E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.2GHz
Co-Processors/DSP	Signal Processing; SPE, Security; SEC
RAM Controllers	DDR, DDR2, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (4)
SATA	-
USB	-
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8545evuatg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Dedicated single data rate SDRAM controller
- Parity support
- Default boot ROM chip select with configurable bus width (8, 16, or 32 bits)
- Four enhanced three-speed Ethernet controllers (eTSECs)
 - Three-speed support (10/100/1000 Mbps)
 - Four controllers designed to comply with IEEE Std. 802.3[®], 802.3^u, 802.3^x, 802.3^z, 802.3^{ac}, and 802.3^{ab}
 - Support for various Ethernet physical interfaces:
 - 1000 Mbps full-duplex IEEE 802.3 GMII, IEEE 802.3z TBI, RTBI, and RGMII
 - 10/100 Mbps full and half-duplex IEEE 802.3 MII, IEEE 802.3 RGMII, and RMII
 - Flexible configuration for multiple PHY interface configurations. See Section 8.1, "Enhanced Three-Speed Ethernet Controller (eTSEC) (10/100/1Gb Mbps)—GMII/MII/TBI/RGMII/RTBI/RMII Electrical Characteristics," for more information.
 - TCP/IP acceleration and QoS features available
 - IP v4 and IP v6 header recognition on receive
 - IP v4 header checksum verification and generation
 - TCP and UDP checksum verification and generation
 - Per-packet configurable acceleration
 - Recognition of VLAN, stacked (queue in queue) VLAN, IEEE Std 802.2[™], PPPoE session, MPLS stacks, and ESP/AH IP-security headers
 - Supported in all FIFO modes
 - Quality of service support:
 - Transmission from up to eight physical queues
 - Reception to up to eight physical queues
 - Full- and half-duplex Ethernet support (1000 Mbps supports only full duplex):
 - IEEE 802.3 full-duplex flow control (automatic PAUSE frame generation or software-programmed PAUSE frame generation and recognition)
 - Programmable maximum frame length supports jumbo frames (up to 9.6 Kbytes) and IEEE Std. 802.1TM virtual local area network (VLAN) tags and priority
 - VLAN insertion and deletion
 - Per-frame VLAN control word or default VLAN for each eTSEC
 - Extracted VLAN control word passed to software separately
 - Retransmission following a collision
 - CRC generation and verification of inbound/outbound frames
 - Programmable Ethernet preamble insertion and extraction of up to 7 bytes
 - MAC address recognition:
 - Exact match on primary and virtual 48-bit unicast addresses

4.5 Platform to FIFO Restrictions

Note the following FIFO maximum speed restrictions based on platform speed.

For FIFO GMII mode:

FIFO TX/RX clock frequency \leq platform clock frequency/4.2

For example, if the platform frequency is 533 MHz, the FIFO TX/RX clock frequency must be no more than 127 MHz.

For FIFO encoded mode:

FIFO TX/RX clock frequency \leq platform clock frequency/4.2

For example, if the platform frequency is 533 MHz, the FIFO TX/RX clock frequency must be no more than 167 MHz.

4.6 Platform Frequency Requirements for PCI-Express and Serial RapidIO

The CCB clock frequency must be considered for proper operation of the high-speed PCI-Express and Serial RapidIO interfaces as described below.

For proper PCI Express operation, the CCB clock frequency must be greater than:

See *MPC8548ERM*, *Rev.* 2, *PowerQUICC III Integrated Processor Family Reference Manual*, Section 18.1.3.2, "Link Width," for PCI Express interface width details.

For proper serial RapidIO operation, the CCB clock frequency must be greater than:

 $2 \times (0.80) \times (Serial RapidIO interface frequency) \times (Serial RapidIO link width)$

64

See *MPC8548ERM*, *Rev.* 2, *PowerQUICC III Integrated Processor Family Reference Manual*, Section 17.4, "1x/4x LP-Serial Signal Descriptions," for serial RapidIO interface width and frequency details.

4.7 Other Input Clocks

For information on the input clocks of other functional blocks of the platform see the specific section of this document.

Figure 17. RGMII and RTBI AC Timing and Multiplexing Diagrams

8.2.7 RMII AC Timing Specifications

This section describes the RMII transmit and receive AC timing specifications.

8.2.7.1 RMII Transmit AC Timing Specifications

The RMII transmit AC timing specifications are in this table.

