

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	800MHz
Co-Processors/DSP	Signal Processing; SPE, Security; SEC
RAM Controllers	DDR, DDR2, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (4)
SATA	-
USB	-
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8545evuang

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1.3 Output Driver Characteristics

The following table provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

Driver Type	Programmable Output Impedance (Ω)	Supply Voltage	Notes
Local bus interface utilities signals	25 25	BV _{DD} = 3.3 V BV _{DD} = 2.5 V	1
	45(default) 45(default)	BV _{DD} = 3.3 V BV _{DD} = 2.5 V	
PCI signals	25	OV _{DD} = 3.3 V	2
	45(default)		
DDR signal	18 36 (half strength mode)	GV _{DD} = 2.5 V	3
DDR2 signal	18 36 (half strength mode)	GV _{DD} = 1.8 V	3
TSEC/10/100 signals	45	L/TV _{DD} = 2.5/3.3 V	
DUART, system control, JTAG	45	OV _{DD} = 3.3 V	—
12C	150	OV _{DD} = 3.3 V	_

Table 3. Output Drive Capability

Notes:

1. The drive strength of the local bus interface is determined by the configuration of the appropriate bits in PORIMPSCR.

2. The drive strength of the PCI interface is determined by the setting of the PCI_GNT1 signal at reset.

3. The drive strength of the DDR interface in half-strength mode is at $T_i = 105^{\circ}C$ and at GV_{DD} (min).

2.2 Power Sequencing

The device requires its power rails to be applied in a specific sequence in order to ensure proper device operation. These requirements are as follows for power-up:

- 1. V_{DD}, AV_{DD}, BV_{DD}, LV_{DD}, OV_{DD}, SV_{DD}, TV_{DD}, XV_{DD}
- 2. GV_{DD}

All supplies must be at their stable values within 50 ms.

NOTE

Items on the same line have no ordering requirement with respect to one another. Items on separate lines must be ordered sequentially such that voltage rails on a previous step must reach 90% of their value before the voltage rails on the current step reach 10% of theirs.

NOTE

In order to guarantee MCKE low during power-up, the above sequencing for GV_{DD} is required. If there is no concern about any of the DDR signals being in an indeterminate state during power-up, then the sequencing for GV_{DD} is not required.

4.5 Platform to FIFO Restrictions

Note the following FIFO maximum speed restrictions based on platform speed.

For FIFO GMII mode:

FIFO TX/RX clock frequency ≤ platform clock frequency/4.2

For example, if the platform frequency is 533 MHz, the FIFO TX/RX clock frequency must be no more than 127 MHz.

For FIFO encoded mode:

FIFO TX/RX clock frequency \leq platform clock frequency/4.2

For example, if the platform frequency is 533 MHz, the FIFO TX/RX clock frequency must be no more than 167 MHz.

4.6 Platform Frequency Requirements for PCI-Express and Serial RapidIO

The CCB clock frequency must be considered for proper operation of the high-speed PCI-Express and Serial RapidIO interfaces as described below.

For proper PCI Express operation, the CCB clock frequency must be greater than:

See *MPC8548ERM*, *Rev.* 2, *PowerQUICC III Integrated Processor Family Reference Manual*, Section 18.1.3.2, "Link Width," for PCI Express interface width details.

For proper serial RapidIO operation, the CCB clock frequency must be greater than:

 $2 \times (0.80) \times (Serial RapidIO interface frequency) \times (Serial RapidIO link width)$

64

See *MPC8548ERM*, *Rev.* 2, *PowerQUICC III Integrated Processor Family Reference Manual*, Section 17.4, "1x/4x LP-Serial Signal Descriptions," for serial RapidIO interface width and frequency details.

4.7 Other Input Clocks

For information on the input clocks of other functional blocks of the platform see the specific section of this document.

