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Overview

— AESU—Advanced Encryption Standard unit

– Implements the Rijndael symmetric key cipher

– ECB, CBC, CTR, and CCM modes

– 128-, 192-, and 256-bit key lengths

— AFEU—ARC four execution unit

–  Implements a stream cipher compatible with the RC4 algorithm 

–  40- to 128-bit programmable key

— MDEU—message digest execution unit

– SHA with 160- or 256-bit message digest 

– MD5 with 128-bit message digest

– HMAC with either algorithm

— KEU—Kasumi execution unit 

– Implements F8 algorithm for encryption and F9 algorithm for integrity checking

– Also supports A5/3 and GEA-3 algorithms

— RNG—random number generator

— XOR engine for parity checking in RAID storage applications

• Dual I2C controllers

— Two-wire interface

— Multiple master support

— Master or slave I2C mode support

— On-chip digital filtering rejects spikes on the bus

• Boot sequencer

— Optionally loads configuration data from serial ROM at reset via the I2C interface

— Can be used to initialize configuration registers and/or memory

— Supports extended I2C addressing mode

— Data integrity checked with preamble signature and CRC

• DUART

— Two 4-wire interfaces (SIN, SOUT, RTS, CTS)

— Programming model compatible with the original 16450 UART and the PC16550D

• Local bus controller (LBC)

— Multiplexed 32-bit address and data bus operating at up to 133 MHz

— Eight chip selects support eight external slaves

— Up to eight-beat burst transfers

— The 32-, 16-, and 8-bit port sizes are controlled by an on-chip memory controller.

— Three protocol engines available on a per chip select basis:

– General-purpose chip select machine (GPCM)

– Three user programmable machines (UPMs)
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Input Clocks

4.3 eTSEC Gigabit Reference Clock Timing

The following table provides the eTSEC gigabit reference clocks (EC_GTX_CLK125) AC timing 
specifications for the device.

4.4 PCI/PCI-X Reference Clock Timing

When the PCI/PCI-X controller is configured for asynchronous operation, the reference clock for the 
PCI/PCI-x controller is not the SYSCLK input, but instead the PCIn_CLK. The following table provides 
the PCI/PCI-X reference clock AC timing specifications for the device.

Table 6. EC_GTX_CLK125 AC Timing Specifications

Parameter/Condition Symbol Min Typ Max Unit Notes

EC_GTX_CLK125 frequency fG125 — 125 — MHz —

EC_GTX_CLK125 cycle time tG125 — 8 — ns

EC_GTX_CLK125 rise and fall time

L/TVDD = 2.5 V
L/TVDD = 3.3 V

tG125R, tG125F — —
0.75
1.0

ns 1

EC_GTX_CLK125 duty cycle

GMII, TBI
1000Base-T for RGMII, RTBI

tG125H/tG125
45
47

—
55
53

% 2, 3

Notes:

1. Rise and fall times for EC_GTX_CLK125 are measured from 0.5 and 2.0 V for L/TVDD = 2.5 V, and from 0.6 and 2.7 V for 
L/TVDD = 3.3 V.

2. Timing is guaranteed by design and characterization.

3. EC_GTX_CLK125 is used to generate the GTX clock TSECn_GTX_CLK for the eTSEC transmitter with 2% degradation. 
EC_GTX_CLK125 duty cycle can be loosened from 47/53% as long as the PHY device can tolerate the duty cycle generated 
by the TSECn_ GTX_CLK. See Section 8.2.6, “RGMII and RTBI AC Timing Specifications,” for duty cycle for 10Base-T and 
100Base-T reference clock.

Table 7. PCIn_CLK AC Timing Specifications
At recommended operating conditions (see Table 2) with OVDD = 3.3 V ± 165 mV.

Parameter/Condition Symbol Min Typ Max Unit Notes

PCIn_CLK frequency fPCICLK 16 — 133 MHz —

PCIn_CLK cycle time tPCICLK 7.5 — 60 ns —

PCIn_CLK rise and fall time tPCIKH, tPCIKL 0.6 1.0 2.1 ns 1, 2

PCIn_CLK duty cycle tPCIKHKL/tPCICLK 40 — 60 % 2

Notes:
1. Rise and fall times for SYSCLK are measured at 0.6 and 2.7 V.

2. Timing is guaranteed by design and characterization.
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4.5 Platform to FIFO Restrictions

Note the following FIFO maximum speed restrictions based on platform speed.

For FIFO GMII mode: 

FIFO TX/RX clock frequency  platform clock frequency/4.2

For example, if the platform frequency is 533 MHz, the FIFO TX/RX clock frequency must be no more 
than 127 MHz.

