

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

·XF

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	800MHz
Co-Processors/DSP	Signal Processing; SPE, Security; SEC
RAM Controllers	DDR, DDR2, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	
Ethernet	10/100/1000Mbps (4)
SATA	-
USB	-
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCBGA (29x29)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8545evtangb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

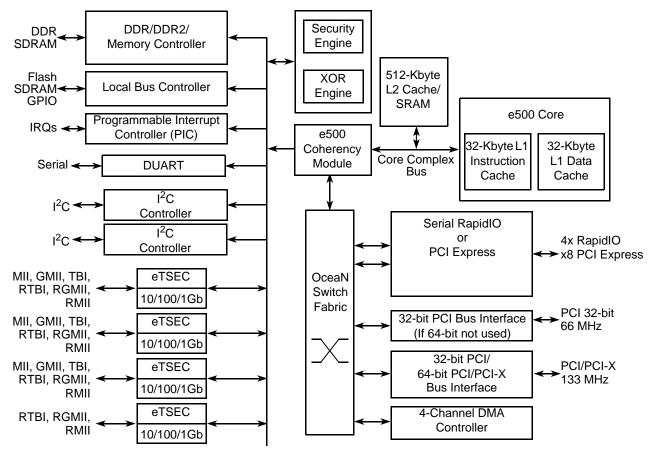


Figure 1. Device Block Diagram

1.1 Key Features

The following list provides an overview of the device feature set:

- High-performance 32-bit core built on Power Architecture® technology.
 - 32-Kbyte L1 instruction cache and 32-Kbyte L1 data cache with parity protection. Caches can be locked entirely or on a per-line basis, with separate locking for instructions and data.
 - Signal-processing engine (SPE) APU (auxiliary processing unit). Provides an extensive instruction set for vector (64-bit) integer and fractional operations. These instructions use both the upper and lower words of the 64-bit GPRs as they are defined by the SPE APU.
 - Double-precision floating-point APU. Provides an instruction set for double-precision (64-bit) floating-point instructions that use the 64-bit GPRs.
 - 36-bit real addressing
 - Embedded vector and scalar single-precision floating-point APUs. Provide an instruction set for single-precision (32-bit) floating-point instructions.
 - Memory management unit (MMU). Especially designed for embedded applications. Supports 4-Kbyte to 4-Gbyte page sizes.
 - Enhanced hardware and software debug support

5 **RESET** Initialization

This section describes the AC electrical specifications for the RESET initialization timing requirements of the device. The following table provides the RESET initialization AC timing specifications for the DDR SDRAM component(s).

Parameter/Condition	Min	Max	Unit	Notes
Required assertion time of HRESET	100		μS	—
Minimum assertion time for SRESET	3		SYSCLKs	1
PLL input setup time with stable SYSCLK before HRESET negation	100		μS	—
Input setup time for POR configs (other than PLL config) with respect to negation of HRESET	4	—	SYSCLKs	1
Input hold time for all POR configs (including PLL config) with respect to negation of HRESET	2	_	SYSCLKs	1
Maximum valid-to-high impedance time for actively driven POR configs with respect to negation of HRESET	—	5	SYSCLKs	1

Table 8. RESET Initialization	Timing	Specifications
-------------------------------	--------	----------------

Note:

1. SYSCLK is the primary clock input for the device.

The following table provides the PLL lock times.

Table 9. PLL Lock Times

Parameter/Condition	Min	Мах	Unit
Core and platform PLL lock times	_	100	μs
Local bus PLL lock time	_	50	μs
PCI/PCI-X bus PLL lock time	—	50	μs

5.1 Power-On Ramp Rate

This section describes the AC electrical specifications for the power-on ramp rate requirements.

Controlling the maximum power-on ramp rate is required to avoid falsely triggering the ESD circuitry. The following table provides the power supply ramp rate specifications.

Table 10.	Power	Supply	Ramp Rate
-----------	-------	--------	-----------

Parameter	Min	Мах	Unit	Notes
Required ramp rate for MVREF	_	3500	V/s	1
Required ramp rate for VDD		4000	V/s	1, 2

Note:

1. Maximum ramp rate from 200 to 500 mV is most critical as this range may falsely trigger the ESD circuitry.

2. VDD itself is not vulnerable to false ESD triggering; however, as per Section 22.2, "PLL Power Supply Filtering," the recommended AVDD_CORE, AVDD_PLAT, AVDD_LBIU, AVDD_PCI1 and AVDD_PCI2 filters are all connected to VDD. Their ramp rates must be equal to or less than the VDD ramp rate.

6.2.2 DDR SDRAM Output AC Timing Specifications

Table 19. DDR SDRAM Output AC Timing Specifications

At recommended operating conditions.

