

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

ĿХF

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.2GHz
Co-Processors/DSP	Signal Processing; SPE
RAM Controllers	DDR, DDR2, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (4)
SATA	-
USB	-
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCBGA (29x29)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8545vtatgb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

- Up to 32 simultaneous open pages for DDR2
- Contiguous or discontiguous memory mapping
- Read-modify-write support for RapidIO atomic increment, decrement, set, and clear transactions
- Sleep mode support for self-refresh SDRAM
- On-die termination support when using DDR2
- Supports auto refreshing
- On-the-fly power management using CKE signal
- Registered DIMM support
- Fast memory access via JTAG port
- 2.5-V SSTL_2 compatible I/O (1.8-V SSTL_1.8 for DDR2)
- Support for battery-backed main memory
- Programmable interrupt controller (PIC)
 - Programming model is compliant with the OpenPIC architecture.
 - Supports 16 programmable interrupt and processor task priority levels
 - Supports 12 discrete external interrupts
 - Supports 4 message interrupts with 32-bit messages
 - Supports connection of an external interrupt controller such as the 8259 programmable interrupt controller
 - Four global high-resolution timers/counters that can generate interrupts
 - Supports a variety of other internal interrupt sources
 - Supports fully nested interrupt delivery
 - Interrupts can be routed to external pin for external processing.
 - Interrupts can be routed to the e500 core's standard or critical interrupt inputs.
 - Interrupt summary registers allow fast identification of interrupt source.
- Integrated security engine (SEC) optimized to process all the algorithms associated with IPSec, IKE, WTLS/WAP, SSL/TLS, and 3GPP
 - Four crypto-channels, each supporting multi-command descriptor chains
 - Dynamic assignment of crypto-execution units via an integrated controller
 - Buffer size of 256 bytes for each execution unit, with flow control for large data sizes
 - PKEU—public key execution unit
 - RSA and Diffie-Hellman; programmable field size up to 2048 bits
 - Elliptic curve cryptography with F_2m and F(p) modes and programmable field size up to 511 bits
 - DEU—Data Encryption Standard execution unit
 - DES, 3DES
 - Two key (K1, K2) or three key (K1, K2, K3)
 - ECB and CBC modes for both DES and 3DES

Table 13 provides the recommended operating conditions for the DDR SDRAM controller when $GV_{DD}(typ) = 2.5 \text{ V}.$

Parameter/Condition	Symbol	Min	Max	Unit	Notes
I/O supply voltage	GV _{DD}	2.375	2.625	V	1
I/O reference voltage	MV _{REF}	$0.49 \times GV_{DD}$	$0.51 \times GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.15	GV _{DD} + 0.3	V	—
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.15	V	—
Output leakage current	I _{OZ}	-50	50	μA	4
Output high current (V _{OUT} = 1.95 V)	I _{OH}	-16.2	—	mA	—
Output low current ($V_{OUT} = 0.35 V$)	I _{OL}	16.2	—	mA	—

Table 13	DDR SDRAM	DC Electrical	Characteristics	for GV	(tvn) = 2	25 V
Table 15.	DDIX SDIXAM		Gilaracteristics		(()) – 4	1.J V

Notes:

1. ${\rm GV}_{\rm DD}$ is expected to be within 50 mV of the DRAM ${\rm V}_{\rm DD}$ at all times.

2. MV_{REF} is expected to be equal to 0.5 × GV_{DD}, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail must track variations in the DC level of MV_{REF}.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

Table 14 provides the DDR I/O capacitance when $GV_{DD}(typ) = 2.5$ V.

Table 14. DDR SDRAM Capacitance for GV_{DD}(typ) = 2.5 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	—	0.5	pF	1

Note:

1. This parameter is sampled. $GV_{DD} = 2.5 \text{ V} \pm 0.125 \text{ V}$, f = 1 MHz, T_A = 25°C, $V_{OUT} = GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

This table provides the current draw characteristics for MV_{REF}.

Table 15. Current Draw Characteristics for MV_{REF}

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Current draw for MV _{REF}	I _{MVREF}		500	μA	1

Note:

1. The voltage regulator for MV_{REF} must be able to supply up to 500 μ A current.

A summary of the FIFO AC specifications appears in Table 24 and Table 25.