Table 34. RMII 1	Transmit AC	Timing	Specifications
------------------	-------------	--------	----------------

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
TSEC <i>n</i> _TX_CLK clock period	t _{RMT}	15.0	20.0	25.0	ns
TSEC <i>n</i> _TX_CLK duty cycle	t _{RMTH}	35	50	65	%
TSEC <i>n</i> _TX_CLK peak-to-peak jitter	t _{RMTJ}	—	—	250	ps
Rise time TSEC <i>n</i> _TX_CLK (20%–80%)	t _{RMTR}	1.0	—	2.0	ns
Fall time TSEC <i>n</i> _TX_CLK (80%–20%)	t _{RMTF}	1.0	—	2.0	ns

Enhanced Three-Speed Ethernet (eTSEC)

Figure 19 provides the AC test load for eTSEC.

Figure 19. eTSEC AC Test Load

Figure 20 shows the RMII receive AC timing diagram.

Figure 20. RMII Receive AC Timing Diagram

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus cycle time	t _{LBK}	7.5	12	ns	2
Local bus duty cycle	t _{LBKH/} t _{LBK}	43	57	%	—
LCLK[n] skew to LCLK[m] or LSYNC_OUT	t _{LBKSKEW}	_	150	ps	7, 8
Input setup to local bus clock (except LGTA/UPWAIT)	t _{LBIVKH1}	1.9	—	ns	3, 4
LGTA/LUPWAIT input setup to local bus clock	t _{LBIVKH2}	1.8	—	ns	3, 4
Input hold from local bus clock (except LGTA/LUPWAIT)	t _{LBIXKH1}	1.1	—	ns	3, 4
LGTA/LUPWAIT input hold from local bus clock	t _{LBIXKH2}	1.1	—	ns	3, 4
LALE output transition to LAD/LDP output transition (LATCH hold time)	t _{LBOTOT}	1.5	—	ns	6
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKHOV1}	_	2.1	ns	—
Local bus clock to data valid for LAD/LDP	t _{LBKHOV2}		2.3	ns	3
Local bus clock to address valid for LAD	t _{LBKHOV3}		2.4	ns	3
Local bus clock to LALE assertion	t _{LBKHOV4}		2.4	ns	3
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKHOX1}	0.8	—	ns	3
Output hold from local bus clock for LAD/LDP	t _{LBKHOX2}	0.8	—	ns	3
Local bus clock to output high Impedance (except LAD/LDP and LALE)	t _{LBKHOZ1}		2.6	ns	5
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ2}		2.6	ns	5

Table 41 describes the timing parameters of the local bus interface at $BV_{DD} = 2.5$ V.

Table 41. Local Bus Timing Parameters (BV_{DD} = 2.5 V)—PLL Enabled

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKH0X} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
</sub></sub>

- 2. All timings are in reference to LSYNC_IN for PLL enabled and internal local bus clock for PLL bypass mode.
- 3. All signals are measured from $BV_{DD}/2$ of the rising edge of LSYNC_IN for PLL enabled or internal local bus clock for PLL bypass mode to $0.4 \times BV_{DD}$ of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.

5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

- 6. t_{LBOTOT} is a measurement of the minimum time between the negation of LALE and any change in LAD. t_{LBOTOT} is programmed with the LBCR[AHD] parameter.
- Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at BV_{DD}/2.
- 8. Guaranteed by design.

Figure 22 provides the AC test load for the local bus.

Figure 22. Local Bus AC Test Load

Figure 34 shows the AC timing diagram for the I^2C bus.

Figure 34. I²C Bus AC Timing Diagram

PCI/PCI-X

Figure 36 shows the PCI/PCI-X input AC timing conditions.

Figure 36. PCI/PCI-X Input AC Timing Measurement Conditions

Figure 37 shows the PCI/PCI-X output AC timing conditions.

Table 53 provides the PCI-X AC timing specifications at 66 MHz.

	Table 53	. PCI-X AC	Timing	Specifications	at 66	MHz
--	----------	------------	--------	-----------------------	-------	-----

Parameter	Symbol	Min	Max	Unit	Notes
SYSCLK to signal valid delay	^t PCKHOV	_	3.8	ns	1, 2, 3, 7, 8
Output hold from SYSCLK	t _{PCKHOX}	0.7		ns	1, 10
SYSCLK to output high impedance	t _{PCKHOZ}	-	7	ns	1, 4, 8, 11
Input setup time to SYSCLK	t _{PCIVKH}	1.7	_	ns	3, 5
Input hold time from SYSCLK	t _{PCIXKH}	0.5	_	ns	10
REQ64 to HRESET setup time	t _{PCRVRH}	10	_	clocks	11
HRESET to REQ64 hold time	t _{PCRHRX}	0	50	ns	11
HRESET high to first FRAME assertion	t _{PCRHFV}	10	_	clocks	9, 11
PCI-X initialization pattern to HRESET setup time	^t PCIVRH	10	_	clocks	11

16 High-Speed Serial Interfaces (HSSI)

The device features one Serializer/Deserializer (SerDes) interface to be used for high-speed serial interconnect applications. The SerDes interface can be used for PCI Express and/or serial RapidIO data transfers.