Parameter	Symbol ¹	Min	Max	Unit	Notes
MCK[n] cycle time, MCK[n]/MCK[n] crossing	t _{MCK}	3.75	6	ns	2
ADDR/CMD output setup with respect to MCK 533 MHz 400 MHz 333 MHz	t _{DDKHAS}	1.48 1.95 2.40		ns	3
ADDR/CMD output hold with respect to MCK 533 MHz 400 MHz 333 MHz	t _{DDKHAX}	1.48 1.95 2.40		ns	3
MCS[<i>n</i>] output setup with respect to MCK 533 MHz 400 MHz 333 MHz	t _{DDKHCS}	1.48 1.95 2.40		ns	3
MCS[<i>n</i>] output hold with respect to MCK 533 MHz 400 MHz 333 MHz	t _{DDKHCX}	1.48 1.95 2.40		ns	3
MCK to MDQS Skew	t _{DDKHMH}	-0.6	0.6	ns	4
MDQ/MECC/MDM output setup with respect to MDQS 533 MHz 400 MHz 333 MHz	^t DDKHDS, ^t DDKLDS	538 700 900		ps	5
MDQ/MECC/MDM output hold with respect to MDQS 533 MHz 400 MHz 333 MHz	^t DDKHDX, ^t DDKLDX	538 700 900		ps	5
MDQS preamble start	t _{DDKHMP}	$-0.5\times t_{\text{MCK}}-0.6$	$-0.5 \times t_{MCK}$ + 0.6	ns	6

Figure 8 shows the GMII transmit AC timing diagram.

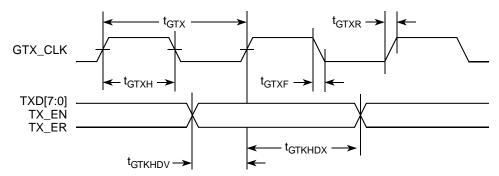
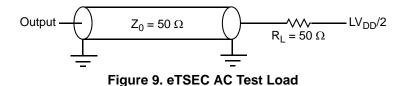


Figure 8. GMII Transmit AC Timing Diagram

8.2.2.2 GMII Receive AC Timing Specifications

This table provides the GMII receive AC timing specifications.

Table 27. GMII Receive AC	Timing Specifications
---------------------------	-----------------------


Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
RX_CLK clock period	t _{GRX}	_	8.0	—	ns
RX_CLK duty cycle	t _{GRXH} /t _{GRX}	35	_	75	ns
RXD[7:0], RX_DV, RX_ER setup time to RX_CLK	t _{GRDVKH}	2.0	_	—	ns
RXD[7:0], RX_DV, RX_ER hold time to RX_CLK	t _{GRDXKH}	0	_	—	ns
RX_CLK clock rise (20%-80%)	t _{GRXR} 2	—	_	1.0	ns
RX_CLK clock fall time (80%-20%)	t _{GRXF} 2			1.0	ns

Notes:

1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{GRDVKH} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{RX} clock reference (K) going to the high state (H) or setup time. Also, t_{GRDXKL} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{GRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{GRX} represents the GMII (G) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

2. Guaranteed by design.

Figure 9 provides the AC test load for eTSEC.

Enhanced Three-Speed Ethernet (eTSEC)

Figure 10 shows the GMII receive AC timing diagram.

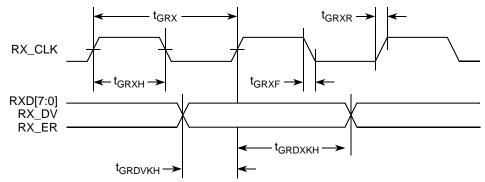


Figure 10. GMII Receive AC Timing Diagram

8.2.3 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

8.2.3.1 MII Transmit AC Timing Specifications

This table provides the MII transmit AC timing specifications.

Table 28. MII Transmit A	C Timing Specifications
--------------------------	-------------------------

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
TX_CLK clock period 10 Mbps	t _{MTX} ²	_	400	—	ns
TX_CLK clock period 100 Mbps	t _{MTX}	_	40	—	ns
TX_CLK duty cycle	t _{MTXH} /t _{MTX}	35	_	65	%
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay	t _{MTKHDX}	1	5	15	ns
TX_CLK data clock rise (20%–80%)	t _{MTXR} ²	1.0	_	4.0	ns
TX_CLK data clock fall (80%–20%)	t _{MTXF} ²	1.0	_	4.0	ns

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

2. Guaranteed by design.

Figure 14 shows the TBI transmit AC timing diagram.

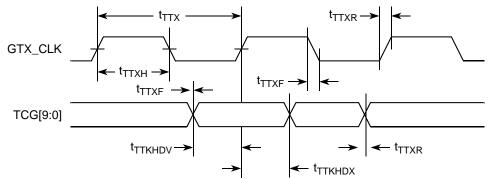


Figure 14. TBI Transmit AC Timing Diagram

8.2.4.2 TBI Receive AC Timing Specifications

This table provides the TBI receive AC timing specifications.