Parameter/Condition	Symbol	Min	Тур	Max	Unit
TX_CLK, GTX_CLK clock period	t _{FIT}	5.3	8.0	100	ns
TX_CLK, GTX_CLK duty cycle	t _{FITH} /t _{FIT}	45	50	55	%
TX_CLK, GTX_CLK peak-to-peak jitter	t _{FITJ}	—	_	250	ps
Rise time TX_CLK (20%–80%)	t _{FITR}	—	_	0.75	ns
Fall time TX_CLK (80%–20%)	t _{FITF}	—	_	0.75	ns
FIFO data TXD[7:0], TX_ER, TX_EN setup time to GTX_CLK	t _{FITDV}	2.0	_	—	ns
GTX_CLK to FIFO data TXD[7:0], TX_ER, TX_EN hold time	t _{FITDX}	0.5	_	3.0	ns

Table 24. FIFO Mode Transmit AC Timing Specification

Table 25. FIFO Mode Receive AC Timing Specification

Parameter/Condition	Symbol	Min	Тур	Мах	Unit
RX_CLK clock period	t _{FIR}	5.3	8.0	100	ns
RX_CLK duty cycle	t _{FIRH} /t _{FIR}	45	50	55	%
RX_CLK peak-to-peak jitter	t _{FIRJ}	—		250	ps
Rise time RX_CLK (20%-80%)	t _{FIRR}	—	_	0.75	ns
Fall time RX_CLK (80%–20%)	t _{FIRF}	—	_	0.75	ns
RXD[7:0], RX_DV, RX_ER setup time to RX_CLK	t _{FIRDV}	1.5	_	_	ns
RXD[7:0], RX_DV, RX_ER hold time to RX_CLK	t _{FIRDX}	0.5			ns

Note:

1. The minimum cycle period of the TX_CLK and RX_CLK is dependent on the maximum platform frequency of the speed bins the part belongs to as well as the FIFO mode under operation. See Section 4.5, "Platform to FIFO Restrictions."

Timing diagrams for FIFO appear in Figure 6 and Figure 7.

Figure 6. FIFO Transmit AC Timing Diagram

Enhanced Three-Speed Ethernet (eTSEC)

Figure 15 shows the TBI receive AC timing diagram.

Figure 15. TBI Receive AC Timing Diagram

8.2.5 TBI Single-Clock Mode AC Specifications

When the eTSEC is configured for TBI modes, all clocks are supplied from external sources to the relevant eTSEC interface. In single-clock TBI mode, when TBICON[CLKSEL] = 1, a 125-MHz TBI receive clock is supplied on the TSEC n_RX_CLK pin (no receive clock is used on TSEC n_TX_CLK in this mode, whereas for the dual-clock mode this is the PMA1 receive clock). The 125-MHz transmit clock is applied on the TSEC_GTX_CLK125 pin in all TBI modes.

A summary of the single-clock TBI mode AC specifications for receive appears in Table 32.

Parameter/Condition	Symbol	Min	Тур	Мах	Unit
RX_CLK clock period	t _{TRRX}	7.5	8.0	8.5	ns
RX_CLK duty cycle	t _{TRRH/TRRX}	40	50	60	%
RX_CLK peak-to-peak jitter	t _{TRRJ}	_	_	250	ps
Rise time RX_CLK (20%–80%)	t _{TRRR}	_	_	1.0	ns
Fall time RX_CLK (80%–20%)	t _{TRRF}	_	_	1.0	ns
RCG[9:0] setup time to RX_CLK rising edge	t _{TRRDVKH}	2.0	_	—	ns
RCG[9:0] hold time to RX_CLK rising edge	t _{TRRDXKH}	1.0	_	_	ns

Parameter	Symbol ¹	Min	Max	Unit	Notes
LGTA/LUPWAIT input hold from local bus clock	t _{LBIXKL2}	-1.3		ns	4, 5
LALE output transition to LAD/LDP output transition (LATCH hold time)	t _{LBOTOT}	1.5		ns	6
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKLOV1}	_	-0.3	ns	
Local bus clock to data valid for LAD/LDP	t _{LBKLOV2}	_	-0.1	ns	4
Local bus clock to address valid for LAD	t _{LBKLOV3}	_	0	ns	4
Local bus clock to LALE assertion	t _{LBKLOV4}	_	0	ns	4
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKLOX1}	-3.7	_	ns	4
Output hold from local bus clock for LAD/LDP	t _{LBKLOX2}	-3.7	_	ns	4
Local bus clock to output high Impedance (except LAD/LDP and LALE)	t _{LBKLOZ1}	_	0.2	ns	7
Local bus clock to output high impedance for LAD/LDP	t _{LBKLOZ2}	_	0.2	ns	7

Table 42. Local Bus Timing Parameters—PLL Bypassed (continued)

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKH0X} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
</sub>

 All timings are in reference to local bus clock for PLL bypass mode. Timings may be negative with respect to the local bus clock because the actual launch and capture of signals is done with the internal launch/capture clock, which precedes LCLK by t_{LBKHKT}.

3. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at BV_{DD}/2.

4. All signals are measured from $BV_{DD}/2$ of the rising edge of local bus clock for PLL bypass mode to $0.4 \times BV_{DD}$ of the signal in question for 3.3-V signaling levels.

5. Input timings are measured at the pin.

6. The value of t_{LBOTOT} is the measurement of the minimum time between the negation of LALE and any change in LAD.

7. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

- 8. Guaranteed by characterization.
- 9. Guaranteed by design.

