# E·XFL



#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

#### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Product Status                  | Obsolete                                                              |
|---------------------------------|-----------------------------------------------------------------------|
| Core Processor                  | PowerPC e500                                                          |
|                                 | FOWEIPC 6300                                                          |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                        |
| Speed                           | 1.2GHz                                                                |
| Co-Processors/DSP               | Signal Processing; SPE                                                |
| RAM Controllers                 | DDR, DDR2, SDRAM                                                      |
| Graphics Acceleration           | No                                                                    |
| Display & Interface Controllers | -                                                                     |
| Ethernet                        | 10/100/1000Mbps (4)                                                   |
| SATA                            | -                                                                     |
| USB                             |                                                                       |
| Voltage - I/O                   | 1.8V, 2.5V, 3.3V                                                      |
| Operating Temperature           | 0°C ~ 105°C (TA)                                                      |
| Security Features               | -                                                                     |
| Package / Case                  | 783-BBGA, FCBGA                                                       |
| Supplier Device Package         | 783-FCPBGA (29x29)                                                    |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8545vjatgd |
|                                 |                                                                       |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### Overview

- AESU-Advanced Encryption Standard unit
  - Implements the Rijndael symmetric key cipher
  - ECB, CBC, CTR, and CCM modes
  - 128-, 192-, and 256-bit key lengths
- AFEU—ARC four execution unit
  - Implements a stream cipher compatible with the RC4 algorithm
  - 40- to 128-bit programmable key
- MDEU—message digest execution unit
  - SHA with 160- or 256-bit message digest
  - MD5 with 128-bit message digest
  - HMAC with either algorithm
- KEU—Kasumi execution unit
  - Implements F8 algorithm for encryption and F9 algorithm for integrity checking
  - Also supports A5/3 and GEA-3 algorithms
- RNG—random number generator
- XOR engine for parity checking in RAID storage applications
- Dual I<sup>2</sup>C controllers
  - Two-wire interface
  - Multiple master support
  - Master or slave  $I^2C$  mode support
  - On-chip digital filtering rejects spikes on the bus
- Boot sequencer
  - Optionally loads configuration data from serial ROM at reset via the  $I^2C$  interface
  - Can be used to initialize configuration registers and/or memory
  - Supports extended I<sup>2</sup>C addressing mode
  - Data integrity checked with preamble signature and CRC
- DUART
  - Two 4-wire interfaces (SIN, SOUT,  $\overline{\text{RTS}}$ ,  $\overline{\text{CTS}}$ )
  - Programming model compatible with the original 16450 UART and the PC16550D
- Local bus controller (LBC)
  - Multiplexed 32-bit address and data bus operating at up to 133 MHz
  - Eight chip selects support eight external slaves
  - Up to eight-beat burst transfers
  - The 32-, 16-, and 8-bit port sizes are controlled by an on-chip memory controller.
  - Three protocol engines available on a per chip select basis:
    - General-purpose chip select machine (GPCM)
    - Three user programmable machines (UPMs)

Table 13 provides the recommended operating conditions for the DDR SDRAM controller when  $GV_{DD}(typ) = 2.5 \text{ V}.$ 

| Parameter/Condition                             | Symbol            | Min                      | Max                      | Unit | Notes |
|-------------------------------------------------|-------------------|--------------------------|--------------------------|------|-------|
| I/O supply voltage                              | GV <sub>DD</sub>  | 2.375                    | 2.625                    | V    | 1     |
| I/O reference voltage                           | MV <sub>REF</sub> | $0.49 \times GV_{DD}$    | $0.51 \times GV_{DD}$    | V    | 2     |
| I/O termination voltage                         | V <sub>TT</sub>   | MV <sub>REF</sub> – 0.04 | MV <sub>REF</sub> + 0.04 | V    | 3     |
| Input high voltage                              | V <sub>IH</sub>   | MV <sub>REF</sub> + 0.15 | GV <sub>DD</sub> + 0.3   | V    | —     |
| Input low voltage                               | V <sub>IL</sub>   | -0.3                     | MV <sub>REF</sub> – 0.15 | V    | —     |
| Output leakage current                          | I <sub>OZ</sub>   | -50                      | 50                       | μA   | 4     |
| Output high current (V <sub>OUT</sub> = 1.95 V) | I <sub>OH</sub>   | -16.2                    | —                        | mA   | —     |
| Output low current ( $V_{OUT} = 0.35 V$ )       | I <sub>OL</sub>   | 16.2                     | —                        | mA   | —     |

| Table 13  | DDR SDRAM   | DC Electrical | Characteristics  | for GV | (tvn) = 2 | 25 V  |
|-----------|-------------|---------------|------------------|--------|-----------|-------|
| Table 15. | DDIX SDIXAM |               | Gilaracteristics |        | (()) – 4  | 1.J V |

#### Notes:

1.  ${\rm GV}_{\rm DD}$  is expected to be within 50 mV of the DRAM  ${\rm V}_{\rm DD}$  at all times.

2. MV<sub>REF</sub> is expected to be equal to 0.5 × GV<sub>DD</sub>, and to track GV<sub>DD</sub> DC variations as measured at the receiver. Peak-to-peak noise on MV<sub>REF</sub> may not exceed ±2% of the DC value.

3. V<sub>TT</sub> is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV<sub>REF</sub>. This rail must track variations in the DC level of MV<sub>REF</sub>.

4. Output leakage is measured with all outputs disabled, 0 V  $\leq$  V<sub>OUT</sub>  $\leq$  GV<sub>DD</sub>.

Table 14 provides the DDR I/O capacitance when  $GV_{DD}(typ) = 2.5$  V.

#### Table 14. DDR SDRAM Capacitance for GV<sub>DD</sub>(typ) = 2.5 V

| Parameter/Condition                     | Symbol           | Min | Мах | Unit | Notes |
|-----------------------------------------|------------------|-----|-----|------|-------|
| Input/output capacitance: DQ, DQS       | C <sub>IO</sub>  | 6   | 8   | pF   | 1     |
| Delta input/output capacitance: DQ, DQS | C <sub>DIO</sub> | —   | 0.5 | pF   | 1     |

#### Note:

1. This parameter is sampled.  $GV_{DD} = 2.5 \text{ V} \pm 0.125 \text{ V}$ , f = 1 MHz, T<sub>A</sub> = 25°C,  $V_{OUT} = GV_{DD}/2$ ,  $V_{OUT}$  (peak-to-peak) = 0.2 V.