This section describes the common portion of SerDes DC electrical specifications, which is the DC requirement for SerDes reference clocks. The SerDes data lane's transmitter and receiver reference circuits are also shown.

16.1 Signal Terms Definition

The SerDes utilizes differential signaling to transfer data across the serial link. This section defines terms used in the description and specification of differential signals.

Figure 38 shows how the signals are defined. For illustration purpose, only one SerDes lane is used for the description. The figure shows a waveform for either a transmitter output (SD_TX and \overline{SD}_TX) or a receiver input (SD_RX and \overline{SD}_RX). Each signal swings between A volts and B volts where A > B.

Using this waveform, the definitions are as follows. To simplify the illustration, the following definitions assume that the SerDes transmitter and receiver operate in a fully symmetrical differential signaling environment.

• Single-ended swing

The transmitter output signals and the receiver input signals SD_TX, \overline{SD}_TX , \overline{SD}_RX and \overline{SD}_RX each have a peak-to-peak swing of A – B volts. This is also referred as each signal wire's single-ended swing.

- Differential output voltage, V_{OD} (or differential output swing): The differential output voltage (or swing) of the transmitter, V_{OD} , is defined as the difference of the two complimentary output voltages: $V_{SD_TX} - V_{\overline{SD_TX}}$. The V_{OD} value can be either positive or negative.
- Differential input voltage, V_{ID} (or differential input swing): The differential input voltage (or swing) of the receiver, V_{ID}, is defined as the difference of the two complimentary input voltages: V_{SD_RX} – V_{SD_RX}. The V_{ID} value can be either positive or negative.
- Differential peak voltage, V_{DIFFp} The peak value of the differential transmitter output signal or the differential receiver input signal is defined as differential peak voltage, $V_{DIFFp} = |A - B|$ volts.
- Differential peak-to-peak, $V_{DIFFp-p}$ Because the differential output signal of the transmitter and the differential input signal of the receiver each range from A – B to –(A – B) volts, the peak-to-peak value of the differential transmitter output signal or the differential receiver input signal is defined as differential peak-to-peak voltage, $V_{DIFFp-p} = 2 \times V_{DIFFp} = 2 \times |(A - B)|$ volts, which is twice of differential swing in amplitude, or twice of the differential peak. For example, the output differential peak-to-peak voltage can also be calculated as $V_{TX-DIFFp-p} = 2 \times |V_{OD}|$.
- Common mode voltage, V_{cm} The common mode voltage is equal to one half of the sum of the voltages between each conductor

to AC-coupling. Its value could be ranged from 140 to 240 Ω depending on the clock driver vendor's requirement. R2 is used together with the SerDes reference clock receiver's 50- Ω termination resistor to attenuate the LVPECL output's differential peak level such that it meets the SerDes reference clock's differential input amplitude requirement (between 200 and 800 mV differential peak). For example, if the LVPECL output's differential peak is 900 mV and the desired SerDes reference clock input amplitude is selected as 600 mV, the attenuation factor is 0.67, which requires R2 = 25 Ω . Consult a clock driver chip manufacturer to verify whether this connection scheme is compatible with a particular clock driver chip.

Figure 45. AC-Coupled Differential Connection with LVPECL Clock Driver (Reference Only)

Figure 46 shows the SerDes reference clock connection reference circuits for a single-ended clock driver. It assumes the DC levels of the clock driver are compatible with the SerDes reference clock input's DC requirement.

Figure 46. Single-Ended Connection (Reference Only)