This table provides the PCI AC timing specifications at 66 MHz.

Table 52.	. PCI AC	Timing	Specifications at	66 MH
-----------	----------	--------	-------------------	-------

Parameter	Symbol ¹	Min	Мах	Unit	Notes
CLK to output valid	t _{PCKHOV}	—	6.0	ns	2, 3
Output hold from CLK	t _{PCKHOX}	2.0	_	ns	2, 10
CLK to output high impedance	t _{PCKHOZ}	_	14	ns	2, 4, 11
Input setup to CLK	^t PCIVKH	3.0	_	ns	2, 5, 10
Input hold from CLK	t _{PCIXKH}	0	_	ns	2, 5, 10
REQ64 to HRESET ⁹ setup time	t _{PCRVRH}	$10 imes t_{SYS}$	_	clocks	6, 7, 11
HRESET to REQ64 hold time	t _{PCRHRX}	0	50	ns	7, 11
HRESET high to first FRAME assertion	t _{PCRHFV}	10	_	clocks	8, 11

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{PCIVKH} symbolizes PCI/PCI-X timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the SYSCLK clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI/PCI-X timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
</sub>

- 2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.
- 3. All PCI signals are measured from $OV_{DD}/2$ of the rising edge of SYSCLK or PCI_CLK*n* to $0.4 \times OV_{DD}$ of the signal in question for 3.3-V PCI signaling levels.
- 4. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 5. Input timings are measured at the pin.
- 6. The timing parameter t_{SYS} indicates the minimum and maximum CLK cycle times for the various specified frequencies. The system clock period must be kept within the minimum and maximum defined ranges. For values see Section 20, "Clocking."
- 7. The setup and hold time is with respect to the rising edge of HRESET.
- 8. The timing parameter t_{PCRHFV} is a minimum of 10 clocks rather than the minimum of 5 clocks in the *PCI 2.2 Local Bus Specifications*.
- 9. The reset assertion timing requirement for $\overline{\text{HRESET}}$ is 100 μ s.
- 10. Guaranteed by characterization.
- 11.Guaranteed by design.

Figure 35 provides the AC test load for PCI and PCI-X.

16 High-Speed Serial Interfaces (HSSI)

The device features one Serializer/Deserializer (SerDes) interface to be used for high-speed serial interconnect applications. The SerDes interface can be used for PCI Express and/or serial RapidIO data transfers.

This section describes the common portion of SerDes DC electrical specifications, which is the DC requirement for SerDes reference clocks. The SerDes data lane's transmitter and receiver reference circuits are also shown.

16.1 Signal Terms Definition

The SerDes utilizes differential signaling to transfer data across the serial link. This section defines terms used in the description and specification of differential signals.

Figure 38 shows how the signals are defined. For illustration purpose, only one SerDes lane is used for the description. The figure shows a waveform for either a transmitter output (SD_TX and \overline{SD}_TX) or a receiver input (SD_RX and \overline{SD}_RX). Each signal swings between A volts and B volts where A > B.

Using this waveform, the definitions are as follows. To simplify the illustration, the following definitions assume that the SerDes transmitter and receiver operate in a fully symmetrical differential signaling environment.

• Single-ended swing

The transmitter output signals and the receiver input signals SD_TX, \overline{SD}_TX , \overline{SD}_RX and \overline{SD}_RX each have a peak-to-peak swing of A – B volts. This is also referred as each signal wire's single-ended swing.

- Differential output voltage, V_{OD} (or differential output swing): The differential output voltage (or swing) of the transmitter, V_{OD} , is defined as the difference of the two complimentary output voltages: $V_{SD_TX} - V_{\overline{SD_TX}}$. The V_{OD} value can be either positive or negative.
- Differential input voltage, V_{ID} (or differential input swing): The differential input voltage (or swing) of the receiver, V_{ID}, is defined as the difference of the two complimentary input voltages: V_{SD_RX} – V_{SD_RX}. The V_{ID} value can be either positive or negative.
- Differential peak voltage, V_{DIFFp} The peak value of the differential transmitter output signal or the differential receiver input signal is defined as differential peak voltage, $V_{DIFFp} = |A - B|$ volts.
- Differential peak-to-peak, $V_{DIFFp-p}$ Because the differential output signal of the transmitter and the differential input signal of the receiver each range from A – B to –(A – B) volts, the peak-to-peak value of the differential transmitter output signal or the differential receiver input signal is defined as differential peak-to-peak voltage, $V_{DIFFp-p} = 2 \times V_{DIFFp} = 2 \times |(A - B)|$ volts, which is twice of differential swing in amplitude, or twice of the differential peak. For example, the output differential peak-to-peak voltage can also be calculated as $V_{TX-DIFFp-p} = 2 \times |V_{OD}|$.
- Common mode voltage, V_{cm} The common mode voltage is equal to one half of the sum of the voltages between each conductor