6.2.2 DDR SDRAM Output AC Timing Specifications

Table 19. DDR SDRAM Output AC Timing Specifications

At recommended operating conditions.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
MCK[n] cycle time, MCK[<i>n</i>]/MCK[<i>n</i>] crossing	t _{MCK}	3.75	6	ns	2
ADDR/CMD output setup with respect to MCK 533 MHz 400 MHz 333 MHz	t _{ddkhas}	1.48 1.95 2.40		ns	3
ADDR/CMD output hold with respect to MCK 533 MHz 400 MHz 333 MHz	^t ddkhax	1.48 1.95 2.40		ns	3
MCS[<i>n</i>] output setup with respect to MCK 533 MHz 400 MHz 333 MHz	^t DDKHCS	1.48 1.95 2.40		ns	3
MCS[<i>n</i>] output hold with respect to MCK 533 MHz 400 MHz 333 MHz	^t DDKHCX	1.48 1.95 2.40		ns	3
MCK to MDQS Skew	t _{DDKHMH}	-0.6	0.6	ns	4
MDQ/MECC/MDM output setup with respect to MDQS 533 MHz 400 MHz 333 MHz	^t DDKHDS, ^t DDKLDS	538 700 900	 	ps	5
MDQ/MECC/MDM output hold with respect to MDQS 533 MHz 400 MHz 333 MHz	^t ddkhdx, ^t ddkldx	538 700 900		ps	5
MDQS preamble start	t _{DDKHMP}	$-0.5\times t_{MCK}-0.6$	$-0.5 imes t_{MCK}$ + 0.6	ns	6

Figure 4 shows the DDR SDRAM output timing diagram.+

Figure 4. DDR SDRAM Output Timing Diagram

Figure 5 provides the AC test load for the DDR bus.

Figure 5. DDR AC Test Load

8 Enhanced Three-Speed Ethernet (eTSEC)

This section provides the AC and DC electrical characteristics for the enhanced three-speed Ethernet controller. The electrical characteristics for MDIO and MDC are specified in Section 9, "Ethernet Management Interface Electrical Characteristics."

8.1 Enhanced Three-Speed Ethernet Controller (eTSEC) (10/100/1Gb Mbps)—GMII/MII/TBI/RGMII/RTBI/RMII Electrical Characteristics

The electrical characteristics specified here apply to all gigabit media independent interface (GMII), media independent interface (MII), ten-bit interface (TBI), reduced gigabit media independent interface (RGMII), reduced ten-bit interface (RTBI), and reduced media independent interface (RMII) signals except management data input/output (MDIO) and management data clock (MDC). The RGMII and RTBI interfaces are defined for 2.5 V, while the GMII, MII, and TBI interfaces can be operated at 3.3 or 2.5 V. The GMII, MII, or TBI interface timing is compliant with the IEEE 802.3. The RGMII and RTBI interfaces follow the *Reduced Gigabit Media-Independent Interface (RGMII) Specification Version 1.3* (12/10/2000). The RMII interface follows the *RMII Consortium RMII Specification Version 1.2* (3/20/1998). The electrical characteristics for MDIO and MDC are specified in Section 9, "Ethernet Management Interface Electrical Characteristics."

8.1.1 eTSEC DC Electrical Characteristics

All GMII, MII, TBI, RGMII, RMII, and RTBI drivers and receivers comply with the DC parametric attributes specified in Table 22 and Table 23. The RGMII and RTBI signals are based on a 2.5-V CMOS interface voltage as defined by JEDEC EIA/JESD8-5.

Parameter	Symbol	Min	Мах	Unit	Notes
Supply voltage 3.3 V	LV _{DD} TV _{DD}	3.13	3.47	V	1, 2
Output high voltage ($LV_{DD}/TV_{DD} = min$, $I_{OH} = -4.0 mA$)	V _{OH}	2.40	$LV_{DD}/TV_{DD} + 0.3$	V	_
Output low voltage ($LV_{DD}/TV_{DD} = min, I_{OL} = 4.0 mA$)	V _{OL}	GND	0.50	V	_
Input high voltage	V _{IH}	2.0	$LV_{DD}/TV_{DD} + 0.3$	V	_
Input low voltage	V _{IL}	-0.3	0.90	V	_
Input high current ($V_{IN} = LV_{DD}$, $V_{IN} = TV_{DD}$)	I _{IH}	—	40	μΑ	1, 2, 3
Input low current (V _{IN} = GND)	I	-600	_	μA	

Table 22.	GMII. MI	I. RMII. a	and TBI DC	Electrical	Characteristics
	O min, mi	.,		Licothour	onaraotoristios

Notes:

1. LV_{DD} supports eTSECs 1 and 2.

2. TV_DD supports eTSECs 3 and 4.

3. The symbol V_{IN}, in this case, represents the LV_{IN} and TV_{IN} symbols referenced in Table 1 and Table 2.

Enhanced Three-Speed Ethernet (eTSEC)

Figure 13 shows the MII receive AC timing diagram.

Figure 13. MII Receive AC Timing Diagram

8.2.4 TBI AC Timing Specifications

This section describes the TBI transmit and receive AC timing specifications.

8.2.4.1 TBI Transmit AC Timing Specifications

This table provides the TBI transmit AC timing specifications.