Table 31. TBI Receive AC	Timing Specifications
--------------------------	-----------------------

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
TSECn_RX_CLK[0:1] clock period	t _{TRX}	—	16.0	_	ns
TSECn_RX_CLK[0:1] skew	t _{SKTRX}	7.5	_	8.5	ns
TSECn_RX_CLK[0:1] duty cycle	t _{TRXH} /t _{TRX}	40	_	60	%
RCG[9:0] setup time to rising TSECn_RX_CLK	t _{TRDVKH}	2.5	_	_	ns
RCG[9:0] hold time to rising TSEC <i>n</i> _RX_CLK	t _{TRDXKH}	1.5	_	_	ns
TSECn_RX_CLK[0:1] clock rise time (20%–80%)	t _{TRXR} ²	0.7	_	2.4	ns
TSEC <i>n</i> _RX_CLK[0:1] clock fall time (80%–20%)	t _{TRXF} ²	0.7		2.4	ns

Notes:

1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{TRDVKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{TRX} clock reference (K) going to the high (H) state or setup time. Also, t_{TRDXKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) went invalid (X) relative to the t_{TRX} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{TRX} represents the TBI (T) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall). For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (TRX).}

2. Guaranteed by design.

A timing diagram for TBI receive appears in Figure 16.

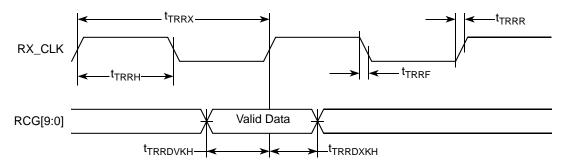


Figure 16. TBI Single-Clock Mode Receive AC Timing Diagram

8.2.6 RGMII and RTBI AC Timing Specifications

This table presents the RGMII and RTBI AC timing specifications.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
Data to clock output skew (at transmitter)	t _{SKRGT} 5	-500 ⁶	0	500 ⁶	ps
Data to clock input skew (at receiver) ²	t _{SKRGT}	1.0	_	2.8	ns
Clock period ³	t _{RGT} 5	7.2	8.0	8.8	ns
Duty cycle for 10BASE-T and 100BASE-TX ^{3, 4}	t _{RGTH} /t _{RGT} 5	45	50	55	%
Rise time (20%–80%)	t _{RGTR} 5	_	_	0.75	ns
Fall time (20%–80%)	t _{RGTF} 5	_		0.75	ns

Table 33. RGMII and RTBI AC Timing Specifications

Notes:

 In general, the clock reference symbol representation for this section is based on the symbols RGT to represent RGMII and RTBI timing. For example, the subscript of t_{RGT} represents the TBI (T) receive (RX) clock. Note also that the notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (RGT).

- 2. This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns is added to the associated clock signal.
- 3. For 10 and 100 Mbps, t_{RGT} scales to 400 ns \pm 40 ns and 40 ns \pm 4 ns, respectively.
- 4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three t_{RGT} of the lowest speed transitioned between.

5. Guaranteed by characterization.

6. In rev 1.0 silicon, due to errata, t_{SKRGT} is -650 ps (min) and 650 ps (max). See "eTSEC 10" in the device errata document.

Parameter	Symbol ¹	Min	Max	Unit	Notes
LGTA/LUPWAIT input hold from local bus clock	t _{LBIXKL2}	-1.3		ns	4, 5
LALE output transition to LAD/LDP output transition (LATCH hold time)	t _{LBOTOT}	1.5		ns	6
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKLOV1}	_	-0.3	ns	
Local bus clock to data valid for LAD/LDP	t _{LBKLOV2}	_	-0.1	ns	4
Local bus clock to address valid for LAD	t _{LBKLOV3}	_	0	ns	4
Local bus clock to LALE assertion	t _{LBKLOV4}	_	0	ns	4
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKLOX1}	-3.7		ns	4
Output hold from local bus clock for LAD/LDP	t _{LBKLOX2}	-3.7		ns	4
Local bus clock to output high Impedance (except LAD/LDP and LALE)	t _{LBKLOZ1}	_	0.2	ns	7
Local bus clock to output high impedance for LAD/LDP	t _{LBKLOZ2}	_	0.2	ns	7

Table 42. Local Bus Timing Parameters—PLL Bypassed (continued)

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKH0X} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
</sub>

 All timings are in reference to local bus clock for PLL bypass mode. Timings may be negative with respect to the local bus clock because the actual launch and capture of signals is done with the internal launch/capture clock, which precedes LCLK by t_{LBKHKT}.

 Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at BV_{DD}/2.