- The SD_REF_CLK and SD_REF_CLK are internally AC-coupled differential inputs as shown in Figure 39. Each differential clock input (SD_REF_CLK or SD_REF_CLK) has a 50-Ω termination to SGND_SRDSn (xcorevss) followed by on-chip AC-coupling.
- The external reference clock driver must be able to drive this termination.
- The SerDes reference clock input can be either differential or single-ended. See the differential mode and single-ended mode description below for further detailed requirements.
- The maximum average current requirement that also determines the common mode voltage range:
 - When the SerDes reference clock differential inputs are DC coupled externally with the clock driver chip, the maximum average current allowed for each input pin is 8 mA. In this case, the exact common mode input voltage is not critical as long as it is within the range allowed by the maximum average current of 8 mA (see the following bullet for more detail), since the input is AC-coupled on-chip.
 - This current limitation sets the maximum common mode input voltage to be less than 0.4 V (0.4 V/50 = 8 mA) while the minimum common mode input level is 0.1 V above SGND_SRDS*n* (xcorevss). For example, a clock with a 50/50 duty cycle can be produced by a clock driver with output driven by its current source from 0 to 16 mA (0–0.8 V), such that each phase of the differential input has a single-ended swing from 0 V to 800 mV with the common mode voltage at 400 mV.
 - If the device driving the SD_REF_CLK and $\overline{\text{SD}_{\text{REF}_{\text{CLK}}}}$ inputs cannot drive 50 Ω to SGND_SRDS*n* (xcorevss) DC, or it exceeds the maximum input current limitations, then it must be AC-coupled off-chip.
- The input amplitude requirement:
 - This requirement is described in detail in the following sections.

Figure 39. Receiver of SerDes Reference Clocks

16.2.2 DC Level Requirement for SerDes Reference Clocks

The DC level requirement for the SerDes reference clock inputs is different depending on the signaling mode used to connect the clock driver chip and SerDes reference clock inputs as described below:

• Differential mode

High-Speed Serial Interfaces (HSSI)

Figure 42. Single-Ended Reference Clock Input DC Requirements

16.2.3 Interfacing with Other Differential Signaling Levels

- With on-chip termination to SGND_SRDSn (xcorevss), the differential reference clocks inputs are HCSL (high-speed current steering logic) compatible DC-coupled.
- Many other low voltage differential type outputs like LVDS (low voltage differential signaling) can be used but may need to be AC-coupled due to the limited common mode input range allowed (100 to 400 mV) for DC-coupled connection.
- LVPECL outputs can produce signal with too large amplitude and may need to be DC-biased at clock driver output first, then followed with series attenuation resistor to reduce the amplitude, in addition to AC-coupling.

NOTE

Figure 43 through Figure 46 below are for conceptual reference only. Due to the fact that clock driver chip's internal structure, output impedance, and termination requirements are different between various clock driver chip manufacturers, it is very possible that the clock circuit reference designs provided by clock driver chip vendor are different from what is shown below. They might also vary from one vendor to the other. Therefore, Freescale Semiconductor can neither provide the optimal clock driver reference circuits, nor guarantee the correctness of the following clock driver connection reference circuits. The system designer is recommended to contact the selected clock driver chip vendor for the optimal reference circuits with the SerDes reference clock receiver requirement provided in this document.

Symbol	Parameter	Min	Nom	Max	Unit	Comments
T _{crosslink}	Crosslink random timeout	0		1	ms	This random timeout helps resolve conflicts in crosslink configuration by eventually resulting in only one downstream and one upstream port. See Note 7.

Notes:

1. No test load is necessarily associated with this value.

- 2. Specified at the measurement point into a timing and voltage compliance test load as shown in Figure 50 and measured over any 250 consecutive TX UIs. (Also see the transmitter compliance eye diagram shown in Figure 48.)
- 3. A T_{TX-EYE} = 0.70 UI provides for a total sum of deterministic and random jitter budget of T_{TX-JITTER-MAX} = 0.30 UI for the transmitter collected over any 250 consecutive TX UIs. The T_{TX-EYE-MEDIAN-to-MAX-JITTER} median is less than half of the total TX jitter budget collected over any 250 consecutive TX UIs. Note that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value.
- 4. The transmitter input impedance shall result in a differential return loss greater than or equal to 12 dB and a common mode return loss greater than or equal to 6 dB over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. The reference impedance for return loss measurements is 50 Ω to ground for both the D+ and D- line (that is, as measured by a vector network analyzer with 50- Ω probes—see Figure 50). Note that the series capacitors C_{TX} is optional for the return loss measurement.
- 5. Measured between 20%–80% at transmitter package pins into a test load as shown in Figure 50 for both V_{TX-D+} and V_{TX-D-}.
- 6. See Section 4.3.1.8 of the PCI Express Base Specifications Rev 1.0a.
- 7. See Section 4.2.6.3 of the PCI Express Base Specifications Rev 1.0a.
- 8. MPC8548E SerDes transmitter does not have CTX built in. An external AC coupling capacitor is required.