PCI Express

Symbol	Parameter	Min	Nom	Max	Unit	Comments
V _{RX-CM-ACp}	AC peak common mode input voltage	_	_	150	mV	$\begin{split} & V_{RX\text{-}CM\text{-}ACp} = V_{RXD\text{+}} - V_{RXD\text{-}} /2 + V_{RX\text{-}CM\text{-}DC} \\ & V_{RX\text{-}CM\text{-}DC} = DC_{(avg)} \text{ of } V_{RX\text{-}D\text{+}} + V_{RX\text{-}D\text{-}} \div 2. \\ & See Note 2. \end{split}$
RL _{RX-DIFF}	Differential return loss	15	—	_	dB	Measured over 50 MHz to 1.25 GHz with the D+ and D– lines biased at +300 mV and –300 mV, respectively. See Note 4.
RL _{RX-CM}	Common mode return loss	6	—	—	dB	Measured over 50 MHz to 1.25 GHz with the D+ and D– lines biased at 0 V. See Note 4.
Z _{RX-DIFF-DC}	DC differential input impedance	80	100	120	Ω	RX DC differential mode impedance. See Note 5.
Z _{RX-DC}	DC input impedance	40	50	60	Ω	Required RX D+ as well as D– DC impedance (50 \pm 20% tolerance). See Notes 2 and 5.
Z _{RX-HIGH-IMP-DC}	Powered down DC input impedance	200 k	—	_	Ω	Required RX D+ as well as D– DC impedance when the receiver terminations do not have power. See Note 6.
V _{RX-IDLE-DET-DIFFp-p}	Electrical idle detect threshold	65	—	175	mV	$V_{RX-IDLE-DET-DIFF_{p-p}} = 2 \times V_{RX-D+} - V_{RX-D-} .$ Measured at the package pins of the receiver
T _{RX-IDLE-DET-DIFF-} ENTERTIME	Unexpected electrical idle enter detect threshold integration time			10	ms	An unexpected electrical idle ($V_{RX-DIFFp-p} < V_{RX-IDLE-DET-DIFFp-p}$) must be recognized no longer than $T_{RX-IDLE-DET-DIFF-ENTERING}$ to signal an unexpected idle condition.

Table 57. Differential Receiver (RX) Input Specifications (continued)

18.3 Signal Definitions

LP-serial links use differential signaling. This section defines terms used in the description and specification of differential signals. Figure 51 shows how the signals are defined. The figures show waveforms for either a transmitter output (TD and \overline{TD}) or a receiver input (RD and \overline{RD}). Each signal swings between A volts and B volts where A > B. Using these waveforms, the definitions are as follows:

- 1. The transmitter output signals and the receiver input signals TD, $\overline{\text{TD}}$, RD, and $\overline{\text{RD}}$ each have a peak-to-peak swing of A B volts.
- 2. The differential output signal of the transmitter, V_{OD} , is defined as $V_{TD} V_{\overline{TD}}$.
- 3. The differential input signal of the receiver, V_{ID} , is defined as $V_{RD} V_{\overline{RD}}$.
- 4. The differential output signal of the transmitter and the differential input signal of the receiver each range from A B to -(A B) volts.
- 5. The peak value of the differential transmitter output signal and the differential receiver input signal is A B volts.
- 6. The peak-to-peak value of the differential transmitter output signal and the differential receiver input signal is $2 \times (A B)$ volts.

Figure 51. Differential Peak–Peak Voltage of Transmitter or Receiver

To illustrate these definitions using real values, consider the case of a CML (current mode logic) transmitter that has a common mode voltage of 2.25 V and each of its outputs, TD and TD, has a swing that goes between 2.5 and 2.0 V. Using these values, the peak-to-peak voltage swing of the signals TD and TD is 500 mVp-p. The differential output signal ranges between 500 and -500 mV. The peak differential voltage is 500 mV. The peak-to-peak differential voltage is 1000 mVp-p.

18.4 Equalization

With the use of high-speed serial links, the interconnect media causes degradation of the signal at the receiver. Effects such as inter-symbol interference (ISI) or data dependent jitter are produced. This loss can be large enough to degrade the eye opening at the receiver beyond what is allowed in the specification. To negate a portion of these effects, equalization can be used. The most common equalization techniques that can be used are:

- A passive high pass filter network placed at the receiver. This is often referred to as passive equalization.
- The use of active circuits in the receiver. This is often referred to as adaptive equalization.

19.3 Pinout Listings

NOTE

The DMA_DACK[0:1] and TEST_SEL/TEST_SEL pins must be set to a proper state during POR configuration. See the pinlist table of the individual device for more details.

For MPC8548/47/45, GPIOs are still available on PCI1_AD[63:32]/PC2_AD[31:0] pins if they are not used for PCI functionality.

For MPC8545/43, eTSEC does not support 16 bit FIFO mode.

Table 71 provides the pinout listing for the MPC8548E 783 FC-PBGA package.