This table provides the current draw characteristics for MV<sub>REF</sub>.

#### Table 15. Current Draw Characteristics for MV<sub>REF</sub>

| Parameter/Condition                | Symbol             | Min | Max | Unit | Notes |
|------------------------------------|--------------------|-----|-----|------|-------|
| Current draw for MV <sub>REF</sub> | I <sub>MVREF</sub> |     | 500 | μA   | 1     |

#### Note:

1. The voltage regulator for  $MV_{REF}$  must be able to supply up to 500  $\mu$ A current.

# 6.2 DDR SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR SDRAM interface. The DDR controller supports both DDR1 and DDR2 memories. DDR1 is supported with the following AC timings at data rates of 333 MHz. DDR2 is supported with the following AC timings at data rates down to 333 MHz.

# 6.2.1 DDR SDRAM Input AC Timing Specifications

This table provides the input AC timing specifications for the DDR SDRAM when  $GV_{DD}(typ) = 1.8 \text{ V}$ .

#### Table 16. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface

At recommended operating conditions

| Parameter             | Symbol          | Min                      | Мах                      | Unit |
|-----------------------|-----------------|--------------------------|--------------------------|------|
| AC input low voltage  | V <sub>IL</sub> | —                        | MV <sub>REF</sub> – 0.25 | V    |
| AC input high voltage | V <sub>IH</sub> | MV <sub>REF</sub> + 0.25 | —                        | V    |

Table 17 provides the input AC timing specifications for the DDR SDRAM when  $GV_{DD}(typ) = 2.5 \text{ V}$ .

#### Table 17. DDR SDRAM Input AC Timing Specifications for 2.5-V Interface

At recommended operating conditions.

| Parameter             | Symbol          | Min                      | Мах                      | Unit |
|-----------------------|-----------------|--------------------------|--------------------------|------|
| AC input low voltage  | V <sub>IL</sub> | —                        | MV <sub>REF</sub> – 0.31 | V    |
| AC input high voltage | V <sub>IH</sub> | MV <sub>REF</sub> + 0.31 | —                        | V    |

This table provides the input AC timing specifications for the DDR SDRAM interface.

#### Table 18. DDR SDRAM Input AC Timing Specifications

At recommended operating conditions.

| Parameter                                                          | Symbol              | Min                  | Мах               | Unit | Notes |
|--------------------------------------------------------------------|---------------------|----------------------|-------------------|------|-------|
| Controller Skew for MDQS—MDQ/MECC<br>533 MHz<br>400 MHz<br>333 MHz | <sup>t</sup> ciskew | -300<br>-365<br>-390 | 300<br>365<br>390 | ps   | 1, 2  |

Notes:

1. t<sub>CISKEW</sub> represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that is captured with MDQS[n]. This must be subtracted from the total timing budget.

 The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t<sub>DISKEW</sub>. This can be determined by the following equation: t<sub>DISKEW</sub> = ± (T/4 – abs(t<sub>CISKEW</sub>)) where T is the clock period and abs(t<sub>CISKEW</sub>) is the absolute value of t<sub>CISKEW</sub>.

| Table 34. RMII Transmit A | C Timing | Specifications | (continued) |
|---------------------------|----------|----------------|-------------|
|---------------------------|----------|----------------|-------------|

| Parameter/Condition                                      | Symbol <sup>1</sup> | Min | Тур | Мах  | Unit |
|----------------------------------------------------------|---------------------|-----|-----|------|------|
| TSEC <i>n_</i> TX_CLK to RMII data TXD[1:0], TX_EN delay | t <sub>RMTDX</sub>  | 1.0 |     | 10.0 | ns   |

Note:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t<sub>MTKHDX</sub> symbolizes MII transmit timing (MT) for the time t<sub>MTX</sub> clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t<sub>MTX</sub> represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub></sub>

#### Figure 18 shows the RMII transmit AC timing diagram.



Figure 18. RMII Transmit AC Timing Diagram

### 8.2.7.2 RMII Receive AC Timing Specifications

#### Table 35. RMII Receive AC Timing Specifications

| Parameter/Condition                                       | Symbol <sup>1</sup> | Min  | Тур  | Max  | Unit |
|-----------------------------------------------------------|---------------------|------|------|------|------|
| TSEC <i>n</i> _TX_CLK clock period                        | t <sub>RMR</sub>    | 15.0 | 20.0 | 25.0 | ns   |
| TSEC <i>n</i> _TX_CLK duty cycle                          | t <sub>RMRH</sub>   | 35   | 50   | 65   | %    |
| TSEC <i>n</i> _TX_CLK peak-to-peak jitter                 | t <sub>RMRJ</sub>   | —    | _    | 250  | ps   |
| Rise time TSEC <i>n</i> _TX_CLK(20%–80%)                  | t <sub>RMRR</sub>   | 1.0  | _    | 2.0  | ns   |
| Fall time TSEC <i>n</i> _TX_CLK (80%–20%)                 | t <sub>RMRF</sub>   | 1.0  | _    | 2.0  | ns   |
| RXD[1:0], CRS_DV, RX_ER setup time to REF_CLK rising edge | t <sub>RMRDV</sub>  | 4.0  | _    | —    | ns   |
| RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK rising edge  | t <sub>RMRDX</sub>  | 2.0  | _    | —    | ns   |

Note:

1. The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t<sub>MRDVKH</sub> symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t<sub>MRX</sub> clock reference (K) going to the high (H) state or setup time. Also, t<sub>MRDXKL</sub> symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t<sub>MRX</sub> clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t<sub>MRX</sub> represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).</sub></sub>

#### Local Bus



Figure 26. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (PLL Bypass Mode)

# **11 Programmable Interrupt Controller**

In IRQ edge trigger mode, when an external interrupt signal is asserted (according to the programmed polarity), it must remain the assertion for at least 3 system clocks (SYSCLK periods).

# 12 JTAG

This section describes the DC and AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the device.