Table 30	. TBI	Transmit	AC	Timing	Specifications
----------	-------	----------	----	--------	----------------

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
TCG[9:0] setup time GTX_CLK going high	t _{TTKHDV}	2.0	_	—	ns
TCG[9:0] hold time from GTX_CLK going high	t _{TTKHDX}	1.0	_	—	ns
GTX_CLK rise (20%–80%)	t _{TTXR} ²		_	1.0	ns
GTX_CLK fall time (80%–20%)	t _{TTXF} ²		_	1.0	ns

Notes:

1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{TTKHDV} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect data signals (D) reach the invalid state (X) or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{TTX} represents the TBI (T) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. Guaranteed by design.

Enhanced Three-Speed Ethernet (eTSEC)

Figure 15 shows the TBI receive AC timing diagram.

Figure 15. TBI Receive AC Timing Diagram

8.2.5 TBI Single-Clock Mode AC Specifications

When the eTSEC is configured for TBI modes, all clocks are supplied from external sources to the relevant eTSEC interface. In single-clock TBI mode, when TBICON[CLKSEL] = 1, a 125-MHz TBI receive clock is supplied on the TSEC n_RX_CLK pin (no receive clock is used on TSEC n_TX_CLK in this mode, whereas for the dual-clock mode this is the PMA1 receive clock). The 125-MHz transmit clock is applied on the TSEC_GTX_CLK125 pin in all TBI modes.

A summary of the single-clock TBI mode AC specifications for receive appears in Table 32.

Parameter/Condition	Symbol	Min	Тур	Мах	Unit
RX_CLK clock period	t _{TRRX}	7.5	8.0	8.5	ns
RX_CLK duty cycle	t _{TRRH/TRRX}	40	50	60	%
RX_CLK peak-to-peak jitter	t _{TRRJ}	_	_	250	ps
Rise time RX_CLK (20%–80%)	t _{TRRR}	_	_	1.0	ns
Fall time RX_CLK (80%–20%)	t _{TRRF}	_	_	1.0	ns
RCG[9:0] setup time to RX_CLK rising edge	t _{TRRDVKH}	2.0	_	—	ns
RCG[9:0] hold time to RX_CLK rising edge	t _{TRRDXKH}	1.0	_	_	ns

Local Bus

Figure 26. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (PLL Bypass Mode)

This table provides the PCI AC timing specifications at 66 MHz.

Table 52.	. PCI AC	Timing	Specifications at	66 MH
-----------	----------	--------	-------------------	-------

Parameter	Symbol ¹	Min	Мах	Unit	Notes
CLK to output valid	t _{PCKHOV}	—	6.0	ns	2, 3
Output hold from CLK	t _{PCKHOX}	2.0	_	ns	2, 10
CLK to output high impedance	t _{PCKHOZ}	_	14	ns	2, 4, 11
Input setup to CLK	^t PCIVKH	3.0	_	ns	2, 5, 10
Input hold from CLK	t _{PCIXKH}	0	_	ns	2, 5, 10
REQ64 to HRESET ⁹ setup time	t _{PCRVRH}	$10 imes t_{SYS}$	_	clocks	6, 7, 11
HRESET to REQ64 hold time	t _{PCRHRX}	0	50	ns	7, 11
HRESET high to first FRAME assertion	t _{PCRHFV}	10	_	clocks	8, 11

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{PCIVKH} symbolizes PCI/PCI-X timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the SYSCLK clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI/PCI-X timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
</sub>

- 2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.
- 3. All PCI signals are measured from $OV_{DD}/2$ of the rising edge of SYSCLK or PCI_CLK*n* to $0.4 \times OV_{DD}$ of the signal in question for 3.3-V PCI signaling levels.
- 4. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 5. Input timings are measured at the pin.
- 6. The timing parameter t_{SYS} indicates the minimum and maximum CLK cycle times for the various specified frequencies. The system clock period must be kept within the minimum and maximum defined ranges. For values see Section 20, "Clocking."
- 7. The setup and hold time is with respect to the rising edge of HRESET.
- 8. The timing parameter t_{PCRHFV} is a minimum of 10 clocks rather than the minimum of 5 clocks in the *PCI 2.2 Local Bus Specifications*.
- 9. The reset assertion timing requirement for $\overline{\text{HRESET}}$ is 100 µs.
- 10. Guaranteed by characterization.
- 11.Guaranteed by design.

Figure 35 provides the AC test load for PCI and PCI-X.