For FIFO encoded mode: 

FIFO TX/RX clock frequency  platform clock frequency/4.2

For example, if the platform frequency is 533 MHz, the FIFO TX/RX clock frequency must be no more 
than 167 MHz.

4.6 Platform Frequency Requirements for PCI-Express and Serial 
RapidIO

The CCB clock frequency must be considered for proper operation of the high-speed PCI-Express and 
Serial RapidIO interfaces as described below.

For proper PCI Express operation, the CCB clock frequency must be greater than:
527 MHz  (PCI-Express link width)

8

See MPC8548ERM, Rev. 2, PowerQUICC III Integrated Processor Family Reference Manual, 
Section 18.1.3.2, “Link Width,” for PCI Express interface width details.

For proper serial RapidIO operation, the CCB clock frequency must be greater than:
2 (0.80)  (Serial RapidIO interface frequency) × (Serial RapidIO link width)

64

See MPC8548ERM, Rev. 2, PowerQUICC III Integrated Processor Family Reference Manual, 
Section 17.4, “1x/4x LP-Serial Signal Descriptions,” for serial RapidIO interface width and frequency 
details.

4.7 Other Input Clocks

For information on the input clocks of other functional blocks of the platform see the specific section of 
this document.



MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 9

34 Freescale Semiconductor
 

Enhanced Three-Speed Ethernet (eTSEC)

Figure 13 shows the MII receive AC timing diagram.

Figure 13. MII Receive AC Timing Diagram

8.2.4 TBI AC Timing Specifications

This section describes the TBI transmit and receive AC timing specifications.

8.2.4.1 TBI Transmit AC Timing Specifications

This table provides the TBI transmit AC timing specifications.

Table 30. TBI Transmit AC Timing Specifications

Parameter/Condition Symbol1 Min Typ Max Unit

TCG[9:0] setup time GTX_CLK going high tTTKHDV 2.0 — — ns

TCG[9:0] hold time from GTX_CLK going high tTTKHDX 1.0 — — ns

GTX_CLK rise (20%–80%) tTTXR
2 — — 1.0 ns

GTX_CLK fall time (80%–20%) tTTXF
2 — — 1.0 ns

Notes:

1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state )(reference)(state) for 
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tTTKHDV symbolizes the TBI 
transmit timing (TT) with respect to the time from tTTX (K) going high (H) until the referenced data signals (D) reach the valid 
state (V) or setup time. Also, tTTKHDX symbolizes the TBI transmit timing (TT) with respect to the time from tTTX (K) going high 
(H) until the referenced data signals (D) reach the invalid state (X) or hold time. Note that, in general, the clock reference 
symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript 
of tTTX represents the TBI (T) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate 
letter: R (rise) or F (fall).

2. Guaranteed by design.

RX_CLK

RXD[3:0]

tMRDXKL

tMRX

tMRXH

tMRXR

tMRXF

RX_DV
RX_ER

tMRDVKH

Valid Data
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A timing diagram for TBI receive appears in Figure 16.
.

Figure 16. TBI Single-Clock Mode Receive AC Timing Diagram

8.2.6 RGMII and RTBI AC Timing Specifications

This table presents the RGMII and RTBI AC timing specifications.

Table 33. RGMII and RTBI AC Timing Specifications

Parameter/Condition Symbol1 Min Typ Max Unit

Data to clock output skew (at transmitter) tSKRGT
5 –5006 0 5006 ps

Data to clock input skew (at receiver) 2 tSKRGT 1.0 — 2.8 ns

Clock period 3 tRGT
5 7.2 8.0 8.8 ns

Duty cycle for 10BASE-T and 100BASE-TX3, 4 tRGTH/tRGT
5 45 50 55 %

Rise time (20%–80%) tRGTR
5 — — 0.75 ns

Fall time (20%–80%) tRGTF
5 — — 0.75 ns

Notes:

1. In general, the clock reference symbol representation for this section is based on the symbols RGT to represent RGMII and 
RTBI timing. For example, the subscript of tRGT represents the TBI (T) receive (RX) clock. Note also that the notation for rise 
(R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews, the subscript is 
skew (SK) followed by the clock that is being skewed (RGT).

2. This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns is 
added to the associated clock signal.

3. For 10 and 100 Mbps, tRGT scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.

4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long 
as the minimum duty cycle is not violated and stretching occurs for no more than three tRGT of the lowest speed transitioned 
between.

5. Guaranteed by characterization.

6.  In rev 1.0 silicon, due to errata, tSKRGT is -650 ps (min) and 650 ps (max). See “eTSEC 10” in the device errata document.

tTRRX

tTRRH tTRRF

tTRRR

RX_CLK

RCG[9:0] Valid Data

tTRRDXKHtTRRDVKH
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I2C

Figure 34 shows the AC timing diagram for the I2C bus.