# **12.1 JTAG DC Electrical Characteristics**

This table provides the DC electrical characteristics for the JTAG interface.

| Parameter                                                                 | Symbol <sup>1</sup> | Min  | Мах                    | Unit |
|---------------------------------------------------------------------------|---------------------|------|------------------------|------|
| High-level input voltage                                                  | V <sub>IH</sub>     | 2    | OV <sub>DD</sub> + 0.3 | V    |
| Low-level input voltage                                                   | V <sub>IL</sub>     | -0.3 | 0.8                    | V    |
| Input current ( $V_{IN}^{1} = 0 V \text{ or } V_{IN} = V_{DD}$ )          | I <sub>IN</sub>     | —    | ±5                     | μΑ   |
| High-level output voltage ( $OV_{DD} = min, I_{OH} = -2 mA$ )             | V <sub>OH</sub>     | 2.4  | —                      | V    |
| Low-level output voltage (OV <sub>DD</sub> = min, I <sub>OL</sub> = 2 mA) | V <sub>OL</sub>     | —    | 0.4                    | V    |

 Table 43. JTAG DC Electrical Characteristics

Note:

1. Note that the symbol  $V_{\text{IN}}$  in this case, represents the  $\text{OV}_{\text{IN}}$ 

# **12.2 JTAG AC Electrical Specifications**

This table provides the JTAG AC timing specifications as defined in Figure 30 through Figure 32.

| Parameter                                            | Symbol <sup>2</sup>                        | Min      | Мах  | Unit | Notes |
|------------------------------------------------------|--------------------------------------------|----------|------|------|-------|
| JTAG external clock frequency of operation           | f <sub>JTG</sub>                           | 0        | 33.3 | MHz  | —     |
| JTAG external clock cycle time                       | t <sub>JTG</sub>                           | 30       | —    | ns   | —     |
| JTAG external clock pulse width measured at 1.4 V    | t <sub>JTKHKL</sub>                        | 15       | —    | ns   | —     |
| JTAG external clock rise and fall times              | t <sub>JTGR</sub> & t <sub>JTGF</sub>      | 0        | 2    | ns   | 6     |
| TRST assert time                                     | t <sub>TRST</sub>                          | 25       | —    | ns   | 3     |
| Input setup times:<br>Boundary-scan data<br>TMS, TDI | t <sub>JTDVKH</sub><br>t <sub>JTIVKH</sub> | 4<br>0   | _    | ns   | 4     |
| Input hold times:<br>Boundary-scan data<br>TMS, TDI  | t <sub>JTDXKH</sub><br>t <sub>JTIXKH</sub> | 20<br>25 |      | ns   | 4     |

Table 44. JTAG AC Timing Specifications (Independent of SYSCLK)<sup>1</sup>

JTAG

Figure 31 provides the  $\overline{\text{TRST}}$  timing diagram.







Figure 32. Boundary-Scan Timing Diagram

#### PCI/PCI-X

Figure 36 shows the PCI/PCI-X input AC timing conditions.



Figure 36. PCI/PCI-X Input AC Timing Measurement Conditions

Figure 37 shows the PCI/PCI-X output AC timing conditions.





Table 53 provides the PCI-X AC timing specifications at 66 MHz.

|  | Table 53 | . PCI-X AC | Timing | <b>Specifications</b> | at 66 | MHz |
|--|----------|------------|--------|-----------------------|-------|-----|
|--|----------|------------|--------|-----------------------|-------|-----|

| Parameter                                         | Symbol              | Min | Max | Unit   | Notes         |
|---------------------------------------------------|---------------------|-----|-----|--------|---------------|
| SYSCLK to signal valid delay                      | <sup>t</sup> PCKHOV | _   | 3.8 | ns     | 1, 2, 3, 7, 8 |
| Output hold from SYSCLK                           | t <sub>PCKHOX</sub> | 0.7 |     | ns     | 1, 10         |
| SYSCLK to output high impedance                   | t <sub>PCKHOZ</sub> | -   | 7   | ns     | 1, 4, 8, 11   |
| Input setup time to SYSCLK                        | t <sub>PCIVKH</sub> | 1.7 | _   | ns     | 3, 5          |
| Input hold time from SYSCLK                       | t <sub>PCIXKH</sub> | 0.5 | _   | ns     | 10            |
| REQ64 to HRESET setup time                        | t <sub>PCRVRH</sub> | 10  | _   | clocks | 11            |
| HRESET to REQ64 hold time                         | t <sub>PCRHRX</sub> | 0   | 50  | ns     | 11            |
| HRESET high to first FRAME assertion              | t <sub>PCRHFV</sub> | 10  | _   | clocks | 9, 11         |
| PCI-X initialization pattern to HRESET setup time | <sup>t</sup> PCIVRH | 10  | _   | clocks | 11            |

to AC-coupling. Its value could be ranged from 140 to 240  $\Omega$  depending on the clock driver vendor's requirement. R2 is used together with the SerDes reference clock receiver's 50- $\Omega$  termination resistor to attenuate the LVPECL output's differential peak level such that it meets the SerDes reference clock's differential input amplitude requirement (between 200 and 800 mV differential peak). For example, if the LVPECL output's differential peak is 900 mV and the desired SerDes reference clock input amplitude is selected as 600 mV, the attenuation factor is 0.67, which requires R2 = 25  $\Omega$ . Consult a clock driver chip manufacturer to verify whether this connection scheme is compatible with a particular clock driver chip.



Figure 45. AC-Coupled Differential Connection with LVPECL Clock Driver (Reference Only)

Figure 46 shows the SerDes reference clock connection reference circuits for a single-ended clock driver. It assumes the DC levels of the clock driver are compatible with the SerDes reference clock input's DC requirement.



Figure 46. Single-Ended Connection (Reference Only)

#### Serial RapidIO

802.3ae-2002 is specified as the test pattern for use in eye pattern and jitter measurements. Annex 48B of IEEE Std. 802.3ae-2002 is recommended as a reference for additional information on jitter test methods.

### 18.9.1 Eye Template Measurements

For the purpose of eye template measurements, the effects of a single-pole high pass filter with a 3 dB point at (baud frequency)/1667 is applied to the jitter. The data pattern for template measurements is the continuous jitter test pattern (CJPAT) defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-serial link shall be active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. The amount of data represented in the eye shall be adequate to ensure that the bit error ratio is less than  $10^{-12}$ . The eye pattern shall be measured with AC coupling and the compliance template centered at 0 V differential. The left and right edges of the template shall be aligned with the mean zero crossing points of the measured data eye. The load for this test shall be  $100-\Omega$  resistive  $\pm 5\%$  differential to 2.5 GHz.

### 18.9.2 Jitter Test Measurements

For the purpose of jitter measurement, the effects of a single-pole high pass filter with a 3 dB point at (baud frequency)/1667 is applied to the jitter. The data pattern for jitter measurements is the Continuous Jitter test pattern (CJPAT) pattern defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-serial link shall be active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. Jitter shall be measured with AC coupling and at 0 V differential. Jitter measurement for the transmitter (or for calibration of a jitter tolerance setup) shall be performed with a test procedure resulting in a BER curve such as that described in Annex 48B of IEEE 802.3ae.