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	PCI1 and PCI2 (One 64-Bit or Two 32-Bit)			
PCI1_AD[63:32]/PCI2_AD[31:0]	AB14, AC15, AA15, Y16, W16, AB16, AC16, AA16, AE17, AA18, W18, AC17, AD16, AE16, Y17, AC18, AB18, AA19, AB19, AB21, AA20, AC20, AB20, AB22, AC22, AD21, AB23, AF23, AD23, AE23, AC23, AC24	I/O	OV _{DD}	17
PCI1_AD[31:0]	AH6, AE7, AF7, AG7, AH7, AF8, AH8, AE9, AH9, AC10, AB10, AD10, AG10, AA10, AH10, AA11, AB12, AE12, AG12, AH12, AB13, AA12, AC13, AE13, Y14, W13, AG13, V14, AH13, AC14, Y15, AB15	I/O	OV _{DD}	17
PCI1_C_BE[7:4]/PCI2_C_BE[3:0]	AF15, AD14, AE15, AD15	I/O	OV _{DD}	17
PCI1_C_BE[3:0]	AF9, AD11, Y12, Y13	I/O	OV _{DD}	17
PCI1_PAR64/PCI2_PAR	W15	I/O	OV _{DD}	
PCI1_GNT[4:1]	AG6, AE6, AF5, AH5	0	OV _{DD}	5, 9, 35
PCI1_GNT0	AG5	I/O	OV _{DD}	—
PCI1_IRDY	AF11	I/O	OV _{DD}	2
PCI1_PAR	AD12	I/O	OV _{DD}	—
PCI1_PERR	AC12	I/O	OV _{DD}	2
PCI1_SERR	V13	I/O	OV _{DD}	2, 4
PCI1_STOP	W12	I/O	OV _{DD}	2
PCI1_TRDY	AG11	I/O	OV _{DD}	2

Table 71. MPC8548E Pinout Listing

Signal	Package Pin Number	Pin Type	Power Supply	Notes
PCI1_REQ[4:1]	AH2, AG4, AG3, AH4	l	OV _{DD}	—
				_
				_
				_
				_
PCI1_REQ0	AH3	I/O	OV _{DD}	—
PCI1_CLK	AH26	I	OV _{DD}	39
PCI1_DEVSEL	AH11	I/O	OV _{DD}	2
PCI1_FRAME	AE11	I/O	OV _{DD}	2
PCI1_IDSEL	AG9	I	OV _{DD}	—
PCI1_REQ64/PCI2_FRAME	AF14	I/O	OV _{DD}	2, 5, 10
PCI1_ACK64/PCI2_DEVSEL	V15	I/O	OV _{DD}	2
PCI2_CLK	AE28	I	OV _{DD}	39
PCI2_IRDY	AD26	I/O	OV _{DD}	2
PCI2_PERR	AD25	I/O	OV _{DD}	2
PCI2_GNT[4:1]	AE26, AG24, AF25, AE25	0	OV _{DD}	5, 9, 35
PCI2_GNT0	AG25	I/O	OV _{DD}	_
PCI2_SERR	AD24	I/O	OV _{DD}	2, 4
PCI2_STOP	AF24	I/O	OV _{DD}	2
PCI2_TRDY	AD27	I/O	OV _{DD}	2
PCI2_REQ[4:1]	AD28, AE27, W17, AF26	I	OV _{DD}	—
PCI2_REQ0	AH25	I/O	OV _{DD}	—
	DDR SDRAM Memory Interface			
MDQ[0:63]	L18, J18, K14, L13, L19, M18, L15, L14, A17, B17, A13, B12, C18, B18, B13, A12, H18, F18, J14, F15, K19, J19, H16, K15, D17, G16, K13, D14, D18, F17, F14, E14, A7, A6, D5, A4, C8, D7, B5, B4, A2, B1, D1, E4, A3, B2, D2, E3, F3, G4, J5, K5, F6, G5, J6, K4, J1, K2, M5, M3, J3, J2, L1, M6	I/O	GV _{DD}	
MECC[0:7]	H13, F13, F11, C11, J13, G13, D12, M12	I/O	GV _{DD}	—
MDM[0:8]	M17, C16, K17, E16, B6, C4, H4, K1, E13	0	GV _{DD}	
MDQS[0:8]	M15, A16, G17, G14, A5, D3, H1, L2, C13	I/O	GV _{DD}	_
MDQS[0:8]	L17, B16, J16, H14, C6, C2, H3, L4, D13	I/O	GV _{DD}	
MA[0:15]	A8, F9, D9, B9, A9, L10, M10, H10, K10, G10, B8, E10, B10, G6, A10, L11	0	GV _{DD}	_
MBA[0:2]	F7, J7, M11	0	GV _{DD}	_