High-Speed Serial Interfaces (HSSI)

Figure 42. Single-Ended Reference Clock Input DC Requirements

16.2.3 Interfacing with Other Differential Signaling Levels

- With on-chip termination to SGND_SRDSn (xcorevss), the differential reference clocks inputs are HCSL (high-speed current steering logic) compatible DC-coupled.
- Many other low voltage differential type outputs like LVDS (low voltage differential signaling) can be used but may need to be AC-coupled due to the limited common mode input range allowed (100 to 400 mV) for DC-coupled connection.
- LVPECL outputs can produce signal with too large amplitude and may need to be DC-biased at clock driver output first, then followed with series attenuation resistor to reduce the amplitude, in addition to AC-coupling.

NOTE

Figure 43 through Figure 46 below are for conceptual reference only. Due to the fact that clock driver chip's internal structure, output impedance, and termination requirements are different between various clock driver chip manufacturers, it is very possible that the clock circuit reference designs provided by clock driver chip vendor are different from what is shown below. They might also vary from one vendor to the other. Therefore, Freescale Semiconductor can neither provide the optimal clock driver reference circuits, nor guarantee the correctness of the following clock driver connection reference circuits. The system designer is recommended to contact the selected clock driver chip vendor for the optimal reference circuits with the SerDes reference clock receiver requirement provided in this document.

to AC-coupling. Its value could be ranged from 140 to 240 Ω depending on the clock driver vendor's requirement. R2 is used together with the SerDes reference clock receiver's 50- Ω termination resistor to attenuate the LVPECL output's differential peak level such that it meets the SerDes reference clock's differential input amplitude requirement (between 200 and 800 mV differential peak). For example, if the LVPECL output's differential peak is 900 mV and the desired SerDes reference clock input amplitude is selected as 600 mV, the attenuation factor is 0.67, which requires R2 = 25 Ω . Consult a clock driver chip manufacturer to verify whether this connection scheme is compatible with a particular clock driver chip.

Figure 45. AC-Coupled Differential Connection with LVPECL Clock Driver (Reference Only)

Figure 46 shows the SerDes reference clock connection reference circuits for a single-ended clock driver. It assumes the DC levels of the clock driver are compatible with the SerDes reference clock input's DC requirement.

Figure 46. Single-Ended Connection (Reference Only)

Symbol	Parameter	Min	Nom	Max	Unit	Comments
UI	Unit interval	399.88	400	400.12	ps	Each UI is 400 ps \pm 300 ppm. UI does not account for spread spectrum clock dictated variations. See Note 1.
V _{TX-DIFFp-p}	Differential peak-to-peak output voltage	0.8	—	1.2	V	$V_{TX-DIFFp-p} = 2 \times V_{TX-D+} - V_{TX-D-} $. See Note 2.
V _{TX-DE-RATIO}	De-emphasized differential output voltage (ratio)	-3.0	-3.5	-4.0	dB	Ratio of the $V_{TX-DIFFp-p}$ of the second and following bits after a transition divided by the $V_{TX-DIFFp-p}$ of the first bit after a transition. See Note 2.
T _{TX-EYE}	Minimum TX eye width	0.70	—	_	UI	The maximum transmitter jitter can be derived as $T_{TX-MAX-JITTER} = 1 - T_{TX-EYE} = 0.3$ UI. See Notes 2 and 3.
T _{TX-EYE-MEDIAN-to-} MAX-JITTER	Maximum time between the jitter median and maximum deviation from the median.	_	_	0.15	UI	Jitter is defined as the measurement variation of the crossing points ($V_{TX-DIFFp-p} = 0$ V) in relation to a recovered TX UI. A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI. See Notes 2 and 3.
T _{TX-RISE} , T _{TX-FALL}	D+/D-TX output rise/fall time	0.125	—	—	UI	See Notes 2 and 5.
V _{TX-CM-ACp}	RMS AC peak common mode output voltage	_	_	20	mV	$\begin{split} & V_{TX\text{-}CM\text{-}ACp} = RMS(V_{TXD\text{+}} + V_{TXD\text{-}} /2 - V_{TX\text{-}CM\text{-}DC}) \\ & V_{TX\text{-}CM\text{-}DC} = DC_{(avg)} \text{ of } V_{TX\text{-}D\text{+}} + V_{TX\text{-}D\text{-}} /2. \\ & See Note 2. \end{split}$
V _{TX-CM-DC-ACTIVE-} IDLE-DELTA	Absolute delta of dc common mode voltage during L0 and electrical idle	0	_	100	mV	$\begin{split} V_{TX-CM-DC} & (during \ L0) + V_{TX-CM-Idle-DC} & (during \\ electrical \ idle) &\leq 100 \ mV \\ V_{TX-CM-DC} &= DC_{(avg)} \ of \ V_{TX-D+} + V_{TX-D-} /2 \ [L0] \\ V_{TX-CM-Idle-DC} &= DC_{(avg)} \ of \ V_{TX-D+} + V_{TX-D-} /2 \\ [electrical \ idle] \\ See \ Note \ 2. \end{split}$
VTX-CM-DC-LINE-DELTA	Absolute delta of DC common mode between D+ and D–	0	_	25	mV	$\begin{split} V_{TX-CM-DC-D+} - V_{TX-CM-DC-D-} &\leq 25 \text{ mV} \\ V_{TX-CM-DC-D+} &= DC_{(avg)} \text{ of } V_{TX-D+} \\ V_{TX-CM-DC-D-} &= DC_{(avg)} \text{ of } V_{TX-D-} . \\ \text{See Note 2.} \end{split}$
V _{TX} -IDLE-DIFFp	Electrical idle differential peak output voltage	0	_	20	mV	$V_{TX-IDLE-DIFFp} = V_{TX-IDLE-D+} - V_{TX-IDLE-D-} \le 20 \text{ mV.}$ See Note 2.
V _{TX-RCV-DETECT}	The amount of voltage change allowed during receiver detection	_	_	600	mV	The total amount of voltage change that a transmitter can apply to sense whether a low impedance receiver is present. See Note 6.

