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Overview

Figure 1. Device Block Diagram

1.1 Key Features

The following list provides an overview of the device feature set:

• High-performance 32-bit core built on Power Architecture® technology.

— 32-Kbyte L1 instruction cache and 32-Kbyte L1 data cache with parity protection. Caches can 
be locked entirely or on a per-line basis, with separate locking for instructions and data.

— Signal-processing engine (SPE) APU (auxiliary processing unit). Provides an extensive 
instruction set for vector (64-bit) integer and fractional operations. These instructions use both 
the upper and lower words of the 64-bit GPRs as they are defined by the SPE APU. 

— Double-precision floating-point APU. Provides an instruction set for double-precision (64-bit) 
floating-point instructions that use the 64-bit GPRs.

— 36-bit real addressing

— Embedded vector and scalar single-precision floating-point APUs. Provide an instruction set 
for single-precision (32-bit) floating-point instructions.

— Memory management unit (MMU). Especially designed for embedded applications. Supports 
4-Kbyte to 4-Gbyte page sizes.

— Enhanced hardware and software debug support
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RESET Initialization

5 RESET Initialization
This section describes the AC electrical specifications for the RESET initialization timing requirements of 
the device. The following table provides the RESET initialization AC timing specifications for the DDR 
SDRAM component(s).

The following table provides the PLL lock times.

5.1 Power-On Ramp Rate

This section describes the AC electrical specifications for the power-on ramp rate requirements. 
Controlling the maximum power-on ramp rate is required to avoid falsely triggering the ESD circuitry. The 
following table provides the power supply ramp rate specifications.

Table 8. RESET Initialization Timing Specifications

Parameter/Condition Min Max Unit Notes

Required assertion time of HRESET 100 — s —

Minimum assertion time for SRESET 3 — SYSCLKs 1

PLL input setup time with stable SYSCLK before HRESET negation 100 — s —

Input setup time for POR configs (other than PLL config) with respect to 
negation of HRESET 

4 — SYSCLKs 1

Input hold time for all POR configs (including PLL config) with respect to 
negation of HRESET 

2 — SYSCLKs 1

Maximum valid-to-high impedance time for actively driven POR configs with 
respect to negation of HRESET 

— 5 SYSCLKs 1

Note:

1. SYSCLK is the primary clock input for the device. 

Table 9. PLL Lock Times

Parameter/Condition Min Max Unit

Core and platform PLL lock times — 100 s

Local bus PLL lock time — 50 s

PCI/PCI-X bus PLL lock time — 50 s

Table 10. Power Supply Ramp Rate

Parameter Min Max Unit Notes

Required ramp rate for MVREF — 3500 V/s 1

Required ramp rate for VDD — 4000 V/s 1, 2

Note:

1. Maximum ramp rate from 200 to 500 mV is most critical as this range may falsely trigger the ESD circuitry. 

2. VDD itself is not vulnerable to false ESD triggering; however, as per Section 22.2, “PLL Power Supply Filtering,” the 
recommended AVDD_CORE, AVDD_PLAT, AVDD_LBIU, AVDD_PCI1 and AVDD_PCI2 filters are all connected to VDD. 
Their ramp rates must be equal to or less than the VDD ramp rate.
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DDR and DDR2 SDRAM

6.2.2 DDR SDRAM Output AC Timing Specifications
Table 19. DDR SDRAM Output AC Timing Specifications

At recommended operating conditions.

Parameter Symbol1 Min Max Unit Notes

MCK[n] cycle time, MCK[n]/MCK[n] crossing tMCK 3.75 6 ns 2

ADDR/CMD output setup with respect to MCK

533 MHz
400 MHz
333 MHz

tDDKHAS

1.48
1.95
2.40

—
—
—

ns 3

ADDR/CMD output hold with respect to MCK

533 MHz
400 MHz
333 MHz

tDDKHAX

1.48
1.95
2.40

—
—
—

ns 3

MCS[n] output setup with respect to MCK

533 MHz
400 MHz
333 MHz

tDDKHCS

1.48
1.95
2.40

—
—
—

ns 3

MCS[n] output hold with respect to MCK

533 MHz
400 MHz
333 MHz

tDDKHCX

1.48
1.95
2.40

—
—
—

ns 3

MCK to MDQS Skew tDDKHMH –0.6 0.6 ns 4

MDQ/MECC/MDM output setup with respect 
to MDQS

533 MHz
400 MHz
333 MHz

tDDKHDS,
tDDKLDS

538
700
900

—
—
—

ps 5

MDQ/MECC/MDM output hold with respect to 
MDQS

533 MHz
400 MHz
333 MHz

tDDKHDX,
tDDKLDX

538
700
900

—
—
—

ps 5

MDQS preamble start tDDKHMP –0.5  tMCK – 0.6 –0.5  tMCK + 0.6 ns 6
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Enhanced Three-Speed Ethernet (eTSEC)