### 18.9.3 Transmit Jitter

Transmit jitter is measured at the driver output when terminated into a load of 100  $\Omega$  resistive ± 5% differential to 2.5 GHz.

### 18.9.4 Jitter Tolerance

Jitter tolerance is measured at the receiver using a jitter tolerance test signal. This signal is obtained by first producing the sum of deterministic and random jitter defined in Section 18.7, "Receiver Specifications," and then adjusting the signal amplitude until the data eye contacts the 6 points of the minimum eye opening of the receive template shown in Figure 54 and Table 69. Note that for this to occur, the test signal must have vertical waveform symmetry about the average value and have horizontal symmetry (including jitter) about the mean zero crossing. Eye template measurement requirements are as defined above. Random jitter is calibrated using a high pass filter with a low frequency corner at 20 MHz and a 20 dB/decade roll-off below this. The required sinusoidal jitter specified in Section 18.7, "Receiver Specifications," is then added to the signal and the test load is replaced by the receiver being tested.

#### Package Description

| Table 72 | . MPC8547E | <b>Pinout</b> | Listing ( | (continued) |
|----------|------------|---------------|-----------|-------------|
|----------|------------|---------------|-----------|-------------|

| Signal                         | Package Pin Number                                                                                                                                                      | Pin Type | Power<br>Supply  | Notes        |  |  |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|--------------|--|--|--|
| Local Bus Controller Interface |                                                                                                                                                                         |          |                  |              |  |  |  |
| LAD[0:31]                      | E27, B20, H19, F25, A20, C19, E28, J23, A25,<br>K22, B28, D27, D19, J22, K20, D28, D25, B25,<br>E22, F22, F21, C25, C22, B23, F20, A23, A22,<br>E19, A21, D21, F19, B21 | I/O      | BV <sub>DD</sub> | _            |  |  |  |
| LDP[0:3]                       | K21, C28, B26, B22                                                                                                                                                      | I/O      | BV <sub>DD</sub> | —            |  |  |  |
| LA[27]                         | H21                                                                                                                                                                     | 0        | BV <sub>DD</sub> | 5, 9         |  |  |  |
| LA[28:31]                      | H20, A27, D26, A28                                                                                                                                                      | 0        | BV <sub>DD</sub> | 5, 7, 9      |  |  |  |
| LCS[0:4]                       | J25, C20, J24, G26, A26                                                                                                                                                 | 0        | BV <sub>DD</sub> | —            |  |  |  |
| LCS5/DMA_DREQ2                 | D23                                                                                                                                                                     | I/O      | BV <sub>DD</sub> | 1            |  |  |  |
| LCS6/DMA_DACK2                 | G20                                                                                                                                                                     | 0        | BV <sub>DD</sub> | 1            |  |  |  |
| LCS7/DMA_DDONE2                | E21                                                                                                                                                                     | 0        | BV <sub>DD</sub> | 1            |  |  |  |
| LWE0/LBS0/LSDDQM[0]            | G25                                                                                                                                                                     | 0        | BV <sub>DD</sub> | 5, 9         |  |  |  |
| LWE1/LBS1/LSDDQM[1]            | C23                                                                                                                                                                     | 0        | BV <sub>DD</sub> | 5, 9         |  |  |  |
| LWE2/LBS2/LSDDQM[2]            | J21                                                                                                                                                                     | 0        | BV <sub>DD</sub> | 5, 9         |  |  |  |
| LWE3/LBS3/LSDDQM[3]            | A24                                                                                                                                                                     | 0        | BV <sub>DD</sub> | 5, 9         |  |  |  |
| LALE                           | H24                                                                                                                                                                     | 0        | BV <sub>DD</sub> | 5, 8, 9      |  |  |  |
| LBCTL                          | G27                                                                                                                                                                     | 0        | BV <sub>DD</sub> | 5, 8, 9      |  |  |  |
| LGPL0/LSDA10                   | F23                                                                                                                                                                     | 0        | BV <sub>DD</sub> | 5, 9         |  |  |  |
| LGPL1/LSDWE                    | G22                                                                                                                                                                     | 0        | BV <sub>DD</sub> | 5, 9         |  |  |  |
| LGPL2/LOE/LSDRAS               | B27                                                                                                                                                                     | 0        | BV <sub>DD</sub> | 5, 8, 9      |  |  |  |
| LGPL3/LSDCAS                   | F24                                                                                                                                                                     | 0        | BV <sub>DD</sub> | 5, 9         |  |  |  |
| LGPL4/LGTA/LUPWAIT/LPBSE       | H23                                                                                                                                                                     | I/O      | BV <sub>DD</sub> | —            |  |  |  |
| LGPL5                          | E26                                                                                                                                                                     | 0        | BV <sub>DD</sub> | 5, 9         |  |  |  |
| LCKE                           | E24                                                                                                                                                                     | 0        | BV <sub>DD</sub> | —            |  |  |  |
| LCLK[0:2]                      | E23, D24, H22                                                                                                                                                           | 0        | BV <sub>DD</sub> | —            |  |  |  |
| LSYNC_IN                       | F27                                                                                                                                                                     | I        | BV <sub>DD</sub> | —            |  |  |  |
| LSYNC_OUT                      | F28                                                                                                                                                                     | 0        | BV <sub>DD</sub> | _            |  |  |  |
| DMA                            |                                                                                                                                                                         |          |                  |              |  |  |  |
| DMA_DACK[0:1]                  | AD3, AE1                                                                                                                                                                | 0        | OV <sub>DD</sub> | 5, 9,<br>107 |  |  |  |
| DMA_DREQ[0:1]                  | AD4, AE2                                                                                                                                                                | I        | OV <sub>DD</sub> | —            |  |  |  |
| DMA_DDONE[0:1]                 | AD2, AD1                                                                                                                                                                | 0        | OV <sub>DD</sub> |              |  |  |  |
|                                | Programmable Interrupt Controller                                                                                                                                       |          |                  |              |  |  |  |
| UDE                            | AH16                                                                                                                                                                    | I        | OV <sub>DD</sub> | _            |  |  |  |
| MCP                            | AG19                                                                                                                                                                    | I        | OV <sub>DD</sub> | —            |  |  |  |