Figure 34. I2C Bus AC Timing Diagram
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Table 56. Differential Transmitter (TX) Output Specifications

Symbol Parameter Min Nom Max Unit Comments

UI Unit interval 399.88 400 400.12 ps Each UI is 400 ps ± 300 ppm. UI does not account 
for spread spectrum clock dictated variations. 
See Note 1.

VTX-DIFFp-p Differential 
peak-to-peak 
output voltage

0.8 — 1.2 V VTX-DIFFp-p = 2 × |VTX-D+ – VTX-D–|. See Note 2.

VTX-DE-RATIO De- emphasized 
differential 

output voltage 
(ratio)

–3.0 –3.5 –4.0 dB Ratio of the VTX-DIFFp-p of the second and 
following bits after a transition divided by the 
VTX-DIFFp-p of the first bit after a transition. 
See Note 2.

TTX-EYE Minimum TX 
eye width

0.70 — — UI The maximum transmitter jitter can be derived as 
TTX-MAX-JITTER = 1 – TTX-EYE = 0.3 UI.

See Notes 2 and 3.

TTX-EYE-MEDIAN-to-

MAX-JITTER

Maximum time 
between the 

jitter median and 
maximum 

deviation from 
the median.

— — 0.15 UI Jitter is defined as the measurement variation of 
the crossing points (VTX-DIFFp-p = 0 V) in relation 
to a recovered TX UI. A recovered TX UI is 
calculated over 3500 consecutive unit intervals of 
sample data. Jitter is measured using all edges of 
the 250 consecutive UI in the center of the 3500 
UI used for calculating the TX UI. 
See Notes 2 and 3.

TTX-RISE, TTX-FALL D+/D– TX output 
rise/fall time

0.125 — — UI See Notes 2 and 5.

VTX-CM-ACp RMS AC peak 
common mode 
output voltage

— — 20 mV VTX-CM-ACp = RMS(|VTXD+ + VTXD–|/2 – 
VTX-CM-DC)

VTX-CM-DC = DC(avg) of |VTX-D+ + VTX-D–|/2. 

See Note 2.

VTX-CM-DC-ACTIVE-

IDLE-DELTA

Absolute delta of 
dc common 

mode voltage 
during L0 and 
electrical idle

0 — 100 mV |VTX-CM-DC (during L0) + VTX-CM-Idle-DC (during 

electrical idle)|  100 mV

VTX-CM-DC = DC(avg) of |VTX-D+ + VTX-D–|/2 [L0]

VTX-CM-Idle-DC = DC(avg) of |VTX-D+ + VTX-D–|/2 
[electrical idle] 

See Note 2.

VTX-CM-DC-LINE-DELTA Absolute delta of 
DC common 

mode between 
D+ and D–

0 — 25 mV |VTX-CM-DC-D+ – VTX-CM-DC-D–|  25 mV

VTX-CM-DC-D+ = DC(avg) of |VTX-D+|

VTX-CM-DC-D–= DC(avg) of |VTX-D–|.

See Note 2.

VTX-IDLE-DIFFp Electrical idle 
differential peak 
output voltage

0 — 20 mV VTX-IDLE-DIFFp = |VTX-IDLE-D+ – VTX-IDLE-D–| 
 20 mV.

See Note 2. 

VTX-RCV-DETECT The amount of 
voltage change 
allowed during 

receiver 
detection

— — 600 mV The total amount of voltage change that a 
transmitter can apply to sense whether a low 
impedance receiver is present. See Note 6.
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Figure 48. Minimum Transmitter Timing and Voltage Output Compliance Specifications

17.4.3 Differential Receiver (RX) Input Specifications

Table 57 defines the specifications for the differential input at all receivers (RXs). The parameters are 
specified at the component pins.

Table 57. Differential Receiver (RX) Input Specifications

Symbol Parameter Min Nom Max Unit Comments

UI Unit interval 399.88 400 400.12 ps Each UI is 400 ps ± 300 ppm. UI does not account 
for spread spectrum clock dictated variations. 
See Note 1.

VRX-DIFFp-p Differential 
peak-to-peak 
input voltage

0.175 — 1.200 V VRX-DIFFp-p = 2 × |VRX-D+ – VRX-D–|. See Note 2.

TRX-EYE Minimum 
receiver eye 

width

0.4 — — UI The maximum interconnect media and transmitter 
jitter that can be tolerated by the receiver can be 
derived as TRX-MAX-JITTER = 1 – TRX-EYE = 0.6 UI.

See Notes 2 and 3.