4. All signals are measured from $BV_{DD}/2$ of the rising edge of local bus clock for PLL bypass mode to $0.4 \times BV_{DD}$ of the signal in question for 3.3-V signaling levels.

5. Input timings are measured at the pin.

6. The value of t_{LBOTOT} is the measurement of the minimum time between the negation of LALE and any change in LAD.

7. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

- 8. Guaranteed by characterization.
- 9. Guaranteed by design.

Local Bus

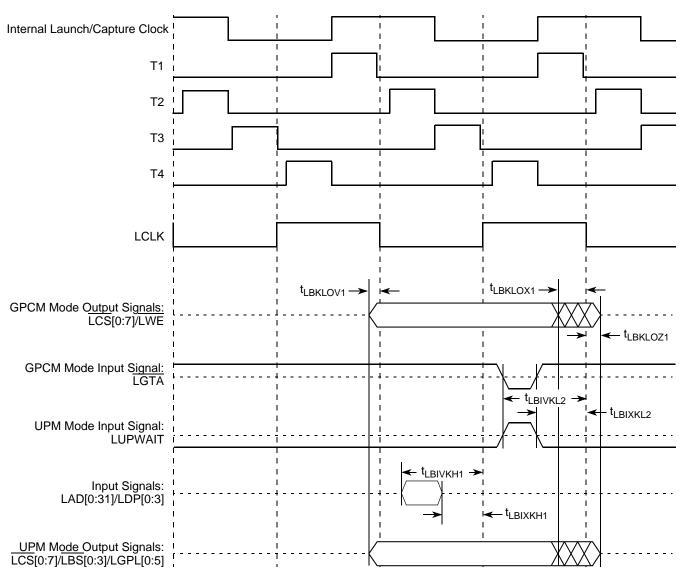


Figure 28. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 8 or 16 (PLL Bypass Mode)

11 Programmable Interrupt Controller

In IRQ edge trigger mode, when an external interrupt signal is asserted (according to the programmed polarity), it must remain the assertion for at least 3 system clocks (SYSCLK periods).

12 JTAG

This section describes the DC and AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the device.

12.1 JTAG DC Electrical Characteristics

This table provides the DC electrical characteristics for the JTAG interface.

Parameter	Symbol ¹	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current ($V_{IN}^{1} = 0$ V or $V_{IN} = V_{DD}$)	I _{IN}	—	±5	μA
High-level output voltage ($OV_{DD} = min, I_{OH} = -2 mA$)	V _{OH}	2.4	_	V
Low-level output voltage ($OV_{DD} = min, I_{OL} = 2 mA$)	V _{OL}	—	0.4	V

 Table 43. JTAG DC Electrical Characteristics

Note:

1. Note that the symbol V_{IN} in this case, represents the OV_{IN}

12.2 JTAG AC Electrical Specifications

This table provides the JTAG AC timing specifications as defined in Figure 30 through Figure 32.

Parameter	Symbol ²	Min	Мах	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	
JTAG external clock cycle time	t _{JTG}	30	_	ns	_
JTAG external clock pulse width measured at 1.4 V	t _{JTKHKL}	15	_	ns	_
JTAG external clock rise and fall times	t _{JTGR} & t _{JTGF}	0	2	ns	6
TRST assert time	t _{TRST}	25	_	ns	3
Input setup times: Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 0		ns	4
Input hold times: Boundary-scan data TMS, TDI	^t jtdxkh ^t jtixkh	20 25		ns	4

Table 44. JTAG AC Timing Specifications (Independent of SYSCLK)¹

18 Serial RapidIO

This section describes the DC and AC electrical specifications for the RapidIO interface of the MPC8548E, for the LP-Serial physical layer. The electrical specifications cover both single- and multiple-lane links. Two transmitters (short and long run) and a single receiver are specified for each of three baud rates, 1.25, 2.50, and 3.125 GBaud.

Two transmitter specifications allow for solutions ranging from simple board-to-board interconnect to driving two connectors across a backplane. A single receiver specification is given that accepts signals from both the short- and long-run transmitter specifications.

The short-run transmitter must be used mainly for chip-to-chip connections on either the same printed-circuit board or across a single connector. This covers the case where connections are made to a mezzanine (daughter) card. The minimum swings of the short-run specification reduce the overall power used by the transceivers.

The long-run transmitter specifications use larger voltage swings that are capable of driving signals across backplanes. This allows a user to drive signals across two connectors and a backplane. The specifications allow a distance of at least 50 cm at all baud rates.

All unit intervals are specified with a tolerance of ± 100 ppm. The worst case frequency difference between any transmit and receive clock is 200 ppm.

To ensure interoperability between drivers and receivers of different vendors and technologies, AC coupling at the receiver input must be used.

18.1 <u>DC Requirements</u> for Serial RapidIO SD_REF_CLK and SD_REF_CLK

For more information, see Section 16.2, "SerDes Reference Clocks."