Package Description

| Signal                 | Package Pin Number                     | Pin Type | Power<br>Supply  | Notes           |  |  |  |
|------------------------|----------------------------------------|----------|------------------|-----------------|--|--|--|
| Reserved               | U20, V22, W20, Y22                     | _        | —                | 15              |  |  |  |
| Reserved               | U21, V23, W21, Y23                     | —        | —                | 15              |  |  |  |
| SD_PLL_TPD             | U28                                    | 0        | XV <sub>DD</sub> | 24              |  |  |  |
| SD_REF_CLK             | T28                                    | I        | XV <sub>DD</sub> | —               |  |  |  |
| SD_REF_CLK             | T27                                    | I        | XV <sub>DD</sub> | —               |  |  |  |
| Reserved               | AC1, AC3                               | —        | —                | 2               |  |  |  |
| Reserved               | M26, V28                               | —        | —                | 32              |  |  |  |
| Reserved               | M25, V27                               | —        | —                | 34              |  |  |  |
| Reserved               | M20, M21, T22, T23                     | —        | —                | 38              |  |  |  |
|                        | General-Purpose Output                 |          |                  |                 |  |  |  |
| GPOUT[24:31]           | K26, K25, H27, G28, H25, J26, K24, K23 | 0        | BV <sub>DD</sub> | _               |  |  |  |
|                        | System Control                         |          |                  |                 |  |  |  |
| HRESET                 | AG17                                   | I        | OV <sub>DD</sub> | _               |  |  |  |
| HRESET_REQ             | AG16                                   | 0        | OV <sub>DD</sub> | 29              |  |  |  |
| SRESET                 | AG20                                   | I        | OV <sub>DD</sub> | _               |  |  |  |
| CKSTP_IN               | AA9                                    | I        | OV <sub>DD</sub> | _               |  |  |  |
| CKSTP_OUT              | AA8                                    | 0        | OV <sub>DD</sub> | 2, 4            |  |  |  |
|                        | Debug                                  |          |                  |                 |  |  |  |
| TRIG_IN                | AB2                                    | I        | OV <sub>DD</sub> | —               |  |  |  |
| TRIG_OUT/READY/QUIESCE | AB1                                    | 0        | OV <sub>DD</sub> | 6, 9,<br>19, 29 |  |  |  |
| MSRCID[0:1]            | AE4, AG2                               | 0        | OV <sub>DD</sub> | 5, 6, 9         |  |  |  |
| MSRCID[2:4]            | AF3, AF1, AF2                          | 0        | OV <sub>DD</sub> | 6, 19,<br>29    |  |  |  |
| MDVAL                  | AE5                                    | 0        | OV <sub>DD</sub> | 6               |  |  |  |
| CLK_OUT                | AE21                                   | 0        | OV <sub>DD</sub> | 11              |  |  |  |
| Clock                  |                                        |          |                  |                 |  |  |  |
| RTC                    | AF16                                   | I        | OV <sub>DD</sub> | —               |  |  |  |
| SYSCLK                 | AH17                                   | I        | OV <sub>DD</sub> | —               |  |  |  |
| JTAG                   |                                        |          |                  |                 |  |  |  |
| ТСК                    | AG28                                   | Ι        | OV <sub>DD</sub> | —               |  |  |  |
| TDI                    | AH28                                   | Ι        | OV <sub>DD</sub> | 12              |  |  |  |
| TDO                    | AF28                                   | 0        | OV <sub>DD</sub> | _               |  |  |  |
| TMS                    | AH27                                   | I        | OV <sub>DD</sub> | 12              |  |  |  |
| TRST                   | AH23                                   | Ι        | OV <sub>DD</sub> | 12              |  |  |  |

Package Description

#### Table 73. MPC8545E Pinout Listing (continued)

| Signal                 | Package Pin Number                                                                                                                                                                                                                                                                                               | Pin Type | Power<br>Supply  | Notes    |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|----------|
| PCI1_FRAME             | AE11                                                                                                                                                                                                                                                                                                             | I/O      | OV <sub>DD</sub> | 2        |
| PCI1_IDSEL             | AG9                                                                                                                                                                                                                                                                                                              | I        | OV <sub>DD</sub> | _        |
| PCI1_REQ64/PCI2_FRAME  | AF14                                                                                                                                                                                                                                                                                                             | I/O      | OV <sub>DD</sub> | 2, 5, 10 |
| PCI1_ACK64/PCI2_DEVSEL | V15                                                                                                                                                                                                                                                                                                              | I/O      | OV <sub>DD</sub> | 2        |
| PCI2_CLK               | AE28                                                                                                                                                                                                                                                                                                             | I        | OV <sub>DD</sub> | 39       |
| PCI2_IRDY              | AD26                                                                                                                                                                                                                                                                                                             | I/O      | OV <sub>DD</sub> | 2        |
| PCI2_PERR              | AD25                                                                                                                                                                                                                                                                                                             | I/O      | OV <sub>DD</sub> | 2        |
| PCI2_GNT[4:1]          | AE26, AG24, AF25, AE25                                                                                                                                                                                                                                                                                           | 0        | OV <sub>DD</sub> | 5, 9, 35 |
| PCI2_GNT0              | AG25                                                                                                                                                                                                                                                                                                             | I/O      | OV <sub>DD</sub> | _        |
| PCI2_SERR              | AD24                                                                                                                                                                                                                                                                                                             | I/O      | OV <sub>DD</sub> | 2,4      |
| PCI2_STOP              | AF24                                                                                                                                                                                                                                                                                                             | I/O      | OV <sub>DD</sub> | 2        |
| PCI2_TRDY              | AD27                                                                                                                                                                                                                                                                                                             | I/O      | OV <sub>DD</sub> | 2        |
| PCI2_REQ[4:1]          | AD28, AE27, W17, AF26                                                                                                                                                                                                                                                                                            | I        | OV <sub>DD</sub> | _        |
| PCI2_REQ0              | AH25                                                                                                                                                                                                                                                                                                             | I/O      | OV <sub>DD</sub> | _        |
|                        | DDR SDRAM Memory Interface                                                                                                                                                                                                                                                                                       |          |                  |          |
| MDQ[0:63]              | L18, J18, K14, L13, L19, M18, L15, L14, A17,<br>B17, A13, B12, C18, B18, B13, A12, H18, F18,<br>J14, F15, K19, J19, H16, K15, D17, G16, K13,<br>D14, D18, F17, F14, E14, A7, A6, D5, A4, C8,<br>D7, B5, B4, A2, B1, D1, E4, A3, B2, D2, E3, F3,<br>G4, J5, K5, F6, G5, J6, K4, J1, K2, M5, M3, J3,<br>J2, L1, M6 | I/O      | GV <sub>DD</sub> |          |
| MECC[0:7]              | H13, F13, F11, C11, J13, G13, D12, M12                                                                                                                                                                                                                                                                           | I/O      | GV <sub>DD</sub> | —        |
| MDM[0:8]               | M17, C16, K17, E16, B6, C4, H4, K1, E13                                                                                                                                                                                                                                                                          | 0        | GV <sub>DD</sub> | _        |
| MDQS[0:8]              | M15, A16, G17, G14, A5, D3, H1, L2, C13                                                                                                                                                                                                                                                                          | I/O      | GV <sub>DD</sub> | _        |
| MDQS[0:8]              | L17, B16, J16, H14, C6, C2, H3, L4, D13                                                                                                                                                                                                                                                                          | I/O      | GV <sub>DD</sub> | _        |
| MA[0:15]               | A8, F9, D9, B9, A9, L10, M10, H10, K10, G10,<br>B8, E10, B10, G6, A10, L11                                                                                                                                                                                                                                       | Ο        | GV <sub>DD</sub> | —        |
| MBA[0:2]               | F7, J7, M11                                                                                                                                                                                                                                                                                                      | 0        | GV <sub>DD</sub> | _        |
| MWE                    | E7                                                                                                                                                                                                                                                                                                               | 0        | GV <sub>DD</sub> | _        |
| MCAS                   | H7                                                                                                                                                                                                                                                                                                               | 0        | GV <sub>DD</sub> | _        |
| MRAS                   | L8                                                                                                                                                                                                                                                                                                               | 0        | GV <sub>DD</sub> | _        |
| MCKE[0:3]              | F10, C10, J11, H11                                                                                                                                                                                                                                                                                               | 0        | GV <sub>DD</sub> | 11       |
| MCS[0:3]               | K8, J8, G8, F8                                                                                                                                                                                                                                                                                                   | 0        | GV <sub>DD</sub> | _        |
| MCK[0:5]               | H9, B15, G2, M9, A14, F1                                                                                                                                                                                                                                                                                         | 0        | GV <sub>DD</sub> | _        |
| MCK[0:5]               | J9, A15, G1, L9, B14, F2                                                                                                                                                                                                                                                                                         | 0        | GV <sub>DD</sub> |          |
| MODT[0:3]              | E6, K6, L7, M7                                                                                                                                                                                                                                                                                                   | 0        | GV <sub>DD</sub> | —        |