PCI Express

The eye diagram must be valid for any 250 consecutive UIs.

A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI.

NOTE

The reference impedance for return loss measurements is 50. to ground for both the D+ and D– line (that is, as measured by a vector network analyzer with 50- Ω probes—see Figure 50). Note that the series capacitors, CTX, are optional for the return loss measurement.

Figure 49. Minimum Receiver Eye Timing and Voltage Compliance Specification

17.5.1 Compliance Test and Measurement Load

The AC timing and voltage parameters must be verified at the measurement point, as specified within 0.2 inches of the package pins, into a test/measurement load shown in Figure 50.

NOTE

The allowance of the measurement point to be within 0.2 inches of the package pins is meant to acknowledge that package/board routing may benefit from D+ and D- not being exactly matched in length at the package pin boundary.

Figure 50. Compliance Test/Measurement Load

Table 71. MPC8548E Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MWE	E7	0	GV _{DD}	—
MCAS	H7	0	GV _{DD}	_
MRAS	L8	0	GV _{DD}	_
MCKE[0:3]	F10, C10, J11, H11	0	GV _{DD}	11
MCS[0:3]	K8, J8, G8, F8	0	GV _{DD}	_
MCK[0:5]	H9, B15, G2, M9, A14, F1	0	GV _{DD}	—
MCK[0:5]	J9, A15, G1, L9, B14, F2	0	GV _{DD}	—
MODT[0:3]	E6, K6, L7, M7	0	GV _{DD}	—
MDIC[0:1]	A19, B19	I/O	GV _{DD}	36
	Local Bus Controller Interface			•
LAD[0:31]	E27, B20, H19, F25, A20, C19, E28, J23, A25, K22, B28, D27, D19, J22, K20, D28, D25, B25, E22, F22, F21, C25, C22, B23, F20, A23, A22, E19, A21, D21, F19, B21	I/O	BV _{DD}	_
LDP[0:3]	K21, C28, B26, B22	I/O	BV _{DD}	_
LA[27]	H21	0	BV _{DD}	5, 9
LA[28:31]	H20, A27, D26, A28	0	BV _{DD}	5, 7, 9
LCS[0:4]	J25, C20, J24, G26, A26	0	ΒV _{DD}	
LCS5/DMA_DREQ2	D23	I/O	BV _{DD}	1
LCS6/DMA_DACK2	G20	0	BV _{DD}	1
LCS7/DMA_DDONE2	E21	0	BV _{DD}	1
LWE0/LBS0/LSDDQM[0]	G25	0	BV _{DD}	5, 9
LWE1/LBS1/LSDDQM[1]	C23	0	BV _{DD}	5, 9
LWE2/LBS2/LSDDQM[2]	J21	0	BV _{DD}	5, 9
LWE3/LBS3/LSDDQM[3]	A24	0	BV _{DD}	5, 9
LALE	H24	0	BV _{DD}	5, 8, 9
LBCTL	G27	0	BV _{DD}	5, 8, 9
LGPL0/LSDA10	F23	0	BV _{DD}	5, 9
LGPL1/LSDWE	G22	0	BV _{DD}	5, 9
LGPL2/LOE/LSDRAS	B27	0	BV _{DD}	5, 8, 9
LGPL3/LSDCAS	F24	0	BV _{DD}	5, 9
LGPL4/LGTA/LUPWAIT/LPBSE	H23	I/O	BV _{DD}	
LGPL5	E26	0	BV _{DD}	5, 9
LCKE	E24	0	BV _{DD}	_
LCLK[0:2]	E23, D24, H22	0	BV _{DD}	_