18.2 <u>AC Requirements</u> for Serial RapidIO SD_REF_CLK and SD_REF_CLK

Table 58 lists the Serial RapidIO SD_REF_CLK and SD_REF_CLK AC requirements.

Symbol	Parameter Description	Min	Тур	Мах	Unit	Comments
t _{REF}	REFCLK cycle time	—	10(8)	—	ns	8 ns applies only to serial RapidIO with 125-MHz reference clock
t _{REFCJ}	REFCLK cycle-to-cycle jitter. Difference in the period of any two adjacent REFCLK cycles.	—	—	80	ps	_
t _{REFPJ}	Phase jitter. Deviation in edge location with respect to mean edge location.	-40	—	40	ps	_

Table 58. SD_REF_CLK and SD_REF_CLK AC Requirements

18.5 Explanatory Note on Transmitter and Receiver Specifications

AC electrical specifications are given for transmitter and receiver. Long- and short-run interfaces at three baud rates (a total of six cases) are described.

The parameters for the AC electrical specifications are guided by the XAUI electrical interface specified in Clause 47 of IEEE 802.3ae-2002.

XAUI has similar application goals to Serial RapidIO, as described in Section 8.1. The goal of this standard is that electrical designs for Serial RapidIO can reuse electrical designs for XAUI, suitably modified for applications at the baud intervals and reaches described herein.

18.6 Transmitter Specifications

LP-serial transmitter electrical and timing specifications are stated in the text and tables of this section.

The differential return loss, S11, of the transmitter in each case shall be better than:

- -10 dB for (baud frequency)/10 < Freq(f) < 625 MHz, and
- $-10 \text{ dB} + 10\log(f/625 \text{ MHz}) \text{ dB}$ for $625 \text{ MHz} \le \text{Freq}(f) \le \text{baud}$ frequency

The reference impedance for the differential return loss measurements is $100-\Omega$ resistive. Differential return loss includes contributions from on-chip circuitry, chip packaging, and any off-chip components related to the driver. The output impedance requirement applies to all valid output levels.

It is recommended that the 20%–80% rise/fall time of the transmitter, as measured at the transmitter output, in each case have a minimum value 60 ps.

It is recommended that the timing skew at the output of an LP-serial transmitter between the two signals that comprise a differential pair not exceed 25 ps at 1.25 GB, 20 ps at 2.50 GB, and 15 ps at 3.125 GB.

Characteristic	Symbol	Range		Unit	Notes
Characteristic	Symbol	Min	Max	Onic	NULES
Output voltage	Vo	-0.40	2.30	V	Voltage relative to COMMON of either signal comprising a differential pair
Differential output voltage	V _{DIFFPP}	500	1000	mV p-p	—
Deterministic jitter	J _D	_	0.17	UI p-p	_
Total jitter	J _T	_	0.35	UI p-p	_
Multiple output skew	S _{MO}	—	1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	800	800	ps	±100 ppm

Table 59. Short Run Transmitter AC Timing Specifications—1.25 GBaud

Serial RapidIO

Characteristic	Symbol	Range		Unit	Notes
Characteristic	Symbol	Min	Max	Unit	Notes
Output voltage	Vo	-0.40	2.30	V	Voltage relative to COMMON of either signal comprising a differential pair
Differential output voltage	V _{DIFFPP}	500	1000	mV p-p	—
Deterministic jitter	J _D	—	0.17	UI p-p	—
Total jitter	J _T	—	0.35	UI p-p	—
Multiple output skew	S _{MO}	—	1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit interval	UI	400	400	ps	±100 ppm

Table 61. Short Run Transmitter AC Timing Specifications—3.125 GBaud

Characteristic	Symbol	Range		Unit	Notes
Characteristic	Symbol	Min	Max	Onic	NOICS
Output voltage	Vo	-0.40	2.30	V	Voltage relative to COMMON of either signal comprising a differential pair
Differential output voltage	V _{DIFFPP}	500	1000	mVp-p	-
Deterministic jitter	J _D	—	0.17	UI p-p	-
Total jitter	J _T	—	0.35	UI p-p	—
Multiple output skew	S _{MO}	—	1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit interval	UI	320	320	ps	±100 ppm

Table 62. Long Run Transmitter AC Timing Specifications—1.25 GBaud

Characteristic	Symbol	Range		Unit	Notes
Characteristic	Symbol	Min	Max	Onit	NULES
Output voltage	V _O	-0.40	2.30	V	Voltage relative to COMMON of either signal comprising a differential pair
Differential output voltage	V _{DIFFPP}	800	1600	mVp-p	—
Deterministic jitter	J _D	—	0.17	UI p-p	—
Total jitter	J _T	—	0.35	UI p-p	—
Multiple output skew	S _{MO}	_	1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit interval	UI	800	800	ps	±100 ppm

Serial RapidIO

transmitter that implements pre-emphasis (to equalize the link and reduce inter-symbol interference) need only comply with the transmitter output compliance mask when pre-emphasis is disabled or minimized.