Figure 8 shows the GMII transmit AC timing diagram.

Figure 8. GMII Transmit AC Timing Diagram

8.2.2.2 GMII Receive AC Timing Specifications

This table provides the GMII receive AC timing specifications.

Figure 9 provides the AC test load for eTSEC.

Figure 9. eTSEC AC Test Load

Table 27. GMII Receive AC Timing Specifications

Parameter/Condition Symbol1 Min Typ Max Unit

RX_CLK clock period tGRX — 8.0 — ns

RX_CLK duty cycle tGRXH/tGRX 35 — 75 ns

RXD[7:0], RX_DV, RX_ER setup time to RX_CLK tGRDVKH 2.0 — — ns

RXD[7:0], RX_DV, RX_ER hold time to RX_CLK tGRDXKH 0 — — ns

RX_CLK clock rise (20%-80%) tGRXR
2 — — 1.0 ns

RX_CLK clock fall time (80%-20%) tGRXF
2 — — 1.0 ns

Notes:

1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for 
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tGRDVKH symbolizes GMII receive 
timing (GR) with respect to the time data input signals (D) reaching the valid state (V) relative to the tRX clock reference (K) 
going to the high state (H) or setup time. Also, tGRDXKL symbolizes GMII receive timing (GR) with respect to the time data 
input signals (D) went invalid (X) relative to the tGRX clock reference (K) going to the low (L) state or hold time. Note that, in 
general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. 
For example, the subscript of tGRX represents the GMII (G) receive (RX) clock. For rise and fall times, the latter convention 
is used with the appropriate letter: R (rise) or F (fall).

2. Guaranteed by design.

GTX_CLK

TXD[7:0]

tGTKHDX

tGTX

tGTXH

tGTXR

tGTXF

tGTKHDV

TX_EN
TX_ER

Output Z0 = 50  LVDD/2
RL = 50 
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Enhanced Three-Speed Ethernet (eTSEC)

Figure 10 shows the GMII receive AC timing diagram.

Figure 10. GMII Receive AC Timing Diagram

8.2.3 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

8.2.3.1 MII Transmit AC Timing Specifications

This table provides the MII transmit AC timing specifications.

Table 28. MII Transmit AC Timing Specifications

Parameter/Condition Symbol1 Min Typ Max Unit

TX_CLK clock period 10 Mbps tMTX
2 — 400 — ns

TX_CLK clock period 100 Mbps tMTX — 40 — ns

TX_CLK duty cycle tMTXH/tMTX 35 — 65 %

TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay tMTKHDX 1 5 15 ns

TX_CLK data clock rise (20%–80%) tMTXR
2 1.0 — 4.0 ns

TX_CLK data clock fall (80%–20%) tMTXF
2 1.0 — 4.0 ns

Notes:

1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for 
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMTKHDX symbolizes MII transmit 
timing (MT) for the time tMTX clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, 
the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. 
For example, the subscript of tMTX represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is 
used with the appropriate letter: R (rise) or F (fall).

2. Guaranteed by design.

RX_CLK

RXD[7:0]

tGRDXKH

tGRX

tGRXH

tGRXR

tGRXF

tGRDVKH
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RX_ER
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Enhanced Three-Speed Ethernet (eTSEC)

Figure 14 shows the TBI transmit AC timing diagram.

Figure 14. TBI Transmit AC Timing Diagram

8.2.4.2 TBI Receive AC Timing Specifications

This table provides the TBI receive AC timing specifications.