17.4.2 Transmitter Compliance Eye Diagrams

The TX eye diagram in Figure 48 is specified using the passive compliance/test measurement load (see Figure 50) in place of any real PCI Express interconnect +RX component.

There are two eye diagrams that must be met for the transmitter. Both eye diagrams must be aligned in time using the jitter median to locate the center of the eye diagram. The different eye diagrams differ in voltage depending whether it is a transition bit or a de-emphasized bit. The exact reduced voltage level of the de-emphasized bit is always relative to the transition bit.

The eye diagram must be valid for any 250 consecutive UIs.

A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI.

NOTE

It is recommended that the recovered TX UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm using a minimization merit function (for example, least squares and median deviation fits).

18 Serial RapidIO

This section describes the DC and AC electrical specifications for the RapidIO interface of the MPC8548E, for the LP-Serial physical layer. The electrical specifications cover both single- and multiple-lane links. Two transmitters (short and long run) and a single receiver are specified for each of three baud rates, 1.25, 2.50, and 3.125 GBaud.

Two transmitter specifications allow for solutions ranging from simple board-to-board interconnect to driving two connectors across a backplane. A single receiver specification is given that accepts signals from both the short- and long-run transmitter specifications.

The short-run transmitter must be used mainly for chip-to-chip connections on either the same printed-circuit board or across a single connector. This covers the case where connections are made to a mezzanine (daughter) card. The minimum swings of the short-run specification reduce the overall power used by the transceivers.

The long-run transmitter specifications use larger voltage swings that are capable of driving signals across backplanes. This allows a user to drive signals across two connectors and a backplane. The specifications allow a distance of at least 50 cm at all baud rates.

All unit intervals are specified with a tolerance of ± 100 ppm. The worst case frequency difference between any transmit and receive clock is 200 ppm.

To ensure interoperability between drivers and receivers of different vendors and technologies, AC coupling at the receiver input must be used.

18.1 <u>DC Requirements</u> for Serial RapidIO SD_REF_CLK and SD_REF_CLK

For more information, see Section 16.2, "SerDes Reference Clocks."

18.2 <u>AC Requirements</u> for Serial RapidIO SD_REF_CLK and SD_REF_CLK

Table 58 lists the Serial RapidIO SD_REF_CLK and SD_REF_CLK AC requirements.

Symbol	Parameter Description	Min	Тур	Max	Unit	Comments
t _{REF}	REFCLK cycle time	_	10(8)	_	ns	8 ns applies only to serial RapidIO with 125-MHz reference clock
t _{REFCJ}	REFCLK cycle-to-cycle jitter. Difference in the period of any two adjacent REFCLK cycles.	—	—	80	ps	_
t _{REFPJ}	Phase jitter. Deviation in edge location with respect to mean edge location.	-40	—	40	ps	_

Table 58. SD_REF_CLK and SD_REF_CLK AC Requirements

Serial RapidIO

Table 60. Short Run Transmitter	AC Timing Specifications-	–2.5 GBaud
---------------------------------	---------------------------	------------

Characteristic	Symbol	Range		Unit	Natas	
Characteristic	Min Max		Unit	Notes		
Output voltage	V _O	-0.40	2.30	V	Voltage relative to COMMON of either signal comprising a differential pair	
Differential output voltage	V _{DIFFPP}	500	1000	mV p-p	_	
Deterministic jitter	J _D	—	0.17	UI p-p	_	
Total jitter	J _T	—	0.35	UI p-p	_	
Multiple output skew	S _{MO}	—	1000	ps	Skew at the transmitter output between lanes of a multilane link	
Unit interval	UI	400	400	ps	±100 ppm	

Table 61. Short Run Transmitter AC Timing Specifications—3.125 GBaud

Characteristic	Symbol	Range		Unit	Netes	
Characteristic	Symbol	Min	Max	Onic	NOIES	
Output voltage	V _O	-0.40	2.30	V	Voltage relative to COMMON of either signal comprising a differential pair	
Differential output voltage	V _{DIFFPP}	500	1000	mVp-p	_	
Deterministic jitter	J _D	_	0.17	UI p-p	_	
Total jitter	J _T	_	0.35	UI p-p	_	
Multiple output skew	S _{MO}		1000	ps	Skew at the transmitter output between lanes of a multilane link	
Unit interval	UI	320	320	ps	±100 ppm	

Table 62. Long Run Transmitter AC Timing Specifications—1.25 GBaud

Characteristic	Symbol	Range		Unit	Notos	
	Min Max		Onic	Notes		
Output voltage	V _O	-0.40	2.30	V	Voltage relative to COMMON of either signal comprising a differential pair	
Differential output voltage	V _{DIFFPP}	800	1600	mVp-p	_	
Deterministic jitter	J _D	—	0.17	UI p-p	_	
Total jitter	J _T	—	0.35	UI p-p	_	
Multiple output skew	S _{MO}	—	1000	ps	Skew at the transmitter output between lanes of a multilane link	
Unit interval	UI	800	800	ps	±100 ppm	

components are included in this requirement. The reference impedance for return loss measurements is $100-\Omega$ resistive for differential return loss and $25-\Omega$ resistive for common mode.