Table 71. MPC8548E Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
LV _{DD}	N8, R7, T9, U6	Power for TSEC1 and TSEC2 (2.5 V, 3.3 V)	LV _{DD}	_
TV _{DD}	W9, Y6	Power for TSEC3 and TSEC4 (2,5 V, 3.3 V)	TV _{DD}	_
GV _{DD}	B3, B11, C7, C9, C14, C17, D4, D6, D10, D15, E2, E8, E11, E18, F5, F12, F16, G3, G7, G9, G11, H5, H12, H15, H17, J10, K3, K12, K16, K18, L6, M4, M8, M13	Power for DDR1 and DDR2 DRAM I/O voltage (1.8 V, 2.5)	GV _{DD}	
BV _{DD}	C21, C24, C27, E20, E25, G19, G23, H26, J20	Power for local bus (1.8 V, 2.5 V, 3.3 V)	BV _{DD}	_
V _{DD}	M19, N12, N14, N16, N18, P11, P13, P15, P17, P19, R12, R14, R16, R18, T11, T13, T15, T17, T19, U12, U14, U16, U18, V17, V19	Power for core (1.1 V)	V _{DD}	_
SV _{DD}	L25, L27, M24, N28, P24, P26, R24, R27, T25, V24, V26, W24, W27, Y25, AA28, AC27	Core Power for SerDes transceivers (1.1 V)	SV _{DD}	_
XV _{DD}	L20, L22, N23, P21, R22, T20, U23, V21, W22, Y20	Pad Power for SerDes transceivers (1.1 V)	XV _{DD}	_
AVDD_LBIU	J28	Power for local bus PLL (1.1 V)	—	26
AVDD_PCI1	AH21	Power for PCI1 PLL (1.1 V)	_	26
AVDD_PCI2	AH22	Power for PCI2 PLL (1.1 V)	_	26
AVDD_CORE	AH15	Power for e500 PLL (1.1 V)	—	26
AVDD_PLAT	AH19	Powerfor CCB PLL (1.1 V)		26
AVDD_SRDS	U25	Power for SRDSPLL (1.1 V)		26
SENSEVDD	M14	0	V _{DD}	13

Table 71. MPC8548E Pinout Listing (continued)

Table 72	. MPC8547E	Pinout Listing	(continued)
----------	------------	-----------------------	-------------

Signal	Package Pin Number	Pin Type	Power Supply	Notes
Reserved	AE26	_		2
cfg_pci1_clk	AG24	I	OV _{DD}	5
Reserved	AF25	_		101
Reserved	AE25	_	_	2
Reserved	AG25	_	_	2
Reserved	AD24	_	_	2
Reserved	AF24	_		2
Reserved	AD27	_		2
Reserved	AD28, AE27, W17, AF26	_		2
Reserved	AH25	_		2
	DDR SDRAM Memory Interface			
MDQ[0:63]	L18, J18, K14, L13, L19, M18, L15, L14, A17, B17, A13, B12, C18, B18, B13, A12, H18, F18, J14, F15, K19, J19, H16, K15, D17, G16, K13, D14, D18, F17, F14, E14, A7, A6, D5, A4, C8, D7, B5, B4, A2, B1, D1, E4, A3, B2, D2, E3, F3, G4, J5, K5, F6, G5, J6, K4, J1, K2, M5, M3, J3, J2, L1, M6	I/O	GV _{DD}	_
MECC[0:7]	H13, F13, F11, C11, J13, G13, D12, M12	I/O	GV _{DD}	—
MDM[0:8]	M17, C16, K17, E16, B6, C4, H4, K1, E13	0	GV _{DD}	—
MDQS[0:8]	M15, A16, G17, G14, A5, D3, H1, L2, C13	I/O	GV _{DD}	—
MDQS[0:8]	L17, B16, J16, H14, C6, C2, H3, L4, D13	I/O	GV _{DD}	—
MA[0:15]	A8, F9, D9, B9, A9, L10, M10, H10, K10, G10, B8, E10, B10, G6, A10, L11	0	GV _{DD}	_
MBA[0:2]	F7, J7, M11	0	GV _{DD}	—
MWE	E7	0	GV _{DD}	—
MCAS	H7	0	GV _{DD}	—
MRAS	L8	0	GV _{DD}	—
MCKE[0:3]	F10, C10, J11, H11	0	GV _{DD}	11
MCS[0:3]	K8, J8, G8, F8	0	GV _{DD}	—
MCK[0:5]	H9, B15, G2, M9, A14, F1	0	GV _{DD}	—
MCK[0:5]	J9, A15, G1, L9, B14, F2	0	GV _{DD}	_
MODT[0:3]	E6, K6, L7, M7	0	GV _{DD}	_
MDIC[0:1]	A19, B19	I/O	GV _{DD}	36