Table 31. TBI Receive AC Timing Specifications

Parameter/Condition Symbol1 Min Typ Max Unit

TSECn_RX_CLK[0:1] clock period tTRX — 16.0 — ns

TSECn_RX_CLK[0:1] skew tSKTRX 7.5 — 8.5 ns

TSECn_RX_CLK[0:1] duty cycle tTRXH/tTRX 40 — 60 %

RCG[9:0] setup time to rising TSECn_RX_CLK tTRDVKH 2.5 — — ns

RCG[9:0] hold time to rising TSECn_RX_CLK tTRDXKH 1.5 — — ns

TSECn_RX_CLK[0:1] clock rise time (20%–80%) tTRXR
2 0.7 — 2.4 ns

TSECn_RX_CLK[0:1] clock fall time (80%–20%) tTRXF
2 0.7 — 2.4 ns

Notes:

1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for 
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tTRDVKH symbolizes TBI receive 
timing (TR) with respect to the time data input signals (D) reach the valid state (V) relative to the tTRX clock reference (K) 
going to the high (H) state or setup time. Also, tTRDXKH symbolizes TBI receive timing (TR) with respect to the time data input 
signals (D) went invalid (X) relative to the tTRX clock reference (K) going to the high (H) state. Note that, in general, the clock 
reference symbol representation is based on three letters representing the clock of a particular functional. For example, the 
subscript of tTRX represents the TBI (T) receive (RX) clock. For rise and fall times, the latter convention is used with the 
appropriate letter: R (rise) or F (fall). For symbols representing skews, the subscript is skew (SK) followed by the clock that 
is being skewed (TRX).

2. Guaranteed by design.

GTX_CLK

TCG[9:0]

tTTXR

tTTX

tTTXH

tTTXR

tTTXF

tTTKHDV

tTTKHDX

tTTXF
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Enhanced Three-Speed Ethernet (eTSEC)

A timing diagram for TBI receive appears in Figure 16.
.

Figure 16. TBI Single-Clock Mode Receive AC Timing Diagram

8.2.6 RGMII and RTBI AC Timing Specifications

This table presents the RGMII and RTBI AC timing specifications.

Table 33. RGMII and RTBI AC Timing Specifications

Parameter/Condition Symbol1 Min Typ Max Unit

Data to clock output skew (at transmitter) tSKRGT
5 –5006 0 5006 ps

Data to clock input skew (at receiver) 2 tSKRGT 1.0 — 2.8 ns

Clock period 3 tRGT
5 7.2 8.0 8.8 ns

Duty cycle for 10BASE-T and 100BASE-TX3, 4 tRGTH/tRGT
5 45 50 55 %

Rise time (20%–80%) tRGTR
5 — — 0.75 ns

Fall time (20%–80%) tRGTF
5 — — 0.75 ns

Notes:

1. In general, the clock reference symbol representation for this section is based on the symbols RGT to represent RGMII and 
RTBI timing. For example, the subscript of tRGT represents the TBI (T) receive (RX) clock. Note also that the notation for rise 
(R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews, the subscript is 
skew (SK) followed by the clock that is being skewed (RGT).

2. This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns is 
added to the associated clock signal.

3. For 10 and 100 Mbps, tRGT scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.

4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long 
as the minimum duty cycle is not violated and stretching occurs for no more than three tRGT of the lowest speed transitioned 
between.

5. Guaranteed by characterization.

6.  In rev 1.0 silicon, due to errata, tSKRGT is -650 ps (min) and 650 ps (max). See “eTSEC 10” in the device errata document.

tTRRX

tTRRH tTRRF

tTRRR

RX_CLK

RCG[9:0] Valid Data

tTRRDXKHtTRRDVKH



MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 9

Freescale Semiconductor 47
 

Local Bus

LGTA/LUPWAIT input hold from local bus clock tLBIXKL2 –1.3 — ns 4, 5

LALE output transition to LAD/LDP output transition (LATCH hold time) tLBOTOT 1.5 — ns 6

Local bus clock to output valid (except LAD/LDP and LALE) tLBKLOV1 — –0.3 ns —

Local bus clock to data valid for LAD/LDP tLBKLOV2 — –0.1 ns 4

Local bus clock to address valid for LAD tLBKLOV3 — 0 ns 4

Local bus clock to LALE assertion tLBKLOV4 — 0 ns 4

Output hold from local bus clock (except LAD/LDP and LALE) tLBKLOX1 –3.7 — ns 4

Output hold from local bus clock for LAD/LDP tLBKLOX2 –3.7 — ns 4

Local bus clock to output high Impedance (except LAD/LDP and LALE) tLBKLOZ1 — 0.2 ns 7