Characteristic	Symbol	Range		Unit	Notes	
onaraoteristic	Cymbol	Min	Мах	onit	10105	
Differential input voltage	V _{IN}	200	1600	mVp-p	Measured at receiver	
Deterministic jitter tolerance	J _D	0.37	—	UI p-p	Measured at receiver	
Combined deterministic and random jitter tolerance	J _{DR}	0.55	—	UI p-p	Measured at receiver	
Total jitter tolerance ¹	J _T	0.65	—	UI p-p	Measured at receiver	
Multiple input skew	S _{MI}	_	24	ns	Skew at the receiver input between lanes of a multilane link	
Bit error rate	BER	_	10 ⁻¹²	—	—	
Unit interval	UI	800	800	ps	±100 ppm	

Table 66	. Receiver	AC	Timing	Specification	ns—1.25 GBaud
----------	------------	----	--------	---------------	---------------

Note:

1. Total jitter is composed of three components, deterministic jitter, random jitter, and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 53. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk, and other variable system effects.

Table 67. Receiver AC Timing Specifications—2.5 GBaud

Characteristic	Symbol	Range		Unit	Notos	
Gharacteristic	Symbol	Min	Max	Unit	10163	
Differential input voltage	V _{IN}	200	1600	mVp-p	Measured at receiver	
Deterministic jitter tolerance	J _D	0.37	—	UI p-p	Measured at receiver	
Combined deterministic and random jitter tolerance	J _{DR}	0.55	—	UI p-p	Measured at receiver	
Total jitter tolerance ¹	J _T	0.65	—	UI p-p	Measured at receiver	
Multiple input skew	S _{MI}	—	24	ns	Skew at the receiver input between lanes of a multilane link	
Bit error rate	BER	—	10 ⁻¹²		—	
Unit interval	UI	400	400	ps	±100 ppm	

Note:

1. Total jitter is composed of three components, deterministic jitter, random jitter, and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 53. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk, and other variable system effects.

Package Description

Notes:

- 1. All dimensions are in millimeters.
- 2. Dimensioning and tolerancing per ASME Y14.5M-1994.
- 3. Maximum solder ball diameter measured parallel to datum A.
- 4. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.
- 5. Parallelism measurement shall exclude any effect of mark on top surface of package.
- 6. All dimensions are symmetric across the package center lines unless dimensioned otherwise.

Package Description

Signal	Package Pin Number	Pin Type	Power Supply	Notes
LSYNC_IN	F27	ļ	BV _{DD}	_
LSYNC_OUT	F28	0	BV _{DD}	_
	DMA			
DMA_DACK[0:1]	AD3, AE1	0	OV _{DD}	5, 9, 102
DMA_DREQ[0:1]	AD4, AE2	ļ	OV _{DD}	_
DMA_DDONE[0:1]	AD2, AD1	0	OV _{DD}	_
	Programmable Interrupt Controller			
UDE	AH16	I	OV _{DD}	—
MCP	AG19	I	OV _{DD}	_
IRQ[0:7]	AG23, AF18, AE18, AF20, AG18, AF17, AH24, AE20	I	OV _{DD}	—
IRQ[8]	AF19	I	OV _{DD}	—
IRQ[9]/DMA_DREQ3	AF21	I	OV _{DD}	1
IRQ[10]/DMA_DACK3	AE19	I/O	OV _{DD}	1
IRQ[11]/DMA_DDONE3	AD20	I/O	OV _{DD}	1
IRQ_OUT	AD18	0	OV _{DD}	2, 4
	Ethernet Management Interface			
EC_MDC	AB9	0	OV _{DD}	5, 9
EC_MDIO	AC8	I/O	OV _{DD}	—
	Gigabit Reference Clock			
EC_GTX_CLK125	V11	I	LV _{DD}	_
Th	ree-Speed Ethernet Controller (Gigabit Ethern	et 1)		
TSEC1_RXD[7:0]	R5, U1, R3, U2, V3, V1, T3, T2	I	LV _{DD}	—
TSEC1_TXD[7:0]	T10, V7, U10, U5, U4, V6, T5, T8	0	LV _{DD}	5, 9
TSEC1_COL	R4	I	LV _{DD}	—
TSEC1_CRS	V5	I/O	LV _{DD}	20
TSEC1_GTX_CLK	U7	0	LV _{DD}	—
TSEC1_RX_CLK	U3	I	LV _{DD}	—
TSEC1_RX_DV	V2	I	LV _{DD}	—
TSEC1_RX_ER	T1	I	LV _{DD}	—
TSEC1_TX_CLK	T6	I	LV _{DD}	—
TSEC1_TX_EN	U9	0	LV _{DD}	30
TSEC1_TX_ER	Τ7	0	LV _{DD}	—