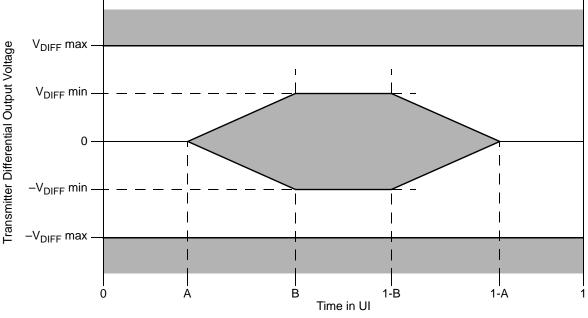


Figure 52. Transmitter Output Compliance Mask

Transmitter Type	V _{DIFF} min (mV)	V _{DIFF} max (mV)	A (UI)	B (UI)
1.25 GBaud short range	250	500	0.175	0.39
1.25 GBaud long range	400	800	0.175	0.39
2.5 GBaud short range	250	500	0.175	0.39
2.5 GBaud long range	400	800	0.175	0.39
3.125 GBaud short range	250	500	0.175	0.39
3.125 GBaud long range	400	800	0.175	0.39

Table 65. Transmitter Differential Output Eye Diagram Parameters

18.7 Receiver Specifications

LP-serial receiver electrical and timing specifications are stated in the text and tables of this section.

Receiver input impedance shall result in a differential return loss better that 10 dB and a common mode return loss better than 6 dB from 100 MHz to $(0.8) \times$ (baud frequency). This includes contributions from on-chip circuitry, the chip package, and any off-chip components related to the receiver. AC coupling

components are included in this requirement. The reference impedance for return loss measurements is $100-\Omega$ resistive for differential return loss and $25-\Omega$ resistive for common mode.

Characteristic	Symbol	Range		Unit	Notes		
Characteristic	Symbol	Min	Max	Unit			
Differential input voltage	V _{IN}	200	1600	mVp-p	Measured at receiver		
Deterministic jitter tolerance	J _D	0.37	—	UI p-p	Measured at receiver		
Combined deterministic and random jitter tolerance	J _{DR}	0.55	—	UI p-p	Measured at receiver		
Total jitter tolerance ¹	J _T	0.65	—	UI p-p	Measured at receiver		
Multiple input skew	S _{MI}	—	24	ns	Skew at the receiver input between lanes of a multilane link		
Bit error rate	BER	—	10 ⁻¹²	—	—		
Unit interval	UI	800	800	ps	±100 ppm		

Note:

1. Total jitter is composed of three components, deterministic jitter, random jitter, and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 53. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk, and other variable system effects.

Table 67. Receiver AC Timing Specifications—2.5 GBaud

Characteristic	Symbol	Range		Unit	Notes	
Characteristic		Min	Max	Unit	Notes	
Differential input voltage	V _{IN}	200	1600	mVp-p	Measured at receiver	
Deterministic jitter tolerance	J _D	0.37	_	UI p-p	Measured at receiver	
Combined deterministic and random jitter tolerance	J _{DR}	0.55	_	UI p-p	Measured at receiver	
Total jitter tolerance ¹	J _T	0.65	_	UI p-p	Measured at receiver	
Multiple input skew	S _{MI}	_	24	ns	Skew at the receiver input between lanes of a multilane link	
Bit error rate	BER	_	10 ⁻¹²		—	
Unit interval	UI	400	400	ps	±100 ppm	

Note:

1. Total jitter is composed of three components, deterministic jitter, random jitter, and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 53. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk, and other variable system effects.

Serial RapidIO

802.3ae-2002 is specified as the test pattern for use in eye pattern and jitter measurements. Annex 48B of IEEE Std. 802.3ae-2002 is recommended as a reference for additional information on jitter test methods.