Local bus clock to output high impedance for LAD/LDP tLBKLOZ2 — 0.2 ns 7

Notes:

1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for 
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1 symbolizes local bus 
timing (LB) for the input (I) to go invalid (X) with respect to the time the tLBK clock reference (K) goes high (H), in this case 
for clock one (1). Also, tLBKHOX symbolizes local bus timing (LB) for the tLBK clock reference (K) to go high (H), with respect 
to the output (O) going invalid (X) or output hold time. 

2. All timings are in reference to local bus clock for PLL bypass mode. Timings may be negative with respect to the local bus 
clock because the actual launch and capture of signals is done with the internal launch/capture clock, which precedes LCLK 
by tLBKHKT.

3. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between 
complementary signals at BVDD/2.

4. All signals are measured from BVDD/2 of the rising edge of local bus clock for PLL bypass mode to 0.4  BVDD of the signal 
in question for 3.3-V signaling levels.

5. Input timings are measured at the pin.

6. The value of tLBOTOT is the measurement of the minimum time between the negation of LALE and any change in LAD.

7. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered 
through the component pin is less than or equal to the leakage current specification.

8. Guaranteed by characterization.

9. Guaranteed by design.

Table 42. Local Bus Timing Parameters—PLL Bypassed (continued)

Parameter Symbol1 Min Max Unit Notes
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Figure 28. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 8 or 16 (PLL Bypass Mode)
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Programmable Interrupt Controller

11 Programmable Interrupt Controller
In IRQ edge trigger mode, when an external interrupt signal is asserted (according to the programmed 
polarity), it must remain the assertion for at least 3 system clocks (SYSCLK periods).

12 JTAG
This section describes the DC and AC electrical specifications for the IEEE 1149.1 (JTAG) interface of 
the device.

12.1 JTAG DC Electrical Characteristics

This table provides the DC electrical characteristics for the JTAG interface.

12.2 JTAG AC Electrical Specifications

This table provides the JTAG AC timing specifications as defined in Figure 30 through Figure 32.

Table 43. JTAG DC Electrical Characteristics

Parameter Symbol1 Min Max Unit

High-level input voltage VIH 2 OVDD + 0.3 V

Low-level input voltage VIL –0.3 0.8 V

Input current (VIN
1 = 0 V or VIN = VDD) IIN — ±5 A

High-level output voltage (OVDD = min, IOH = –2 mA) VOH 2.4 — V

Low-level output voltage (OVDD = min, IOL = 2 mA) VOL — 0.4 V

Note:
1. Note that the symbol VIN, in this case, represents the OVIN.

Table 44. JTAG AC Timing Specifications (Independent of SYSCLK)1

Parameter Symbol2 Min Max Unit Notes

JTAG external clock frequency of operation fJTG 0 33.3 MHz —

JTAG external clock cycle time t JTG 30 — ns —

JTAG external clock pulse width measured at 1.4 V tJTKHKL 15 — ns —

JTAG external clock rise and fall times tJTGR & tJTGF 0 2 ns 6

TRST assert time tTRST 25 — ns 3

Input setup times:

Boundary-scan data
TMS, TDI

tJTDVKH
tJTIVKH

4
0

—
—

ns
4

Input hold times:

Boundary-scan data
TMS, TDI

tJTDXKH
tJTIXKH

20
25

—
—

ns
4
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18  Serial RapidIO
This section describes the DC and AC electrical specifications for the RapidIO interface of the 
MPC8548E, for the LP-Serial physical layer. The electrical specifications cover both single- and 
multiple-lane links. Two transmitters (short and long run) and a single receiver are specified for each of 
three baud rates, 1.25, 2.50, and 3.125 GBaud.

Two transmitter specifications allow for solutions ranging from simple board-to-board interconnect to 
driving two connectors across a backplane. A single receiver specification is given that accepts signals 
from both the short- and long-run transmitter specifications.

The short-run transmitter must be used mainly for chip-to-chip connections on either the same 
printed-circuit board or across a single connector. This covers the case where connections are made to a 
mezzanine (daughter) card. The minimum swings of the short-run specification reduce the overall power 
used by the transceivers.