| Signal        | Package Pin Number | Pin Type | Power<br>Supply | Notes |
|---------------|--------------------|----------|-----------------|-------|
| SD_IMP_CAL_RX | L28                | Ι        | 200 Ω to<br>GND |       |
| SD_IMP_CAL_TX | AB26               | I        | 100 Ω to<br>GND | _     |
| SD_PLL_TPA    | U26                | 0        |                 | 24    |

#### Table 73. MPC8545E Pinout Listing (continued)

Note: All note references in this table use the same numbers as those for Table 71. See Table 71 for the meanings of these notes.

Table 74 provides the pin-out listing for the MPC8543E 783 FC-PBGA package.

#### NOTE

All note references in the following table use the same numbers as those for Table 71. See Table 71 for the meanings of these notes.

Table 74. MPC8543E Pinout Listing

| Signal         | Package Pin Number                                                                                                                                                                            | Pin Type | Power<br>Supply  | Notes    |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|----------|
|                | PCI1 (One 32-Bit)                                                                                                                                                                             |          |                  |          |
| Reserved       | AB14, AC15, AA15, Y16, W16, AB16, AC16,<br>AA16, AE17, AA18, W18, AC17, AD16, AE16,<br>Y17, AC18,                                                                                             | _        | _                | 110      |
| GPOUT[8:15]    | AB18, AA19, AB19, AB21, AA20, AC20, AB20,<br>AB22                                                                                                                                             | 0        | OV <sub>DD</sub> | —        |
| GPIN[8:15]     | AC22, AD21, AB23, AF23, AD23, AE23, AC23, AC24                                                                                                                                                | I        | OV <sub>DD</sub> | 111      |
| PCI1_AD[31:0]  | AH6, AE7, AF7, AG7, AH7, AF8, AH8, AE9,<br>AH9, AC10, AB10, AD10, AG10, AA10, AH10,<br>AA11, AB12, AE12, AG12, AH12, AB13, AA12,<br>AC13, AE13, Y14, W13, AG13, V14, AH13,<br>AC14, Y15, AB15 | I/O      | OV <sub>DD</sub> | 17       |
| Reserved       | AF15, AD14, AE15, AD15                                                                                                                                                                        | _        | _                | 110      |
| PCI1_C_BE[3:0] | AF9, AD11, Y12, Y13                                                                                                                                                                           | I/O      | OV <sub>DD</sub> | 17       |
| Reserved       | W15                                                                                                                                                                                           | _        | _                | 110      |
| PCI1_GNT[4:1]  | AG6, AE6, AF5, AH5                                                                                                                                                                            | 0        | OV <sub>DD</sub> | 5, 9, 35 |
| PCI1_GNT0      | AG5                                                                                                                                                                                           | I/O      | OV <sub>DD</sub> | —        |
| PCI1_IRDY      | AF11                                                                                                                                                                                          | I/O      | OV <sub>DD</sub> | 2        |
| PCI1_PAR       | AD12                                                                                                                                                                                          | I/O      | OV <sub>DD</sub> | —        |
| PCI1_PERR      | AC12                                                                                                                                                                                          | I/O      | OV <sub>DD</sub> | 2        |
| PCI1_SERR      | V13                                                                                                                                                                                           | I/O      | OV <sub>DD</sub> | 2, 4     |
| PCI1_STOP      | W12                                                                                                                                                                                           | I/O      | OV <sub>DD</sub> | 2        |