TRX-EYE-MEDIAN-to-

MAX-JITTER

Maximum time 
between the 

jitter median and 
maximum 

deviation from 
the median

— — 0.3 UI Jitter is defined as the measurement variation of 
the crossing points (VRX-DIFFp-p = 0 V) in relation 
to a recovered TX UI. A recovered TX UI is 
calculated over 3500 consecutive unit intervals of 
sample data. Jitter is measured using all edges of 
the 250 consecutive UI in the center of the 
3500 UI used for calculating the TX UI. 
See Notes 2, 3, and 7.

VTX-DIFF = 0 mV
(D+ D– Crossing Point)

[De-Emphasized Bit]

0.07 UI = UI – 0.3 UI (JTX-TOTAL-MAX)

566 mV (3 dB) >= VTX-DIFFp-p-MIN >= 505 mV (4 dB)

[Transition Bit]
VTX-DIFFp-p-MIN = 800 mV

VRX-DIFF = 0 mV
(D+ D– Crossing Point)

[Transition Bit]
VTX-DIFFp-p-MIN = 800 mV
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VRX-CM-ACp AC peak 
common mode 
input voltage

— — 150 mV VRX-CM-ACp = |VRXD+ – VRXD-|/2 + VRX-CM-DC

VRX-CM-DC = DC(avg) of |VRX-D+ + VRX-D–| 2. 

See Note 2.

RLRX-DIFF Differential 
return loss

15 — — dB Measured over 50 MHz to 1.25 GHz with the D+ 
and D– lines biased at +300 mV and –300 mV, 
respectively. See Note 4.

RLRX-CM Common mode 
return loss

6 — — dB Measured over 50 MHz to 1.25 GHz with the D+ 
and D– lines biased at 0 V. See Note 4.

ZRX-DIFF-DC DC differential 
input impedance

80 100 120  RX DC differential mode impedance. See Note 5.

ZRX-DC DC input 
impedance

40 50 60  Required RX D+ as well as D– DC impedance 
(50 ± 20% tolerance). See Notes 2 and 5.

ZRX-HIGH-IMP-DC Powered down 
DC input 

impedance

200 k — —  Required RX D+ as well as D– DC impedance 
when the receiver terminations do not have 
power. See Note 6.

VRX-IDLE-DET-DIFFp-p Electrical idle 
detect threshold

65 — 175 mV VRX-IDLE-DET-DIFFp-p = 2 × |VRX-D+ –VRX-D–|. 

Measured at the package pins of the receiver 

TRX-IDLE-DET-DIFF-

ENTERTIME

Unexpected 
electrical idle 
enter detect 

threshold 
integration time

— — 10 ms An unexpected electrical idle (VRX-DIFFp-p < 
VRX-IDLE-DET-DIFFp-p) must be recognized no 
longer than TRX-IDLE-DET-DIFF-ENTERING to signal 
an unexpected idle condition.

Table 57. Differential Receiver (RX) Input Specifications (continued)

Symbol Parameter Min Nom Max Unit Comments
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The eye diagram must be valid for any 250 consecutive UIs.

A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is 
created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the 
TX UI.

NOTE

The reference impedance for return loss measurements is 50. to ground for 
both the D+ and D– line (that is, as measured by a vector network analyzer 
with 50- probes—see Figure 50). Note that the series capacitors, CTX, are 
optional for the return loss measurement.

Figure 49. Minimum Receiver Eye Timing and Voltage Compliance Specification

17.5.1 Compliance Test and Measurement Load

The AC timing and voltage parameters must be verified at the measurement point, as specified within 
0.2 inches of the package pins, into a test/measurement load shown in Figure 50.

NOTE

The allowance of the measurement point to be within 0.2 inches of the 
package pins is meant to acknowledge that package/board routing may 
benefit from D+ and D– not being exactly matched in length at the package 
pin boundary. 

Figure 50. Compliance Test/Measurement Load

VRX-DIFF = 0 mV
(D+ D– Crossing Point)

VRX-DIFF = 0 mV
(D+ D– Crossing Point)

VRX-DIFFp-p-MIN > 175 mV

0.4 UI = TRX-EYE-MIN

TX
Silicon

+ Package

C = CTX

C = CTX

R = 50  R = 50 

D+ Package
Pin

D– Package
Pin

D+ Package
Pin
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For each baud rate at which an LP-serial transmitter is specified to operate, the output eye pattern of the 
transmitter shall fall entirely within the unshaded portion of the transmitter output compliance mask shown 
in Figure 52 with the parameters specified in Table 65 when measured at the output pins of the device and 
the device is driving a 100- ± 5% differential resistive load. The output eye pattern of an LP-serial 

Table 63. Long Run Transmitter AC Timing Specifications—2.5 GBaud

Characteristic Symbol
Range

Unit Notes
Min Max

Output voltage VO –0.40 2.30 V Voltage relative to COMMON of either signal 
comprising a differential pair