18.9.1 Eye Template Measurements

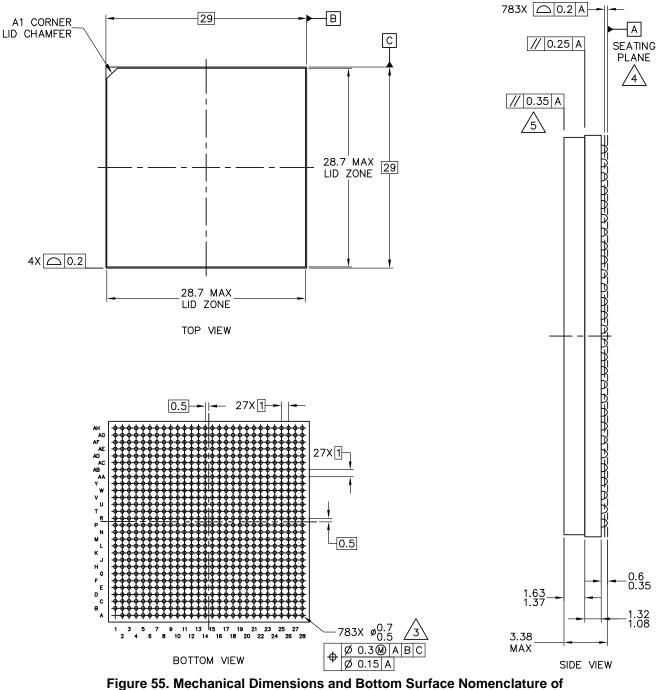
For the purpose of eye template measurements, the effects of a single-pole high pass filter with a 3 dB point at (baud frequency)/1667 is applied to the jitter. The data pattern for template measurements is the continuous jitter test pattern (CJPAT) defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-serial link shall be active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. The amount of data represented in the eye shall be adequate to ensure that the bit error ratio is less than 10^{-12} . The eye pattern shall be measured with AC coupling and the compliance template centered at 0 V differential. The left and right edges of the template shall be aligned with the mean zero crossing points of the measured data eye. The load for this test shall be $100-\Omega$ resistive $\pm 5\%$ differential to 2.5 GHz.

18.9.2 Jitter Test Measurements

For the purpose of jitter measurement, the effects of a single-pole high pass filter with a 3 dB point at (baud frequency)/1667 is applied to the jitter. The data pattern for jitter measurements is the Continuous Jitter test pattern (CJPAT) pattern defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-serial link shall be active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. Jitter shall be measured with AC coupling and at 0 V differential. Jitter measurement for the transmitter (or for calibration of a jitter tolerance setup) shall be performed with a test procedure resulting in a BER curve such as that described in Annex 48B of IEEE 802.3ae.

18.9.3 Transmit Jitter

Transmit jitter is measured at the driver output when terminated into a load of 100 Ω resistive ± 5% differential to 2.5 GHz.


18.9.4 Jitter Tolerance

Jitter tolerance is measured at the receiver using a jitter tolerance test signal. This signal is obtained by first producing the sum of deterministic and random jitter defined in Section 18.7, "Receiver Specifications," and then adjusting the signal amplitude until the data eye contacts the 6 points of the minimum eye opening of the receive template shown in Figure 54 and Table 69. Note that for this to occur, the test signal must have vertical waveform symmetry about the average value and have horizontal symmetry (including jitter) about the mean zero crossing. Eye template measurement requirements are as defined above. Random jitter is calibrated using a high pass filter with a low frequency corner at 20 MHz and a 20 dB/decade roll-off below this. The required sinusoidal jitter specified in Section 18.7, "Receiver Specifications," is then added to the signal and the test load is replaced by the receiver being tested.

Package Description

19.2 Mechanical Dimensions of the HiCTE FC-CBGA and FC-PBGA with Full Lid

The following figures show the mechanical dimensions and bottom surface nomenclature for the MPC8548E HiCTE FC-CBGA and FC-PBGA packages.

the HiCTE FC-CBGA and FC-PBGA with Full Lid

Signal	Package Pin Number	Pin Type	Power Supply	Notes
GPOUT[0:5]	N9, N10, P8, N7, R9, N5	0	LV _{DD}	_
cfg_dram_type0/GPOUT6	R8	0	LV _{DD}	5, 9
GPOUT7	N6	0	LV _{DD}	-
Reserved	P1		_	104
Reserved	R6		_	104
Reserved	P6		_	15
Reserved	N4	_	_	105
FIFO1_RXC2	P5	I	LV _{DD}	104
Reserved	R1	—	_	104
Reserved	P10	_	_	105
FIFO1_TXC2	P7	0	LV _{DD}	15
cfg_dram_type1	R10	0	LV _{DD}	5, 9
Three	ee-Speed Ethernet Controller (Gigabit	Ethernet 3)		
TSEC3_TXD[3:0]	V8, W10, Y10, W7	0	TV _{DD}	5, 9, 2
TSEC3_RXD[3:0]	Y1, W3, W5, W4	I	TV _{DD}	_
TSEC3_GTX_CLK	W8	0	TV _{DD}	_
TSEC3_RX_CLK	W2	I	TV _{DD}	—
TSEC3_RX_DV	W1	I	TV _{DD}	-
TSEC3_RX_ER	Y2	I	TV _{DD}	_
TSEC3_TX_CLK	V10	I	TV _{DD}	_
TSEC3_TX_EN	V9	0	TV _{DD}	30
TSEC3_TXD[7:4]	AB8, Y7, AA7, Y8	0	TV _{DD}	5, 9, 2
TSEC3_RXD[7:4]	AA1, Y3, AA2, AA4	I	TV _{DD}	_
Reserved	AA5	_	_	15
TSEC3_COL	Y5	I	TV _{DD}	- 1
TSEC3_CRS	AA3	I/O	TV _{DD}	31
TSEC3_TX_ER	AB6	0	TV _{DD}	-
	DUART			
UART_CTS[0:1]	AB3, AC5	I	OV _{DD}	-
UART_RTS[0:1]	AC6, AD7	0	OV _{DD}	1 -
UART_SIN[0:1]	AB5, AC7		OV _{DD}	<u> </u>
UART_SOUT[0:1]	AB7, AD8	0	OV _{DD}	<u> </u>
	I ² C interface	I		_1
IIC1_SCL	AG22	I/O	OV _{DD}	4, 27
		1		1