The long-run transmitter specifications use larger voltage swings that are capable of driving signals across 
backplanes. This allows a user to drive signals across two connectors and a backplane. The specifications 
allow a distance of at least 50 cm at all baud rates.

All unit intervals are specified with a tolerance of ±100 ppm. The worst case frequency difference between 
any transmit and receive clock is 200 ppm.

To ensure interoperability between drivers and receivers of different vendors and technologies, AC 
coupling at the receiver input must be used.

18.1 DC Requirements for Serial RapidIO SD_REF_CLK and 
SD_REF_CLK 

For more information, see Section 16.2, “SerDes Reference Clocks.”

18.2 AC Requirements for Serial RapidIO SD_REF_CLK and 
SD_REF_CLK

Table 58 lists the Serial RapidIO SD_REF_CLK and SD_REF_CLK AC requirements.

Table 58. SD_REF_CLK and SD_REF_CLK AC Requirements

Symbol Parameter Description Min Typ Max Unit Comments

tREF REFCLK cycle time — 10(8) — ns 8 ns applies only to serial 
RapidIO with 125-MHz reference 
clock

tREFCJ REFCLK cycle-to-cycle jitter. Difference in the 
period of any two adjacent REFCLK cycles.

— — 80 ps —

tREFPJ Phase jitter. Deviation in edge location with 
respect to mean edge location.

–40 — 40 ps —
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18.5 Explanatory Note on Transmitter and Receiver Specifications

AC electrical specifications are given for transmitter and receiver. Long- and short-run interfaces at three 
baud rates (a total of six cases) are described.

The parameters for the AC electrical specifications are guided by the XAUI electrical interface specified 
in Clause 47 of IEEE 802.3ae-2002.

XAUI has similar application goals to Serial RapidIO, as described in Section 8.1. The goal of this 
standard is that electrical designs for Serial RapidIO can reuse electrical designs for XAUI, suitably 
modified for applications at the baud intervals and reaches described herein.

18.6 Transmitter Specifications

LP-serial transmitter electrical and timing specifications are stated in the text and tables of this section.

The differential return loss, S11, of the transmitter in each case shall be better than:

• –10 dB for (baud frequency)/10 < Freq(f) < 625 MHz, and

• –10 dB + 10log(f/625 MHz) dB for 625 MHz  Freq(f)  baud frequency

The reference impedance for the differential return loss measurements is 100- resistive. Differential 
return loss includes contributions from on-chip circuitry, chip packaging, and any off-chip components 
related to the driver. The output impedance requirement applies to all valid output levels.

It is recommended that the 20%–80% rise/fall time of the transmitter, as measured at the transmitter output, 
in each case have a minimum value 60 ps.

It is recommended that the timing skew at the output of an LP-serial transmitter between the two signals 
that comprise a differential pair not exceed 25 ps at 1.25 GB, 20 ps at 2.50 GB, and 15 ps at 3.125 GB.

 

Table 59. Short Run Transmitter AC Timing Specifications—1.25 GBaud

Characteristic Symbol
Range

Unit Notes
Min Max

Output voltage VO –0.40 2.30 V Voltage relative to COMMON of either signal 
comprising a differential pair

Differential output voltage VDIFFPP 500 1000 mV p-p —

Deterministic jitter JD — 0.17 UI p-p —

Total jitter JT — 0.35 UI p-p —

Multiple output skew SMO — 1000 ps Skew at the transmitter output between lanes of a 
multilane link

Unit Interval UI 800 800 ps  ±100 ppm
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Table 60. Short Run Transmitter AC Timing Specifications—2.5 GBaud

Characteristic Symbol
Range

Unit Notes
Min Max

Output voltage VO –0.40 2.30 V Voltage relative to COMMON of either signal 
comprising a differential pair

Differential output voltage VDIFFPP 500 1000 mV p-p —

Deterministic jitter JD — 0.17 UI p-p —

Total jitter JT — 0.35 UI p-p —

Multiple output skew SMO — 1000 ps Skew at the transmitter output between lanes of a 
multilane link

Unit interval UI 400 400 ps ±100 ppm

Table 61. Short Run Transmitter AC Timing Specifications—3.125 GBaud

Characteristic Symbol
Range

Unit Notes
Min Max

Output voltage VO –0.40 2.30 V Voltage relative to COMMON of either signal 
comprising a differential pair