Differential output voltage VDIFFPP 800 1600 mVp-p —

Deterministic jitter JD — 0.17 UI p-p —

Total jitter JT — 0.35 UI p-p —

Multiple output skew SMO — 1000 ps Skew at the transmitter output between lanes of a 
multilane link

Unit interval UI 400 400 ps ±100 ppm

Table 64. Long Run Transmitter AC Timing Specifications—3.125 GBaud

Characteristic Symbol
Range

Unit Notes
Min Max

Output voltage VO –0.40 2.30 V Voltage relative to COMMON of either signal 
comprising a differential pair

Differential output voltage VDIFFPP 800 1600 mVp-p —

Deterministic jitter JD — 0.17 UI p-p —

Total jitter JT — 0.35 UI p-p —

Multiple output skew SMO — 1000 ps Skew at the transmitter output between lanes of a 
multilane link

Unit interval UI 320 320 ps  ±100 ppm
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18.8 Receiver Eye Diagrams

For each baud rate at which an LP-serial receiver is specified to operate, the receiver shall meet the 
corresponding bit error rate specification (Table 66, Table 67, and Table 68) when the eye pattern of the 
receiver test signal (exclusive of sinusoidal jitter) falls entirely within the unshaded portion of the receiver 
input compliance mask shown in Figure 54 with the parameters specified in Table 69. The eye pattern of 
the receiver test signal is measured at the input pins of the receiving device with the device replaced with 
a 100- ± 5% differential resistive load.

Figure 54. Receiver Input Compliance Mask

18.9 Measurement and Test Requirements

Since the LP-serial electrical specification are guided by the XAUI electrical interface specified in 
Clause 47 of IEEE Std. 802.3ae-2002, the measurement and test requirements defined here are similarly 
guided by Clause 47. Additionally, the CJPAT test pattern defined in Annex 48A of IEEE Std. 

Table 69. Receiver Input Compliance Mask Parameters Exclusive of Sinusoidal Jitter

Receiver Type
VDIFFmin 

(mV)
VDIFFmax 

(mV)
A (UI) B (UI)

1.25 GBaud 100 800 0.275 0.400

2.5 GBaud 100 800 0.275 0.400

3.125 GBaud 100 800 0.275 0.400
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802.3ae-2002 is specified as the test pattern for use in eye pattern and jitter measurements. Annex 48B of 
IEEE Std. 802.3ae-2002 is recommended as a reference for additional information on jitter test methods.

18.9.1 Eye Template Measurements

For the purpose of eye template measurements, the effects of a single-pole high pass filter with a 3 dB point 
at (baud frequency)/1667 is applied to the jitter. The data pattern for template measurements is the 
continuous jitter test pattern (CJPAT) defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-serial 
link shall be active in both the transmit and receive directions, and opposite ends of the links shall use 
asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane 
implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. The 
amount of data represented in the eye shall be adequate to ensure that the bit error ratio is less than 10–12. 
The eye pattern shall be measured with AC coupling and the compliance template centered at 0 V 
differential. The left and right edges of the template shall be aligned with the mean zero crossing points of 
the measured data eye. The load for this test shall be 100- resistive ± 5% differential to 2.5 GHz. 

18.9.2 Jitter Test Measurements

For the purpose of jitter measurement, the effects of a single-pole high pass filter with a 3 dB point at (baud 
frequency)/1667 is applied to the jitter. The data pattern for jitter measurements is the Continuous Jitter test 
pattern (CJPAT) pattern defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-serial link shall be 
active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous 
clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations 
shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. Jitter shall be measured 
with AC coupling and at 0 V differential. Jitter measurement for the transmitter (or for calibration of a jitter 
tolerance setup) shall be performed with a test procedure resulting in a BER curve such as that described 
in Annex 48B of IEEE 802.3ae.

18.9.3 Transmit Jitter

Transmit jitter is measured at the driver output when terminated into a load of 100  resistive ± 5% 
differential to 2.5 GHz. 