Table 74. MPC8543E Pinout Listing (continued)

20.3 e500 Core PLL Ratio

This table describes the clock ratio between the e500 core complex bus (CCB) and the e500 core clock. This ratio is determined by the binary value of LBCTL, LALE, and LGPL2 at power up, as shown in this table.

Binary Value of LBCTL, LALE, LGPL2 Signals	e500 core:CCB Clock Ratio	Binary Value of LBCTL, LALE, LGPL2 Signals	e500 core:CCB Clock Ratio	
000	4:1	100	2:1	
001	9:2	101	5:2	
010	Reserved	110	3:1	
011	3:2	111	7:2	

Table 82. e500	Core to CCB	Clock Ratio
----------------	-------------	--------------------

20.4 Frequency Options

Table 83This table shows the expected frequency values for the platform frequency when using a CCB clock to SYSCLK ratio in comparison to the memory bus clock speed.

CCB to SYSCLK Ratio	SYSCLK (MHz)									
	16.66	25	33.33	41.66	66.66	83	100	111	133.33	
	Platform/CCB Frequency (MHz)									
2										
3								333	400	
4						333	400	445	533	
5					333	415	500			
6					400	500		-		
8				333	533		-			
9				375						
10			333	417						
12			400	500						
16		400	533							
20	333	500		-						

Table 83. Frequency Options of SYSCLK with Respect to Memory Bus Speeds

Note: Due to errata Gen 13 the max sys clk frequency must not exceed 100 MHz if the core clk frequency is below 1200 MHz.

System Design Information

The platform PLL ratio and e500 PLL ratio configuration pins are not equipped with these default pull-up devices.

22.9 JTAG Configuration Signals

Correct operation of the JTAG interface requires configuration of a group of system control pins as demonstrated in Figure 63. Care must be taken to ensure that these pins are maintained at a valid deasserted state under normal operating conditions as most have asynchronous behavior and spurious assertion gives unpredictable results.

Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the IEEE 1149.1 specification, but it is provided on all processors built on Power Architecture technology. The device requires TRST to be asserted during power-on reset flow to ensure that the JTAG boundary logic does not interfere with normal chip operation. While the TAP controller can be forced to the reset state using only the TCK and TMS signals, generally systems assert TRST during the power-on reset flow. Simply tying TRST to HRESET is not practical because the JTAG interface is also used for accessing the common on-chip processor (COP), which implements the debug interface to the chip.

The COP function of these processors allow a remote computer system (typically, a PC with dedicated hardware and debugging software) to access and control the internal operations of the processor. The COP interface connects primarily through the JTAG port of the processor, with some additional status monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order to fully control the processor. If the target system has independent reset sources, such as voltage monitors, watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be merged into these signals with logic.

The arrangement shown in Figure 63 allows the COP port to independently assert $\overline{\text{HRESET}}$ or $\overline{\text{TRST}}$, while ensuring that the target can drive $\overline{\text{HRESET}}$ as well.

The COP interface has a standard header, shown in Figure 62, for connection to the target system, and is based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header). The connector typically has pin 14 removed as a connector key.

The COP header adds many benefits such as breakpoints, watchpoints, register and memory examination/modification, and other standard debugger features. An inexpensive option can be to leave the COP header unpopulated until needed.

There is no standardized way to number the COP header; so emulator vendors have issued many different pin numbering schemes. Some COP headers are numbered top-to-bottom then left-to-right, while others use left-to-right then top-to-bottom. Still others number the pins counter-clockwise from pin 1 (as with an IC). Regardless of the numbering scheme, the signal placement recommended in Figure 62 is common to all known emulators.

22.9.1 Termination of Unused Signals

Freescale recommends the following connections, when the JTAG interface and COP header are not used:

• TRST must be tied to HRESET through a 0 k Ω isolation resistor so that it is asserted when the system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during the power-on reset flow. Freescale recommends that the COP header be designed into the system