Signal	Package Pin Number	Pin Type	Power Supply	Notes		
Reserved	U20, V22, W20, Y22	_	— 15			
Reserved	U21, V23, W21, Y23	—	— 15			
SD_PLL_TPD	U28	0	XV _{DD}	24		
SD_REF_CLK	T28	I	XV _{DD}	—		
SD_REF_CLK	T27	I	XV _{DD} —			
Reserved	AC1, AC3	—	— 2			
Reserved	M26, V28	—	—	32		
Reserved	M25, V27	—	— 34			
Reserved	M20, M21, T22, T23	—	—	38		
General-Purpose Output						
GPOUT[24:31]	K26, K25, H27, G28, H25, J26, K24, K23	0	BV _{DD}	—		
	System Control					
HRESET	AG17	I	OV _{DD}	—		
HRESET_REQ	AG16	0	OV _{DD}	29		
SRESET	AG20	I	OV _{DD}	—		
CKSTP_IN	AA9	I	OV _{DD}	—		
CKSTP_OUT	AA8	0	OV _{DD}	2, 4		
Debug						
TRIG_IN	AB2	I	OV _{DD}	—		
TRIG_OUT/READY/QUIESCE	AB1	0	OV _{DD}	6, 9, 19, 29		
MSRCID[0:1]	AE4, AG2	0	OV _{DD}	5, 6, 9		
MSRCID[2:4]	AF3, AF1, AF2	0	OV _{DD}	6, 19, 29		
MDVAL	AE5	O OV _{DD} 6		6		
CLK_OUT	AE21	0	OV _{DD}	11		
Clock						
RTC	AF16	I	OV _{DD}	—		
SYSCLK	AH17	I	OV _{DD}	—		
JTAG						
тск	AG28	I	OV _{DD}	—		
TDI	AH28	Ι	OV _{DD}	12		
TDO	AF28	0	OV _{DD}	_		
TMS	AH27	I	OV _{DD} 12			
TRST	AH23	Ι	OV _{DD} 12			

Signal	Package Pin Number	Pin Type	Power Supply	Notes			
IIC1_SDA	AG21	I/O	OV _{DD}	4, 27			
IIC2_SCL	AG15	I/O	OV _{DD}	4, 27			
IIC2_SDA	AG14	I/O	OV _{DD}	4, 27			
SerDes							
SD_RX[0:7]	M28, N26, P28, R26, W26, Y28, AA26, AB28	I	XV _{DD}	—			
SD_RX[0:7]	M27, N25, P27, R25, W25, Y27, AA25, AB27	I	XV _{DD}	—			
SD_TX[0:7]	M22, N20, P22, R20, U20, V22, W20, Y22	0	XV _{DD}	—			
SD_TX[0:7]	M23, N21, P23, R21, U21, V23, W21, Y23	0	XV _{DD}	—			
SD_PLL_TPD	U28	0	XV _{DD}	24			
SD_REF_CLK	T28	I	XV _{DD}	—			
SD_REF_CLK	T27	I	XV _{DD}	—			
Reserved	AC1, AC3		_	2			
Reserved	M26, V28	_	_	32			
Reserved	M25, V27	_	_	34			
Reserved	M20, M21, T22, T23		_	38			
	General-Purpose Output						
GPOUT[24:31]	K26, K25, H27, G28, H25, J26, K24, K23	0	BV _{DD}	—			
System Control							
HRESET	AG17	I	OV _{DD}	—			
HRESET_REQ	AG16	0	OV _{DD}	29			
SRESET	AG20	I	OV _{DD}	—			
CKSTP_IN	AA9	I	OV _{DD} —				
CKSTP_OUT	AA8	0	OV _{DD}	2, 4			
Debug							
TRIG_IN	AB2	I	OV _{DD}	—			
TRIG_OUT/READY/QUIESCE	AB1	0	OV _{DD}	6, 9, 19, 29			
MSRCID[0:1]	AE4, AG2	0	OV _{DD}	5, 6, 9			
MSRCID[2:4]	AF3, AF1, AF2	0	OV _{DD}	6, 19, 29			
MDVAL	AE5	0	OV _{DD}	6			
CLK_OUT	AE21	0	OV _{DD}	11			
Clock							
RTC	AF16	I	OV _{DD}	—			
SYSCLK	AH17	I	OV _{DD}				

System Design Information

level must always be equivalent to V_{DD} , and preferably these voltages are derived directly from V_{DD} through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to provide independent filter circuits per PLL power supply as illustrated in Figure 57, one to each of the AV_{DD} pins. By providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz range. It must be built with surface mount capacitors with minimum Effective Series Inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

Each circuit must be placed as close as possible to the specific AV_{DD} pin being supplied to minimize noise coupled from nearby circuits. It must be routed directly from the capacitors to the AV_{DD} pin, which is on the periphery of the footprint, without the inductance of vias.

Figure 57 through Figure 59 shows the PLL power supply filter circuits.