18.9.4 Jitter Tolerance

Jitter tolerance is measured at the receiver using a jitter tolerance test signal. This signal is obtained by first 
producing the sum of deterministic and random jitter defined in Section 18.7, “Receiver Specifications,” 
and then adjusting the signal amplitude until the data eye contacts the 6 points of the minimum eye opening 
of the receive template shown in Figure 54 and Table 69. Note that for this to occur, the test signal must 
have vertical waveform symmetry about the average value and have horizontal symmetry (including jitter) 
about the mean zero crossing. Eye template measurement requirements are as defined above. Random 
jitter is calibrated using a high pass filter with a low frequency corner at 20 MHz and a 20 dB/decade 
roll-off below this. The required sinusoidal jitter specified in Section 18.7, “Receiver Specifications,” is 
then added to the signal and the test load is replaced by the receiver being tested. 
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TDO AF28 O OVDD —

TMS AH27 I OVDD 12

TRST AH23 I OVDD 12

DFT

L1_TSTCLK AC25 I OVDD 25

L2_TSTCLK AE22 I OVDD 25

LSSD_MODE AH20 I OVDD 25

TEST_SEL AH14 I OVDD 25

Thermal Management

THERM0 AG1 — — 14

THERM1 AH1 — — 14

Power Management

ASLEEP AH18 O OVDD 9, 19, 
29

Power and Ground Signals

GND A11, B7, B24, C1, C3, C5, C12, C15, C26, D8, 
D11, D16, D20, D22, E1, E5, E9, E12, E15, E17, 
F4, F26, G12, G15, G18, G21, G24, H2, H6, H8, 
H28, J4, J12, J15, J17, J27, K7, K9, K11, K27, 
L3, L5, L12, L16, N11, N13, N15, N17, N19, P4, 
P9, P12, P14, P16, P18, R11, R13, R15, R17, 
R19, T4, T12, T14, T16, T18, U8, U11, U13, 

U15, U17, U19, V4, V12, V18, W6, W19, Y4, Y9, 
Y11, Y19, AA6, AA14, AA17, AA22, AA23, AB4, 

AC2, AC11, AC19, AC26, AD5, AD9, AD22, 
AE3, AE14, AF6, AF10, AF13, AG8, AG27, 

K28, L24, L26, N24, N27, P25, R28, T24, T26, 
U24, V25, W28, Y24, Y26, AA24, AA27, AB25, 
AC28, L21, L23, N22, P20, R23, T21, U22, V20, 

W23, Y21, U27

— — —

OVDD V16, W11, W14, Y18, AA13, AA21, AB11, 
AB17, AB24, AC4, AC9, AC21, AD6, AD13, 
AD17, AD19, AE10, AE8, AE24, AF4, AF12, 

AF22, AF27, AG26

Power for PCI 
and other 
standards 

(3.3 V)

OVDD —

LVDD N8, R7, T9, U6 Power for 
TSEC1 and 

TSEC2
(2.5 V, 3.3 V)

LVDD —

TVDD W9, Y6 Power for 
TSEC3 and 

TSEC4
(2,5 V, 3.3 V)

TVDD —

Table 73. MPC8545E Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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GVDD B3, B11, C7, C9, C14, C17, D4, D6, D10, D15, 
E2, E8, E11, E18, F5, F12, F16, G3, G7, G9, 
G11, H5, H12, H15, H17, J10, K3, K12, K16, 

K18, L6, M4, M8, M13

Power for 
DDR1 and 

DDR2 DRAM 
I/O voltage 

(1.8 V, 2.5 V)

GVDD —

BVDD C21, C24, C27, E20, E25, G19, G23, H26, J20 Power for local 
bus (1.8 V, 

2.5 V, 3.3 V)

BVDD —

VDD M19, N12, N14, N16, N18, P11, P13, P15, P17, 
P19, R12, R14, R16, R18, T11, T13, T15, T17, 

T19, U12, U14, U16, U18, V17, V19

Power for core 
(1.1 V)

VDD —

SVDD L25, L27, M24, N28, P24, P26, R24, R27, T25, 
V24, V26, W24, W27, Y25, AA28, AC27

Core power for 
SerDes 

transceivers
(1.1 V)

SVDD —

XVDD L20, L22, N23, P21, R22, T20, U23, V21, W22, 
Y20

Pad power for 
SerDes 

transceivers
(1.1 V)

XVDD —

AVDD_LBIU J28 Power for local 
bus PLL
(1.1 V)

— 26

AVDD_PCI1 AH21 Power for 
PCI1 PLL

(1.1 V)

— 26

AVDD_PCI2 AH22 Power for 
PCI2 PLL

(1.1 V)

— 26

AVDD_CORE AH15 Power for 
e500 PLL (1.1 

V)

— 26

AVDD_PLAT AH19 Power for CCB 
PLL (1.1 V)

— 26

AVDD_SRDS U25 Power for 
SRDSPLL (1.1 

V)

— 26

SENSEVDD M14 O VDD 13

SENSEVSS M16 — — 13

Analog Signals

MVREF A18 I
Reference 

voltage signal 
for DDR 

MVREF —

Table 73. MPC8545E Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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20.3 e500 Core PLL Ratio

This table describes the clock ratio between the e500 core complex bus (CCB) and the e500 core clock. 
This ratio is determined by the binary value of LBCTL, LALE, and LGPL2 at power up, as shown in this 
table.