Differential output voltage VDIFFPP 500 1000 mVp-p —

Deterministic jitter JD — 0.17 UI p-p —

Total jitter JT — 0.35 UI p-p —

Multiple output skew SMO — 1000 ps Skew at the transmitter output between lanes of a 
multilane link

Unit interval UI 320 320 ps  ±100 ppm

Table 62. Long Run Transmitter AC Timing Specifications—1.25 GBaud

Characteristic Symbol
Range

Unit Notes
Min Max

Output voltage VO –0.40 2.30 V Voltage relative to COMMON of either signal 
comprising a differential pair

Differential output voltage VDIFFPP 800 1600 mVp-p —

Deterministic jitter JD — 0.17 UI p-p —

Total jitter JT — 0.35 UI p-p —

Multiple output skew SMO — 1000 ps Skew at the transmitter output between lanes of a 
multilane link

Unit interval UI 800 800 ps  ±100 ppm
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transmitter that implements pre-emphasis (to equalize the link and reduce inter-symbol interference) need 
only comply with the transmitter output compliance mask when pre-emphasis is disabled or minimized.

Figure 52. Transmitter Output Compliance Mask

18.7 Receiver Specifications

LP-serial receiver electrical and timing specifications are stated in the text and tables of this section.

Receiver input impedance shall result in a differential return loss better that 10 dB and a common mode 
return loss better than 6 dB from 100 MHz to (0.8) (baud frequency). This includes contributions from 
on-chip circuitry, the chip package, and any off-chip components related to the receiver. AC coupling 

Table 65. Transmitter Differential Output Eye Diagram Parameters

Transmitter Type VDIFFmin (mV) VDIFFmax (mV) A (UI) B (UI)

1.25 GBaud short range 250 500 0.175 0.39

1.25 GBaud long range 400 800 0.175 0.39

2.5 GBaud short range 250 500 0.175 0.39

2.5 GBaud long range 400 800 0.175 0.39

3.125 GBaud short range 250 500 0.175 0.39

3.125 GBaud long range 400 800 0.175 0.39
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components are included in this requirement. The reference impedance for return loss measurements is 
100- resistive for differential return loss and 25- resistive for common mode.

Table 66. Receiver AC Timing Specifications—1.25 GBaud

Characteristic Symbol
Range

Unit Notes
Min Max

Differential input voltage VIN 200 1600 mVp-p Measured at receiver

Deterministic jitter tolerance JD 0.37 — UI p-p Measured at receiver

Combined deterministic and random 
jitter tolerance

JDR 0.55 — UI p-p Measured at receiver

Total jitter tolerance1 JT 0.65 — UI p-p Measured at receiver

Multiple input skew SMI — 24 ns Skew at the receiver input between lanes 
of a multilane link

Bit error rate BER — 10–12 — —

Unit interval UI 800 800 ps ±100 ppm

Note:  
1. Total jitter is composed of three components, deterministic jitter, random jitter, and single frequency sinusoidal jitter. The 

sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 53. The sinusoidal jitter component 
is included to ensure margin for low frequency jitter, wander, noise, crosstalk, and other variable system effects.

Table 67. Receiver AC Timing Specifications—2.5 GBaud

Characteristic Symbol
Range

Unit Notes
Min Max

Differential input voltage VIN 200 1600 mVp-p Measured at receiver

Deterministic jitter tolerance JD 0.37 — UI p-p Measured at receiver

Combined deterministic and random 
jitter tolerance

JDR 0.55 — UI p-p Measured at receiver

Total jitter tolerance1 JT 0.65 — UI p-p Measured at receiver

Multiple input skew SMI — 24 ns Skew at the receiver input between lanes 
of a multilane link

Bit error rate BER — 10–12 —

Unit interval UI 400 400 ps ±100 ppm

Note:  
1. Total jitter is composed of three components, deterministic jitter, random jitter, and single frequency sinusoidal jitter. The 

sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 53. The sinusoidal jitter component 
is included to ensure margin for low frequency jitter, wander, noise, crosstalk, and other variable system effects.
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802.3ae-2002 is specified as the test pattern for use in eye pattern and jitter measurements. Annex 48B of 
IEEE Std. 802.3ae-2002 is recommended as a reference for additional information on jitter test methods.