Package Description

Signal	Package Pin Number	Pin Type	Power Supply	Notes
LSYNC_IN	F27	ļ	BV _{DD}	_
LSYNC_OUT	F28	0	BV _{DD}	_
	DMA			
DMA_DACK[0:1]	AD3, AE1	0	OV _{DD}	5, 9, 102
DMA_DREQ[0:1]	AD4, AE2	ļ	OV _{DD}	—
DMA_DDONE[0:1]	AD2, AD1	0	OV _{DD}	_
	Programmable Interrupt Controller		I	
UDE	AH16	I	OV _{DD}	—
MCP	AG19	ļ	OV _{DD}	—
IRQ[0:7]	AG23, AF18, AE18, AF20, AG18, AF17, AH24, AE20	I	OV _{DD}	—
IRQ[8]	AF19	I	OV _{DD}	—
IRQ[9]/DMA_DREQ3	AF21	ļ	OV _{DD}	1
IRQ[10]/DMA_DACK3	AE19	I/O	OV _{DD}	1
IRQ[11]/DMA_DDONE3	AD20	I/O	OV _{DD}	1
IRQ_OUT	AD18	0	OV _{DD}	2, 4
	Ethernet Management Interface			
EC_MDC	AB9	0	OV _{DD}	5, 9
EC_MDIO	AC8	I/O	OV _{DD}	—
	Gigabit Reference Clock			
EC_GTX_CLK125	V11	I	LV _{DD}	—
Th	ree-Speed Ethernet Controller (Gigabit Ethern	et 1)		
TSEC1_RXD[7:0]	R5, U1, R3, U2, V3, V1, T3, T2	I	LV _{DD}	—
TSEC1_TXD[7:0]	T10, V7, U10, U5, U4, V6, T5, T8	0	LV _{DD}	5, 9
TSEC1_COL	R4	I	LV _{DD}	—
TSEC1_CRS	V5	I/O	LV _{DD}	20
TSEC1_GTX_CLK	U7	0	LV _{DD}	—
TSEC1_RX_CLK	U3	I	LV _{DD}	—
TSEC1_RX_DV	V2	I	LV _{DD}	—
TSEC1_RX_ER	T1	I	LV _{DD}	—
TSEC1_TX_CLK	Т6	I	LV _{DD}	—
TSEC1_TX_EN	U9	0	LV _{DD}	30
TSEC1_TX_ER	Τ7	0	LV _{DD}	—

Table 72 provides the pin-out listing for the MPC8547E 783 FC-PBGA package.

NOTE

All note references in the following table use the same numbers as those for Table 71. See Table 71 for the meanings of these notes.

Signal	Package Pin Number	Pin Type	Power Supply	Notes		
PCI1 (One 64-Bit or One 32-Bit)						
PCI1_AD[63:32]	AB14, AC15, AA15, Y16, W16, AB16, AC16, AA16, AE17, AA18, W18, AC17, AD16, AE16, Y17, AC18, AB18, AA19, AB19, AB21, AA20, AC20, AB20, AB22, AC22, AD21, AB23, AF23, AD23, AE23, AC23, AC24	I/O	OV _{DD}	17		
PCI1_AD[31:0]	AH6, AE7, AF7, AG7, AH7, AF8, AH8, AE9, AH9, AC10, AB10, AD10, AG10, AA10, AH10, AA11, AB12, AE12, AG12, AH12, AB13, AA12, AC13, AE13, Y14, W13, AG13, V14, AH13, AC14, Y15, AB15	I/O	OV _{DD}	17		
PCI1_C_BE[7:4]	AF15, AD14, AE15, AD15	I/O	OV _{DD}	17		
PCI1_C_BE[3:0]	AF9, AD11, Y12, Y13	I/O	OV _{DD}	17		
PCI1_PAR64	W15	I/O	OV _{DD}	—		
PCI1_GNT[4:1]	AG6, AE6, AF5, AH5	0	OV _{DD}	5, 9, 35		
PCI1_GNT0	AG5	I/O	OV _{DD}	—		
PCI1_IRDY	AF11	I/O	OV _{DD}	2		
PCI1_PAR	AD12	I/O	OV _{DD}	—		
PCI1_PERR	AC12	I/O	OV _{DD}	2		
PCI1_SERR	V13	I/O	OV _{DD}	2, 4		
PCI1_STOP	W12	I/O	OV _{DD}	2		
PCI1_TRDY	AG11	I/O	OV _{DD}	2		
PCI1_REQ[4:1]	AH2, AG4, AG3, AH4	I	OV _{DD}	—		
PCI1_REQ0	AH3	I/O	OV _{DD}	—		
PCI1_CLK	AH26	I	OV _{DD}	39		
PCI1_DEVSEL	AH11	I/O	OV _{DD}	2		
PCI1_FRAME	AE11	I/O	OV _{DD}	2		
PCI1_IDSEL	AG9	I	OV _{DD}	—		
PCI1_REQ64	AF14	I/O	OV _{DD}	2, 5,10		
PCI1_ACK64	V15	I/O	OV _{DD}	2		
Reserved	AE28	—	—	2		
Reserved	AD26	—	—	2		
Reserved	AD25		—	2		