Signal	Package Pin Number	Pin Type	Power Supply	Notes
Thre	e-Speed Ethernet Controller (Gigabit Ethe	rnet 2)		
TSEC2 RXDI7:01	P2, R2, N1, N2, P3, M2, M1, N3		LVpp	_
TSEC2 TXDI7:01	N9. N10. P8. N7. R9. N5. R8. N6	0	LVpp	5. 9. 33
TSEC2 COL	P1		LVpp	
TSEC2 CRS	R6	I/O	LVpp	20
TSEC2 GTX CLK	P6	0	LVDD	_
TSEC2 RX CLK	N4		LVpp	
TSEC2 RX DV	P5		LVpp	_
TSEC2 RX ER	R1		LVpp	_
TSEC2 TX CLK	P10		LVpp	
TSEC2 TX EN	P7	0	LVpp	30
TSEC2 TX ER	R10	0	LVpp	5. 9. 33
Thre	e-Speed Ethernet Controller (Gigabit Ethe	rnet 3)	DD	-, -,
TSEC3 TXD[3:0]	V8, W10, Y10, W7	,	TVpp	5,9,29
TSEC3_RXD[3:0]	Y1, W3, W5, W4	I	TV _{DD}	
TSEC3_GTX_CLK	W8	0	TV _{DD}	
TSEC3_RX_CLK	W2	I	TV _{DD}	
TSEC3_RX_DV	W1	I	TV _{DD}	
TSEC3_RX_ER	Y2	I	TV _{DD}	
TSEC3_TX_CLK	V10		TV _{DD}	_
TSEC3_TX_EN	V9	0	TV _{DD}	30
Thre	e-Speed Ethernet Controller (Gigabit Ethe	rnet 4)		
TSEC4_TXD[3:0]/TSEC3_TXD[7:4]	AB8, Y7, AA7, Y8	0	TV _{DD}	1, 5, 9, 29
TSEC4_RXD[3:0]/TSEC3_RXD[7:4]	AA1, Y3, AA2, AA4	I	TV _{DD}	1
TSEC4_GTX_CLK	AA5	0	TV _{DD}	—
TSEC4_RX_CLK/TSEC3_COL	Y5	I	TV _{DD}	1
TSEC4_RX_DV/TSEC3_CRS	AA3	I/O	TV _{DD}	1, 31
TSEC4_TX_EN/TSEC3_TX_ER	AB6	0	TV _{DD}	1, 30
i	DUART			
UART_CTS[0:1]	AB3, AC5	I	OV _{DD}	—
UART_RTS[0:1]	AC6, AD7	0	OV _{DD}	—
UART_SIN[0:1]	AB5, AC7	I	OV _{DD}	—
UART_SOUT[0:1]	AB7, AD8	0	OV _{DD}	_

Table 71. MPC8548E Pinout Listing (continued)

Package Description

Signal	Package Pin Number	Pin Type	Power Supply	Notes		
Reserved	U20, V22, W20, Y22	_	—	15		
Reserved	U21, V23, W21, Y23	—	—	15		
SD_PLL_TPD	U28	0	XV _{DD}	24		
SD_REF_CLK	T28	I	XV _{DD}	—		
SD_REF_CLK	T27	I	XV _{DD}	—		
Reserved	AC1, AC3	—	—	2		
Reserved	M26, V28	—	—	32		
Reserved	M25, V27	—	—	34		
Reserved	M20, M21, T22, T23	—	—	38		
	General-Purpose Output					
GPOUT[24:31]	K26, K25, H27, G28, H25, J26, K24, K23	0	BV _{DD}	—		
	System Control					
HRESET	AG17	I	OV _{DD}	—		
HRESET_REQ	AG16	0	OV _{DD}	29		
SRESET	AG20	I	OV _{DD}	—		
CKSTP_IN	AA9	I	OV _{DD}	—		
CKSTP_OUT	AA8	0	OV _{DD}	2, 4		
Debug						
TRIG_IN	AB2	I	OV _{DD}	—		
TRIG_OUT/READY/QUIESCE	AB1	0	OV _{DD}	6, 9, 19, 29		
MSRCID[0:1]	AE4, AG2	0	OV _{DD}	5, 6, 9		
MSRCID[2:4]	AF3, AF1, AF2	0	OV _{DD}	6, 19, 29		
MDVAL	AE5	0	OV _{DD}	6		
CLK_OUT	AE21	0	OV _{DD}	11		
	Clock					
RTC	AF16	I	OV _{DD}	—		
SYSCLK	AH17	I	OV _{DD}	—		
	JTAG					
тск	AG28	I	OV _{DD}	—		
TDI	AH28	Ι	OV _{DD}	12		
TDO	AF28	0	OV _{DD}	_		
TMS	AH27	I	OV _{DD}	12		
TRST	AH23	Ι	OV _{DD}	12		

