1	_	_	104
Reserved	R6	_	_	104
Reserved	P6	_	_	15
Reserved	N4	_	_	105
FIFO1_RXC2	P5	I	LV _{DD}	104
Reserved	R1	_	_	104
Reserved	P10	_	_	105
FIFO1_TXC2	P7	0	LV _{DD}	15
cfg_dram_type1	R10	0	LV _{DD}	5, 9
Thre	ee-Speed Ethernet Controller (Gigabit	Ethernet 3)		•
TSEC3_TXD[3:0]	V8, W10, Y10, W7	0	TV _{DD}	5, 9, 29
TSEC3_RXD[3:0]	Y1, W3, W5, W4	I	TV _{DD}	_
TSEC3_GTX_CLK	W8	0	TV _{DD}	_
TSEC3_RX_CLK	W2	I	TV _{DD}	_
TSEC3_RX_DV	W1	I	TV_DD	_
TSEC3_RX_ER	Y2	I	TV _{DD}	_
TSEC3_TX_CLK	V10	I	TV _{DD}	_
TSEC3_TX_EN	V9	0	TV _{DD}	30
TSEC3_TXD[7:4]	AB8, Y7, AA7, Y8	0	TV _{DD}	5, 9, 29
TSEC3_RXD[7:4]	AA1, Y3, AA2, AA4	ı	TV _{DD}	_
Reserved	AA5	_	_	15
TSEC3_COL	Y5	1	TV _{DD}	_
TSEC3_CRS	AA3	I/O	TV _{DD}	31
TSEC3_TX_ER	AB6	0	TV _{DD}	_
<u>'</u>	DUART			-1
UART_CTS[0:1]	AB3, AC5	I	OV_{DD}	_
UART_RTS[0:1]	AC6, AD7	0	OV_DD	_
UART_SIN[0:1]	AB5, AC7	I	OV_DD	_
UART_SOUT[0:1]	AB7, AD8	0	OV_DD	_
1	I ² C interface	, ,		•
IIC1_SCL	AG22	I/O	OV _{DD}	4, 27

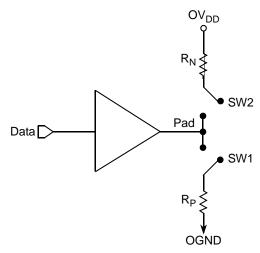


Figure 61. Driver Impedance Measurement

This table summarizes the signal impedance targets. The driver impedances are targeted at minimum $V_{\rm DD}$, nominal OV_{DD}, 105°C.

Impedance	Local Bus, Ethernet, DUART, Control, Configuration, Power Management	PCI	DDR DRAM	Symbol	Unit
R _N	43 Target	25 Target	20 Target	Z ₀	W
R _P	43 Target	25 Target	20 Target	Z ₀	W

Table 86. Impedance Characteristics

Note: Nominal supply voltages. See Table 1, $T_i = 105$ °C.

Configuration Pin Muxing 22.8

The device provides the user with power-on configuration options which can be set through the use of external pull-up or pull-down resistors of 4.7 k Ω on certain output pins (see customer visible configuration pins). These pins are generally used as output only pins in normal operation.

While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins while HRESET is asserted, is latched when HRESET deasserts, at which time the input receiver is disabled and the I/O circuit takes on its normal function. Most of these sampled configuration pins are equipped with an on-chip gated resistor of approximately 20 k Ω . This value must permit the 4.7-k Ω resistor to pull the configuration pin to a valid logic low level. The pull-up resistor is enabled only during HRESET (and for platform/system clocks after HRESET deassertion to ensure capture of the reset value). When the input receiver is disabled the pull-up is also, thus allowing functional operation of the pin as an output with minimal signal quality or delay disruption. The default value for all configuration bits treated this way has been encoded such that a high voltage level puts the device into the default state and external resistors are needed only when non-default settings are required by the user.

Careful board layout with stubless connections to these pull-down resistors coupled with the large value of the pull-down resistor minimizes the disruption of signal quality or speed for output pins thus configured.

MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 9 Freescale Semiconductor 139