Table 72. MPC8547E Pinout Listing

Package Description

Table 72	. MPC8547E	Pinout Listing	(continued)
----------	------------	-----------------------	-------------

Signal	Package Pin Number	Pin Type	Power Supply	Notes
IRQ[0:7]	AG23, AF18, AE18, AF20, AG18, AF17, AH24, AE20	Ι	OV _{DD}	_
IRQ[8]	AF19	I	OV _{DD}	—
IRQ[9]/DMA_DREQ3	AF21		OV _{DD}	1
IRQ[10]/DMA_DACK3	AE19	I/O	OV _{DD}	1
IRQ[11]/DMA_DDONE3	AD20	I/O	OV _{DD}	1
IRQ_OUT	AD18	0	OV _{DD}	2, 4
	Ethernet Management Interface			
EC_MDC	AB9	0	OV _{DD}	5, 9
EC_MDIO	AC8	I/O	OV _{DD}	—
	Gigabit Reference Clock			
EC_GTX_CLK125	V11	I	LV _{DD}	—
Th	ree-Speed Ethernet Controller (Gigabit Ethern	et 1)		
TSEC1_RXD[7:0]	R5, U1, R3, U2, V3, V1, T3, T2	I	LV _{DD}	—
TSEC1_TXD[7:0]	T10, V7, U10, U5, U4, V6, T5, T8	0	LV _{DD}	5, 9
TSEC1_COL	R4	I	LV _{DD}	—
TSEC1_CRS	V5	I/O	LV _{DD}	20
TSEC1_GTX_CLK	U7	0	LV _{DD}	—
TSEC1_RX_CLK	U3	I	LV _{DD}	—
TSEC1_RX_DV	V2	I	LV _{DD}	—
TSEC1_RX_ER	T1	I	LV _{DD}	—
TSEC1_TX_CLK	Т6		LV _{DD}	
TSEC1_TX_EN	U9	0	LV _{DD}	30
TSEC1_TX_ER	Τ7	0	LV _{DD}	
Th	ree-Speed Ethernet Controller (Gigabit Ethern	et 2)		
TSEC2_RXD[7:0]	P2, R2, N1, N2, P3, M2, M1, N3	-	LV _{DD}	_
TSEC2_TXD[7:0]	N9, N10, P8, N7, R9, N5, R8, N6	0	LV _{DD}	5, 9, 33
TSEC2_COL	P1	Ι	LV _{DD}	—
TSEC2_CRS	R6	I/O	LV _{DD}	20
TSEC2_GTX_CLK	P6	0	LV _{DD}	
TSEC2_RX_CLK	N4		LV _{DD}	
TSEC2_RX_DV	P5		LV _{DD}	
TSEC2_RX_ER	R1	I	LV _{DD}	_
TSEC2_TX_CLK	P10	I	LV _{DD}	_
TSEC2_TX_EN	P7	0	LV _{DD}	30