Signal	Package Pin Number	Pin Type	Power Supply	Notes			
IIC1_SDA	AG21	I/O	OV _{DD}	4, 27			
IIC2_SCL	AG15	I/O	OV _{DD}	4, 27			
IIC2_SDA	AG14	I/O	OV _{DD}	4, 27			
	SerDes						
SD_RX[0:7]	M28, N26, P28, R26, W26, Y28, AA26, AB28	I	XV _{DD}	—			
SD_RX[0:7]	M27, N25, P27, R25, W25, Y27, AA25, AB27	I	XV _{DD}	—			
SD_TX[0:7]	M22, N20, P22, R20, U20, V22, W20, Y22	0	XV _{DD}	—			
SD_TX[0:7]	M23, N21, P23, R21, U21, V23, W21, Y23	0	XV _{DD}	—			
SD_PLL_TPD	U28	0	XV _{DD}	24			
SD_REF_CLK	T28	I	XV _{DD}	—			
SD_REF_CLK	T27	I	XV _{DD}	—			
Reserved	AC1, AC3		_	2			
Reserved	M26, V28	_	_	32			
Reserved	M25, V27	_	_	34			
Reserved	M20, M21, T22, T23		_	38			
	General-Purpose Output						
GPOUT[24:31]	K26, K25, H27, G28, H25, J26, K24, K23	0	BV _{DD}	—			
System Control							
HRESET	AG17	I	OV _{DD}	—			
HRESET_REQ	AG16	0	OV _{DD}	29			
SRESET	AG20	I	OV _{DD}	—			
CKSTP_IN	AA9	I	OV _{DD}	—			
CKSTP_OUT	AA8	0	OV _{DD}	2, 4			
Debug							
TRIG_IN	AB2	I	OV _{DD}	—			
TRIG_OUT/READY/QUIESCE	AB1	0	OV _{DD}	6, 9, 19, 29			
MSRCID[0:1]	AE4, AG2	0	OV _{DD}	5, 6, 9			
MSRCID[2:4]	AF3, AF1, AF2	0	OV _{DD}	6, 19, 29			
MDVAL	AE5	0	OV _{DD}	6			
CLK_OUT	AE21	0	OV _{DD}	11			
Clock							
RTC	AF16	I	OV _{DD}	—			
SYSCLK	AH17	I	OV _{DD}				

System Design Information

22.10 Guidelines for High-Speed Interface Termination

This section provides the guidelines for high-speed interface termination when the SerDes interface is entirely unused and when it is partly unused.

22.10.1 SerDes Interface Entirely Unused

If the high-speed SerDes interface is not used at all, the unused pin must be terminated as described in this section.

The following pins must be left unconnected (float):

- SD_TX[7:0]
- $\overline{\text{SD}}_{\text{TX}}[7:0]$
- Reserved pins T22, T23, M20, M21

The following pins must be connected to GND:

- SD_RX[7:0]
- <u>SD_RX</u>[7:0]
- SD_REF_CLK
- SD_REF_CLK

NOTE

It is recommended to power down the unused lane through SRDSCR1[0:7] register (offset = $0xE_0F08$) (This prevents the oscillations and holds the receiver output in a fixed state.) that maps to SERDES lane 0 to lane 7 accordingly.

Pins V28 and M26 must be tied to XV_{DD} . Pins V27 and M25 must be tied to GND through a 300- Ω resistor.

In Rev 2.0 silicon, POR configuration pin cfg_srds_en on TSEC4_TXD[2]/TSEC3_TXD[6] can be used to power down SerDes block.

22.10.2 SerDes Interface Partly Unused

If only part of the high-speed SerDes interface pins are used, the remaining high-speed serial I/O pins must be terminated as described in this section.

The following pins must be left unconnected (float) if not used:

- SD_TX[7:0]
- <u>SD_TX</u>[7:0]
- Reserved pins: T22, T23, M20, M21

The following pins must be connected to GND if not used:

- SD_RX[7:0]
- $\overline{\text{SD}_{RX}}[7:0]$
- SD_REF_CLK

23.2 Part Marking

Parts are marked as the example shown in Figure 64.

Notes:

TWLYYWW is final test traceability code. MMMMM is 5 digit mask number. CCCCC is the country of assembly. This space is left blank if parts are assembled in the United States. YWWLAZ is assembly traceability code.

Figure 64. Part Marking for CBGA and PBGA Device