| Signal           | Package Pin Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pin Type                                              | Power<br>Supply  | Notes     |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------|-----------|
|                  | JTAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                  |           |
| ТСК              | AG28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I                                                     | OV <sub>DD</sub> | _         |
| TDI              | AH28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I                                                     | OV <sub>DD</sub> | 12        |
| TDO              | AF28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                     | OV <sub>DD</sub> | —         |
| TMS              | AH27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I                                                     | OV <sub>DD</sub> | 12        |
| TRST             | AH23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I                                                     | OV <sub>DD</sub> | 12        |
|                  | DFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I                                                     |                  |           |
| L1_TSTCLK        | AC25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I                                                     | OV <sub>DD</sub> | 25        |
| L2_TSTCLK        | AE22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I                                                     | OV <sub>DD</sub> | 25        |
| LSSD_MODE        | AH20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I                                                     | OV <sub>DD</sub> | 25        |
| TEST_SEL         | AH14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I                                                     | OV <sub>DD</sub> | 109       |
|                  | Thermal Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                     |                  |           |
| THERM0           | AG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       | —                | 14        |
| THERM1           | AH1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       | —                | 14        |
|                  | Power Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I                                                     |                  |           |
| ASLEEP           | AH18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                     | OV <sub>DD</sub> | 9, 19, 29 |
|                  | Power and Ground Signals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |                  |           |
| GND              | <ul> <li>A11, B7, B24, C1, C3, C5, C12, C15, C26, D8,<br/>D11, D16, D20, D22, E1, E5, E9, E12, E15, E17,</li> <li>F4, F26, G12, G15, G18, G21, G24, H2, H6, H8,<br/>H28, J4, J12, J15, J17, J27, K7, K9, K11, K27,</li> <li>L3, L5, L12, L16, N11, N13, N15, N17, N19, P4,<br/>P9, P12, P14, P16, P18, R11, R13, R15, R17,<br/>R19, T4, T12, T14, T16, T18, U8, U11, U13,</li> <li>U15, U17, U19, V4, V12, V18, W6, W19, Y4, Y9,<br/>Y11, Y19, AA6, AA14, AA17, AA22, AA23, AB4,<br/>AC2, AC11, AC19, AC26, AD5, AD9, AD22,<br/>AE3, AE14, AF6, AF10, AF13, AG8, AG27,</li> <li>K28, L24, L26, N24, N27, P25, R28, T24, T26,<br/>U24, V25, W28, Y24, Y26, AA24, AA27, AB25,</li> <li>AC28, L21, L23, N22, P20, R23, T21, U22, V20,<br/>W23, Y21, U27</li> </ul> | _                                                     |                  |           |
| OV <sub>DD</sub> | V16, W11, W14, Y18, AA13, AA21, AB11,<br>AB17, AB24, AC4, AC9, AC21, AD6, AD13,<br>AD17, AD19, AE10, AE8, AE24, AF4, AF12,<br>AF22, AF27, AG26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Power for<br>PCI and<br>other<br>standards<br>(3.3 V) | OV <sub>DD</sub> | —         |
| LV <sub>DD</sub> | N8, R7, T9, U6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Power for<br>TSEC1 and<br>TSEC2<br>(2.5 V, 3.3 V)     | LV <sub>DD</sub> | _         |

# 20.3 e500 Core PLL Ratio

This table describes the clock ratio between the e500 core complex bus (CCB) and the e500 core clock. This ratio is determined by the binary value of LBCTL, LALE, and LGPL2 at power up, as shown in this table.

| Binary Value of<br>LBCTL, LALE, LGPL2<br>Signals | e500 core:CCB Clock Ratio | Binary Value of<br>LBCTL, LALE, LGPL2<br>Signals | e500 core:CCB Clock Ratio |  |
|--------------------------------------------------|---------------------------|--------------------------------------------------|---------------------------|--|
| 000                                              | 4:1                       | 100                                              | 2:1                       |  |
| 001                                              | 9:2                       | 101                                              | 5:2                       |  |
| 010                                              | Reserved                  | 110                                              | 3:1                       |  |
| 011                                              | 3:2                       | 111                                              | 7:2                       |  |

| Table 82. e500 Core to | <b>CCB Clock Ratio</b> |
|------------------------|------------------------|
|------------------------|------------------------|

## 20.4 Frequency Options

Table 83This table shows the expected frequency values for the platform frequency when using a CCB clock to SYSCLK ratio in comparison to the memory bus clock speed.

| CCB to<br>SYSCLK Ratio | SYSCLK (MHz)                 |     |       |       |       |     |     |     |        |
|------------------------|------------------------------|-----|-------|-------|-------|-----|-----|-----|--------|
|                        | 16.66                        | 25  | 33.33 | 41.66 | 66.66 | 83  | 100 | 111 | 133.33 |
|                        | Platform/CCB Frequency (MHz) |     |       |       |       |     |     |     |        |
| 2                      |                              |     |       |       |       |     |     |     |        |
| 3                      |                              |     |       |       |       |     |     | 333 | 400    |
| 4                      |                              |     |       |       |       | 333 | 400 | 445 | 533    |
| 5                      |                              |     |       |       | 333   | 415 | 500 |     |        |
| 6                      |                              |     |       |       | 400   | 500 |     | -   |        |
| 8                      |                              |     |       | 333   | 533   |     |     |     |        |
| 9                      |                              |     |       | 375   |       |     |     |     |        |
| 10                     |                              |     | 333   | 417   |       |     |     |     |        |
| 12                     |                              |     | 400   | 500   |       |     |     |     |        |
| 16                     |                              | 400 | 533   |       | -     |     |     |     |        |
| 20                     | 333                          | 500 |       | -     |       |     |     |     |        |

Table 83. Frequency Options of SYSCLK with Respect to Memory Bus Speeds

**Note:** Due to errata Gen 13 the max sys clk frequency must not exceed 100 MHz if the core clk frequency is below 1200 MHz.

#### System Design Information

level must always be equivalent to  $V_{DD}$ , and preferably these voltages are derived directly from  $V_{DD}$  through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to provide independent filter circuits per PLL power supply as illustrated in Figure 57, one to each of the  $AV_{DD}$  pins. By providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz range. It must be built with surface mount capacitors with minimum Effective Series Inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

Each circuit must be placed as close as possible to the specific  $AV_{DD}$  pin being supplied to minimize noise coupled from nearby circuits. It must be routed directly from the capacitors to the  $AV_{DD}$  pin, which is on the periphery of the footprint, without the inductance of vias.

Figure 57 through Figure 59 shows the PLL power supply filter circuits.



Figure 57. PLL Power Supply Filter Circuit with PLAT Pins



Figure 58. PLL Power Supply Filter Circuit with CORE Pins



Figure 59. PLL Power Supply Filter Circuit with PCI/LBIU Pins

The AV<sub>DD</sub>\_SRDS signal provides power for the analog portions of the SerDes PLL. To ensure stability of the internal clock, the power supplied to the PLL is filtered using a circuit similar to the one shown in following figure. For maximum effectiveness, the filter circuit is placed as closely as possible to the AV<sub>DD</sub>\_SRDS ball to ensure it filters out as much noise as possible. The ground connection must be near the AV<sub>DD</sub>\_SRDS ball. The 0.003- $\mu$ F capacitor is closest to the ball, followed by the two 2.2  $\mu$ F capacitors, and finally the 1  $\Omega$  resistor to the board supply plane. The capacitors are connected from AV<sub>DD</sub>\_SRDS to

the ground plane. Use ceramic chip capacitors with the highest possible self-resonant frequency. All traces must be kept short, wide and direct.