18.9.1 Eye Template Measurements

For the purpose of eye template measurements, the effects of a single-pole high pass filter with a 3 dB point 
at (baud frequency)/1667 is applied to the jitter. The data pattern for template measurements is the 
continuous jitter test pattern (CJPAT) defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-serial 
link shall be active in both the transmit and receive directions, and opposite ends of the links shall use 
asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane 
implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. The 
amount of data represented in the eye shall be adequate to ensure that the bit error ratio is less than 10–12. 
The eye pattern shall be measured with AC coupling and the compliance template centered at 0 V 
differential. The left and right edges of the template shall be aligned with the mean zero crossing points of 
the measured data eye. The load for this test shall be 100- resistive ± 5% differential to 2.5 GHz. 

18.9.2 Jitter Test Measurements

For the purpose of jitter measurement, the effects of a single-pole high pass filter with a 3 dB point at (baud 
frequency)/1667 is applied to the jitter. The data pattern for jitter measurements is the Continuous Jitter test 
pattern (CJPAT) pattern defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-serial link shall be 
active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous 
clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations 
shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. Jitter shall be measured 
with AC coupling and at 0 V differential. Jitter measurement for the transmitter (or for calibration of a jitter 
tolerance setup) shall be performed with a test procedure resulting in a BER curve such as that described 
in Annex 48B of IEEE 802.3ae.

18.9.3 Transmit Jitter

Transmit jitter is measured at the driver output when terminated into a load of 100  resistive ± 5% 
differential to 2.5 GHz. 

18.9.4 Jitter Tolerance

Jitter tolerance is measured at the receiver using a jitter tolerance test signal. This signal is obtained by first 
producing the sum of deterministic and random jitter defined in Section 18.7, “Receiver Specifications,” 
and then adjusting the signal amplitude until the data eye contacts the 6 points of the minimum eye opening 
of the receive template shown in Figure 54 and Table 69. Note that for this to occur, the test signal must 
have vertical waveform symmetry about the average value and have horizontal symmetry (including jitter) 
about the mean zero crossing. Eye template measurement requirements are as defined above. Random 
jitter is calibrated using a high pass filter with a low frequency corner at 20 MHz and a 20 dB/decade 
roll-off below this. The required sinusoidal jitter specified in Section 18.7, “Receiver Specifications,” is 
then added to the signal and the test load is replaced by the receiver being tested. 
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19.2 Mechanical Dimensions of the HiCTE FC-CBGA and FC-PBGA 
with Full Lid

The following figures show the mechanical dimensions and bottom surface nomenclature for the 
MPC8548E HiCTE FC-CBGA and FC-PBGA packages.

Figure 55. Mechanical Dimensions and Bottom Surface Nomenclature of 
the HiCTE FC-CBGA and FC-PBGA with Full Lid
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GPOUT[0:5] N9, N10, P8, N7, R9, N5 O LVDD —

cfg_dram_type0/GPOUT6 R8 O LVDD 5, 9

GPOUT7 N6 O LVDD —

Reserved P1 — — 104

Reserved R6 — — 104

Reserved P6 — — 15

Reserved N4 — — 105

FIFO1_RXC2 P5 I LVDD 104

Reserved R1 — — 104

Reserved P10 — — 105

FIFO1_TXC2 P7 O LVDD 15

cfg_dram_type1 R10 O LVDD 5, 9

Three-Speed Ethernet Controller (Gigabit Ethernet 3)

TSEC3_TXD[3:0] V8, W10, Y10, W7 O TVDD 5, 9, 29 

TSEC3_RXD[3:0] Y1, W3, W5, W4 I TVDD —

TSEC3_GTX_CLK W8 O TVDD —

TSEC3_RX_CLK W2 I TVDD —

TSEC3_RX_DV W1 I TVDD —

TSEC3_RX_ER Y2 I TVDD —

TSEC3_TX_CLK V10 I TVDD —

TSEC3_TX_EN V9 O TVDD 30

TSEC3_TXD[7:4] AB8, Y7, AA7, Y8 O TVDD 5, 9, 29

TSEC3_RXD[7:4] AA1, Y3, AA2, AA4 I TVDD —

Reserved AA5 — — 15

TSEC3_COL Y5 I TVDD —

TSEC3_CRS AA3 I/O TVDD 31

TSEC3_TX_ER AB6 O TVDD —

DUART

UART_CTS[0:1] AB3, AC5 I OVDD —

UART_RTS[0:1] AC6, AD7 O OVDD —

UART_SIN[0:1] AB5, AC7 I OVDD —

UART_SOUT[0:1] AB7, AD8 O OVDD —

I2C interface

IIC1_SCL AG22 I/O OVDD 4, 27

Table 74. MPC8543E Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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20.3 e500 Core PLL Ratio