20.4 Frequency Options

Table 83This table shows the expected frequency values for the platform frequency when using a CCB 
clock to SYSCLK ratio in comparison to the memory bus clock speed. 

Table 82. e500 Core to CCB Clock Ratio

Binary Value of
LBCTL, LALE, LGPL2 

Signals
e500 core:CCB Clock Ratio

Binary Value of
LBCTL, LALE, LGPL2 

Signals
e500 core:CCB Clock Ratio

000 4:1 100 2:1

001 9:2 101 5:2

010 Reserved 110 3:1

011 3:2 111 7:2

Table 83. Frequency Options of SYSCLK with Respect to Memory Bus Speeds

CCB to 
SYSCLK Ratio

SYSCLK (MHz)

16.66 25 33.33 41.66 66.66 83 100 111 133.33

Platform/CCB Frequency (MHz)

2

3 333 400

4 333 400 445 533

5 333 415 500

6 400 500

8 333 533

9 375

10 333 417

12 400 500

16 400 533

20 333 500

Note:  Due to errata Gen 13 the max sys clk frequency must not exceed 100 MHz if the core clk frequency is below 
1200 MHz.
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21 Thermal
This section describes the thermal specifications of the device.

21.1 Thermal for Version 2.0 Silicon HiCTE FC-CBGA with Full Lid

This section describes the thermal specifications for the HiCTE FC-CBGA package for revision 2.0 
silicon.

This table shows the package thermal characteristics.

21.2 Thermal for Version 2.1.1, 2.1.2, and 2.1.3 Silicon FC-PBGA with 
Full Lid and Version 3.1.x Silicon with Stamped Lid

This section describes the thermal specifications for the FC-PBGA package for revision 2.1.1, 2.1.2, and 
3.0 silicon.

This table shows the package thermal characteristics.

Table 84. Package Thermal Characteristics for HiCTE FC-CBGA

Characteristic JEDEC Board Symbol Value Unit Notes

Die junction-to-ambient (natural convection) Single-layer board (1s) RJA 17 °C/W 1, 2

Die junction-to-ambient (natural convection) Four-layer board (2s2p) RJA 12 °C/W 1, 2

Die junction-to-ambient (200 ft/min) Single-layer board (1s) RJA 11 °C/W 1, 2

Die junction-to-ambient (200 ft/min) Four-layer board (2s2p) RJA 8 °C/W 1, 2

Die junction-to-board N/A RJB 3 °C/W 3

Die junction-to-case N/A RJC 0.8 °C/W 4

Notes:

1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) 
temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal 
resistance.

2. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.

3. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on 
the top surface of the board near the package.

4. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 
1012.1). The cold plate temperature is used for the case temperature, measured value includes the thermal resistance of the 
interface layer.

Table 85. Package Thermal Characteristics for FC-PBGA

Characteristic JEDEC Board Symbol Value Unit Notes

Die junction-to-ambient (natural convection) Single-layer board (1s) RJA 18 °C/W 1, 2

Die junction-to-ambient (natural convection) Four-layer board (2s2p) RJA 13 °C/W 1, 2

Die junction-to-ambient (200 ft/min) Single-layer board (1s) RJA 13 °C/W 1, 2

Die junction-to-ambient (200 ft/min) Four-layer board (2s2p) RJA 9 °C/W 1, 2
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21.3 Heat Sink Solution

Every system application has different conditions that the thermal management solution must solve. As 
such, providing a recommended heat sink has not been found to be very useful. When a heat sink is chosen, 
give special consideration to the mounting technique. Mounting the heat sink to the printed-circuit board 
is the recommended procedure using a maximum of 10 lbs force (45 Newtons) perpendicular to the 
package and board. Clipping the heat sink to the package is not recommended. 

22 System Design Information
This section provides electrical design recommendations for successful application of the device.

22.1 System Clocking

This device includes five PLLs, as follows:

1. The platform PLL generates the platform clock from the externally supplied SYSCLK input. The 
frequency ratio between the platform and SYSCLK is selected using the platform PLL ratio 
configuration bits as described in Section 20.2, “CCB/SYSCLK PLL Ratio.”

2. The e500 core PLL generates the core clock as a slave to the platform clock. The frequency ratio 
between the e500 core clock and the platform clock is selected using the e500 PLL ratio 
configuration bits as described in Section 20.3, “e500 Core PLL Ratio.”