1. An 0805 sized capacitor is recommended for system initial bring-up.

#### Figure 60. SerDes PLL Power Supply Filter

Note the following:

- AV<sub>DD</sub>\_SRDS must be a filtered version of SV<sub>DD</sub>.
- Signals on the SerDes interface are fed from the XV<sub>DD</sub> power plane.

# 22.3 Decoupling Recommendations

Due to large address and data buses, and high operating frequencies, the device can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the device system, and the device itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each  $V_{DD}$ ,  $TV_{DD}$ ,  $BV_{DD}$ ,  $OV_{DD}$ ,  $GV_{DD}$ , and  $LV_{DD}$  pin of the device. These decoupling capacitors must receive their power from separate  $V_{DD}$ ,  $TV_{DD}$ ,  $BV_{DD}$ ,  $OV_{DD}$ ,  $GV_{DD}$ ,  $DV_{DD}$ ,  $DV_{DD}$ ,  $DV_{DD}$ ,  $OV_{DD}$ ,  $GV_{DD}$ ,  $DV_{DD}$ ,  $DV_{DD}$ ,  $OV_{DD}$ ,  $GV_{DD}$ ,  $DV_{DD}$ ,  $DV_{DD}$ ,  $DV_{DD}$ ,  $DV_{DD}$ ,  $OV_{DD}$ ,  $GV_{DD}$ ,  $DV_{DD}$ , DV

These capacitors must have a value of 0.1  $\mu$ F. Only ceramic SMT (surface mount technology) capacitors must be used to minimize lead inductance, preferably 0402 or 0603 sizes. Besides, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the V<sub>DD</sub>, TV<sub>DD</sub>, BV<sub>DD</sub>, OV<sub>DD</sub>, GV<sub>DD</sub>, and LV<sub>DD</sub>, planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors must have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They must also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors—100–330  $\mu$ F (AVX TPS tantalum or Sanyo OSCON). However, customers must work directly with their power regulator vendor for best values, types and quantity of bulk capacitors.

# 22.4 SerDes Block Power Supply Decoupling Recommendations

The SerDes block requires a clean, tightly regulated source of power ( $SV_{DD}$  and  $XV_{DD}$ ) to ensure low jitter on transmit and reliable recovery of data in the receiver. An appropriate decoupling scheme is outlined below.

Only surface mount technology (SMT) capacitors must be used to minimize inductance. Connections from all capacitors to power and ground must be done with multiple vias to further reduce inductance.

#### System Design Information



#### Notes:

- 1. The COP port and target board must be able to independently assert HRESET and TRST to the processor in order to fully control the processor as shown here.
- 2. Populate this with a 10– $\Omega$  resistor for short-circuit/current-limiting protection.
- 3. The KEY location (pin 14) is not physically present on the COP header.
- 4. Although pin 12 is defined as a No-Connect, some debug tools may use pin 12 as an additional GND pin for improved signal integrity.
- This switch is included as a precaution for BSDL testing. The switch must be closed to position A during BSDL testing to avoid accidentally asserting the TRST line. If BSDL testing is not being performed, this switch must be closed to position B.
- 6. Asserting SRESET causes a machine check interrupt to the e500 core.

#### Figure 63. JTAG Interface Connection

# 23 Ordering Information

.....

Ordering information for the parts fully covered by this specification document is provided in Section 23.1, "Part Numbers Fully Addressed by this Document."

# 23.1 Part Numbers Fully Addressed by this Document

This table provides the Freescale part numbering nomenclature for the device. Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact your local Freescale sales office. In addition to the processor frequency, the part-numbering scheme also includes an application modifier that may specify special application conditions. Each part number also contains a revision code that refers to the die mask revision number.

| MPC             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | t                                       | pp                                                               | 11                                                            | C                                          | r                                                                                                                                                       |
|-----------------|-----------------------------------------|-----------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product<br>Code | Part<br>Identifier                      | Temperature                             | Package <sup>1, 2, 3</sup>                                       | Processor<br>Frequency <sup>4</sup>                           | Core<br>Frequency                          | Silicon Version                                                                                                                                         |
| MPC             | 8548E                                   | Blank = 0 to 105°C<br>C = -40° to 105°C | HX = CBGA<br>VU = Pb-free CBGA<br>PX = PBGA<br>VT = Pb-free PBGA | AV = 1500 <sup>3</sup><br>AU = 1333<br>AT = 1200<br>AQ = 1000 | J = 533<br>H = 500 <sup>5</sup><br>G = 400 | Blank = Ver. 2.0 (SVR = 0x80390020)<br>A = Ver. 2.1.1<br>B = Ver. 2.1.2<br>C = Ver. 2.1.3<br>(SVR = 0x80390021)<br>D = Ver. 3.1.x<br>(SVR = 0x80390031) |
|                 | 8548                                    |                                         |                                                                  |                                                               |                                            | Blank = Ver. 2.0 (SVR = 0x80310020)<br>A = Ver. 2.1.1<br>B = Ver. 2.1.2<br>C = Ver. 2.1.3<br>(SVR = 0x80310021)<br>D = Ver. 3.1.x<br>(SVR = 0x80310031) |
|                 | 8547E                                   |                                         |                                                                  | AU = 1333<br>AT = 1200<br>AQ = 1000                           | J = 533<br>G = 400                         | Blank = Ver. 2.0 (SVR = 0x80390120)<br>A = Ver. 2.1.1<br>B = Ver. 2.1.2<br>C = Ver. 2.1.3<br>(SVR = 0x80390121)<br>D = Ver. 3.1.x<br>(SVR = 0x80390131) |
|                 | 8547                                    |                                         |                                                                  |                                                               |                                            | Blank = Ver. 2.0 (SVR = 0x80390120) A = Ver. 2.1.1 B = Ver. 2.1.2 C = Ver. 2.1.3 (SVR = 0x80310121) D = Ver. 3.1.x (SVR = 0x80310131)                   |

#### Table 87. Part Numbering Nomenclature

...