This table describes the clock ratio between the e500 core complex bus (CCB) and the e500 core clock. 
This ratio is determined by the binary value of LBCTL, LALE, and LGPL2 at power up, as shown in this 
table.

20.4 Frequency Options

Table 83This table shows the expected frequency values for the platform frequency when using a CCB 
clock to SYSCLK ratio in comparison to the memory bus clock speed. 

Table 82. e500 Core to CCB Clock Ratio

Binary Value of
LBCTL, LALE, LGPL2 

Signals
e500 core:CCB Clock Ratio

Binary Value of
LBCTL, LALE, LGPL2 

Signals
e500 core:CCB Clock Ratio

000 4:1 100 2:1

001 9:2 101 5:2

010 Reserved 110 3:1

011 3:2 111 7:2

Table 83. Frequency Options of SYSCLK with Respect to Memory Bus Speeds

CCB to 
SYSCLK Ratio

SYSCLK (MHz)

16.66 25 33.33 41.66 66.66 83 100 111 133.33

Platform/CCB Frequency (MHz)

2

3 333 400

4 333 400 445 533

5 333 415 500

6 400 500

8 333 533

9 375

10 333 417

12 400 500

16 400 533

20 333 500

Note:  Due to errata Gen 13 the max sys clk frequency must not exceed 100 MHz if the core clk frequency is below 
1200 MHz.
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The platform PLL ratio and e500 PLL ratio configuration pins are not equipped with these default pull-up 
devices.

22.9 JTAG Configuration Signals

Correct operation of the JTAG interface requires configuration of a group of system control pins as 
demonstrated in Figure 63. Care must be taken to ensure that these pins are maintained at a valid deasserted 
state under normal operating conditions as most have asynchronous behavior and spurious assertion gives 
unpredictable results.

Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the 
IEEE 1149.1 specification, but it is provided on all processors built on Power Architecture technology. The 
device requires TRST to be asserted during power-on reset flow to ensure that the JTAG boundary logic 
does not interfere with normal chip operation. While the TAP controller can be forced to the reset state 
using only the TCK and TMS signals, generally systems assert TRST during the power-on reset flow. 
Simply tying TRST to HRESET is not practical because the JTAG interface is also used for accessing the 
common on-chip processor (COP), which implements the debug interface to the chip.

The COP function of these processors allow a remote computer system (typically, a PC with dedicated 
hardware and debugging software) to access and control the internal operations of the processor. The COP 
interface connects primarily through the JTAG port of the processor, with some additional status 
monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order 
to fully control the processor. If the target system has independent reset sources, such as voltage monitors, 
watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be 
merged into these signals with logic.

The arrangement shown in Figure 63 allows the COP port to independently assert HRESET or TRST, 
while ensuring that the target can drive HRESET as well. 

The COP interface has a standard header, shown in Figure 62, for connection to the target system, and is 
based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header). The 
connector typically has pin 14 removed as a connector key.

The COP header adds many benefits such as breakpoints, watchpoints, register and memory 
examination/modification, and other standard debugger features. An inexpensive option can be to leave 
the COP header unpopulated until needed.

There is no standardized way to number the COP header; so emulator vendors have issued many different 
pin numbering schemes. Some COP headers are numbered top-to-bottom then left-to-right, while others 
use left-to-right then top-to-bottom. Still others number the pins counter-clockwise from pin 1 (as with an 
IC). Regardless of the numbering scheme, the signal placement recommended in Figure 62 is common to 
all known emulators.

22.9.1 Termination of Unused Signals

Freescale recommends the following connections, when the JTAG interface and COP header are not used:

• TRST must be tied to HRESET through a 0 k isolation resistor so that it is asserted when the 
system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during 
the power-on reset flow. Freescale recommends that the COP header be designed into the system 