Figure 57. PLL Power Supply Filter Circuit with PLAT Pins

Figure 58. PLL Power Supply Filter Circuit with CORE Pins

Figure 59. PLL Power Supply Filter Circuit with PCI/LBIU Pins

The AV_{DD}_SRDS signal provides power for the analog portions of the SerDes PLL. To ensure stability of the internal clock, the power supplied to the PLL is filtered using a circuit similar to the one shown in following figure. For maximum effectiveness, the filter circuit is placed as closely as possible to the AV_{DD}_SRDS ball to ensure it filters out as much noise as possible. The ground connection must be near the AV_{DD}_SRDS ball. The 0.003- μ F capacitor is closest to the ball, followed by the two 2.2 μ F capacitors, and finally the 1 Ω resistor to the board supply plane. The capacitors are connected from AV_{DD}_SRDS to

as shown in Figure 63. If this is not possible, the isolation resistor allows future access to $\overline{\text{TRST}}$ in case a JTAG interface may need to be wired onto the system in future debug situations.

• No pull-up/pull-down is required for TDI, TMS, TDO, or TCK.

Figure 62. COP Connector Physical Pinout

Rev. Number	Date	Substantive Change(s)	
4	04/2009	 In Table 1, "Absolute Maximum Ratings ¹," and in Table 2, "Recommended Operating Conditions," moved text, "MII management voltage" from LV_{DD}/TV_{DD} to OV_{DD}, added "Ethernet management" to OVDD row of input voltage section. In Table 5, "SYSCLK AC Timing Specifications," added notes 7 and 8 to SYSCLK frequency and cycle 	
		 time. In Table 36, "MII Management DC Electrical Characteristics," changed all instances of LV_{DD}/OV_{DD} to OV_{DD}. Modified Section 16, "High-Speed Serial Interfaces (HSSI)," to reflect that there is only one SerDes. Modified DDR clk rate min from 133 to 166 MHz. Modified note in Table 75, "Processor Core Clocking Specifications (MPC8548E and MPC8547E), "." In Table 56, "Differential Transmitter (TX) Output Specifications," modified equations in Comments column, and changed all instances of "LO" to "LO." Also added note 8. In Table 57, "Differential Receiver (RX) Input Specifications," modified equations in Comments column, and in note 3, changed "TRX-EYE-MEDIAN-to-MAX-JITTER," to "T_{RX-EYE-MEDIAN-to-MAX-JITTER}." Modified Table 83, "Frequency Options of SYSCLK with Respect to Memory Bus Speeds." Added a note on Section 4.1, "System Clock Timing," to limit the SYSCLK to 100 MHz if the core 	
		 frequency is less than 1200 MHz In Table 71, "MPC8548E Pinout ListingTable 72, "MPC8547E Pinout ListingTable 73, "MPC8545E Pinout ListingTable 74, "MPC8543E Pinout Listing," added note 5 to LA[28:31]. Added note to Table 83, "Frequency Options of SYSCLK with Respect to Memory Bus Speeds." 	
3	01/2009	 [Section 4.6, "Platform Frequency Requirements for PCI-Express and Serial RapidIO." Changed minimum frequency equation to be 527 MHz for PCI x8. In Table 5, added note 7. Section 4.5, "Platform to FIFO Restrictions." Changed platform clock frequency to 4.2. Section 8.1, "Enhanced Three-Speed Ethernet Controller (eTSEC) (10/100/1Gb Mbps)—GMII/MII/TBI/RGMII/RTBI/RMII Electrical Characteristics." Added MII after GMII and add 'or 2.5 V' after 3.3 V. In Table 23, modified table title to include GMII, MII, RMII, and TBI. In Table 24 and Table 25, changed clock period minimum to 5.3. In Table 25, added a note 	
		 In Table 25, added a note. In Table 26, Table 27, Table 28, Table 29, and Table 30, removed subtitle from table title. In Table 30 and Figure 15, changed all instances of PMA to TSEC<i>n</i>. In Section 8.2.5, "TBI Single-Clock Mode AC Specifications." Replaced first paragraph. In Table 34, Table 35, Figure 18, and Figure 20, changed all instances of REF_CLK to TSEC<i>n</i>_TX_CLK. In Table 36, changed all instances of OVpp to LVpp. 	
		 In Table 37, "MII Management AC Timing Specifications," changed MDC minimum clock pulse width high from 32 to 48 ns. Added new section, Section 16, "High-Speed Serial Interfaces (HSSI)." Section 16.1, "DC Requirements for PCI Express SD_REF_CLK and SD_REF_CLK." Added new paragraph. Section 17.1, "DC Requirements for Serial RapidIO SD_REF_CLK and SD_REF_CLK." Added new paragraph. Added information to Figure 63, both in figure and in note. Section 22.3, "Decoupling Recommendations." Modified the recommendation. 	
		Table 87, "Part Numbering Nomenclature." In Silicon Version column added Ver. 2.1.2.	

Table 88. Document Revision History (continued)