Package Description

Signal	Package Pin Number	Pin Type	Power Supply	Notes			
Reserved	U20, V22, W20, Y22	_	—	15			
Reserved	U21, V23, W21, Y23	—	—	15			
SD_PLL_TPD	U28	0	XV _{DD}	24			
SD_REF_CLK	T28	I	XV _{DD}	—			
SD_REF_CLK	T27	I	XV _{DD}	—			
Reserved	AC1, AC3	—	—	2			
Reserved	M26, V28	—	—	32			
Reserved	M25, V27	—	—	34			
Reserved	M20, M21, T22, T23	—	—	38			
	General-Purpose Output						
GPOUT[24:31]	K26, K25, H27, G28, H25, J26, K24, K23	0	BV _{DD}	—			
	System Control						
HRESET	AG17	I	OV _{DD}	—			
HRESET_REQ	AG16	0	OV _{DD}	29			
SRESET	AG20	I	OV _{DD}	—			
CKSTP_IN	AA9	I	OV _{DD}	—			
CKSTP_OUT	AA8	0	OV _{DD}	2, 4			
Debug							
TRIG_IN	AB2	I	OV _{DD}	—			
TRIG_OUT/READY/QUIESCE	AB1	0	OV _{DD}	6, 9, 19, 29			
MSRCID[0:1]	AE4, AG2	0	OV _{DD}	5, 6, 9			
MSRCID[2:4]	AF3, AF1, AF2	0	OV _{DD}	6, 19, 29			
MDVAL	AE5	0	OV _{DD}	6			
CLK_OUT	AE21	0	OV _{DD}	11			
Clock							
RTC	AF16	I	OV _{DD}	—			
SYSCLK	AH17	I	OV _{DD}	—			
JTAG							
тск	AG28	I	OV _{DD}	—			
TDI	AH28	Ι	OV _{DD}	12			
TDO	AF28	0	OV _{DD}	_			
TMS	AH27	I	OV _{DD}	12			
TRST	AH23	I	OV _{DD}	12			

System Design Information

level must always be equivalent to V_{DD} , and preferably these voltages are derived directly from V_{DD} through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to provide independent filter circuits per PLL power supply as illustrated in Figure 57, one to each of the AV_{DD} pins. By providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz range. It must be built with surface mount capacitors with minimum Effective Series Inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

Each circuit must be placed as close as possible to the specific AV_{DD} pin being supplied to minimize noise coupled from nearby circuits. It must be routed directly from the capacitors to the AV_{DD} pin, which is on the periphery of the footprint, without the inductance of vias.

Figure 57 through Figure 59 shows the PLL power supply filter circuits.

Figure 57. PLL Power Supply Filter Circuit with PLAT Pins

Figure 58. PLL Power Supply Filter Circuit with CORE Pins

Figure 59. PLL Power Supply Filter Circuit with PCI/LBIU Pins

The AV_{DD}_SRDS signal provides power for the analog portions of the SerDes PLL. To ensure stability of the internal clock, the power supplied to the PLL is filtered using a circuit similar to the one shown in following figure. For maximum effectiveness, the filter circuit is placed as closely as possible to the AV_{DD}_SRDS ball to ensure it filters out as much noise as possible. The ground connection must be near the AV_{DD}_SRDS ball. The 0.003- μ F capacitor is closest to the ball, followed by the two 2.2 μ F capacitors, and finally the 1 Ω resistor to the board supply plane. The capacitors are connected from AV_{DD}_SRDS to

• SD_REF_CLK

NOTE

It is recommended to power down the unused lane through SRDSCR1[0:7] register (offset = $0xE_0F08$) (this prevents the oscillations and holds the receiver output in a fixed state) that maps to SERDES lane 0 to lane 7 accordingly.

Pins V28 and M26 must be tied to XV_{DD} . Pins V27 and M25 must be tied to GND through a 300- Ω resistor.

22.11 Guideline for PCI Interface Termination

PCI termination if PCI 1 or PCI 2 is not used at all.

Option 1

If PCI arbiter is enabled during POR:

- All AD pins are driven to the stable states after POR. Therefore, all ADs pins can be floating.
- All PCI control pins can be grouped together and tied to OV_{DD} through a single 10-k Ω resistor.
- It is optional to disable PCI block through DEVDISR register after POR reset.

Option 2

If PCI arbiter is disabled during POR:

- All AD pins are in the input state. Therefore, all ADs pins need to be grouped together and tied to OV_{DD} through a single (or multiple) 10-k Ω resistor(s).
- All PCI control pins can be grouped together and tied to OV_{DD} through a single 10-k Ω resistor.
- It is optional to disable PCI block through DEVDISR register after POR reset.

22.12 Guideline for LBIU Termination

If the LBIU parity pins are not used, the following is the termination recommendation:

- For LDP[0:3]—tie them to ground or the power supply rail via a 4.7-k Ω resistor.
- For LPBSE—tie it to the power supply rail via a 4.7-k Ω resistor (pull-up resistor).