3. The PCI PLL generates the clocking for the PCI bus.

4. The local bus PLL generates the clock for the local bus. 

5. There is a PLL for the SerDes block.

22.2 PLL Power Supply Filtering

Each of the PLLs listed above is provided with power through independent power supply pins 
(AVDD_PLAT, AVDD_CORE, AVDD_PCI, AVDD_LBIU, and AVDD_SRDS, respectively). The AVDD 

Die junction-to-board N/A RJB 5 °C/W 3

Die junction-to-case N/A RJC 0.8 °C/W 4

Notes:

1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) 
temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal 
resistance.

2. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.

3. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on 
the top surface of the board near the package.

4. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 
1012.1). The cold plate temperature is used for the case temperature, measured value includes the thermal resistance of the 
interface layer.

Table 85. Package Thermal Characteristics for FC-PBGA (continued)

Characteristic JEDEC Board Symbol Value Unit Notes
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the ground plane. Use ceramic chip capacitors with the highest possible self-resonant frequency. All traces 
must be kept short, wide and direct.

Figure 60. SerDes PLL Power Supply Filter

Note the following:

• AVDD_SRDS must be a filtered version of SVDD.

• Signals on the SerDes interface are fed from the XVDD power plane. 

22.3 Decoupling Recommendations

Due to large address and data buses, and high operating frequencies, the device can generate transient 
power surges and high frequency noise in its power supply, especially while driving large capacitive loads. 
This noise must be prevented from reaching other components in the device system, and the device itself 
requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer 
place at least one decoupling capacitor at each VDD, TVDD, BVDD, OVDD, GVDD, and LVDD pin of the 
device. These decoupling capacitors must receive their power from separate VDD, TVDD, BVDD, OVDD, 
GVDD, LVDD, and GND power planes in the PCB, utilizing short low impedance traces to minimize 
inductance. Capacitors must be placed directly under the device using a standard escape pattern as much 
as possible. If some caps are to be placed surrounding the part it must be routed with large trace to 
minimize the inductance.

These capacitors must have a value of 0.1 µF. Only ceramic SMT (surface mount technology) capacitors 
must be used to minimize lead inductance, preferably 0402 or 0603 sizes. Besides, it is recommended that 
there be several bulk storage capacitors distributed around the PCB, feeding the VDD, TVDD, BVDD, 
OVDD, GVDD, and LVDD, planes, to enable quick recharging of the smaller chip capacitors. These bulk 
capacitors must have a low ESR (equivalent series resistance) rating to ensure the quick response time 
necessary. They must also be connected to the power and ground planes through two vias to minimize 
inductance. Suggested bulk capacitors—100–330 µF (AVX TPS tantalum or Sanyo OSCON). However, 
customers must work directly with their power regulator vendor for best values, types and quantity of bulk 
capacitors.

22.4 SerDes Block Power Supply Decoupling Recommendations

The SerDes block requires a clean, tightly regulated source of power (SVDD and XVDD) to ensure low 
jitter on transmit and reliable recovery of data in the receiver. An appropriate decoupling scheme is 
outlined below.

Only surface mount technology (SMT) capacitors must be used to minimize inductance. Connections from 
all capacitors to power and ground must be done with multiple vias to further reduce inductance.

 

 2.2 µF 1 0.003 µF

1.0
AVDD_SRDS

Note:  
1. An 0805 sized capacitor is recommended for system initial bring-up.

SVDD

 2.2 µF 1

 GND
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• SD_REF_CLK

NOTE

It is recommended to power down the unused lane through SRDSCR1[0:7] 
register (offset = 0xE_0F08) (this prevents the oscillations and holds the 
receiver output in a fixed state) that maps to SERDES lane 0 to lane 7 
accordingly. 

Pins V28 and M26 must be tied to XVDD. Pins V27 and M25 must be tied to GND through a 300- 
resistor.

22.11 Guideline for PCI Interface Termination 

PCI termination if PCI 1 or PCI 2 is not used at all.

Option 1

If PCI arbiter is enabled during POR:

• All AD pins are driven to the stable states after POR. Therefore, all ADs pins can be floating.

• All PCI control pins can be grouped together and tied to OVDD through a single 10-k resistor.

• It is optional to disable PCI block through DEVDISR register after POR reset.

Option 2

If PCI arbiter is disabled during POR:

• All AD pins are in the input state. Therefore, all ADs pins need to be grouped together and tied to 
OVDD through a single (or multiple) 10-k resistor(s).

• All PCI control pins can be grouped together and tied to OVDD through a single 10-k resistor.

• It is optional to disable PCI block through DEVDISR register after POR reset.

22.12 Guideline for LBIU Termination

If the LBIU parity pins are not used, the following is the termination recommendation:

• For LDP[0:3]—tie them to ground or the power supply rail via a 4.7-k resistor.

• For LPBSE—tie it to the power supply rail via a 4.7-k resistor (pull-up resistor).


