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– Up to 32 simultaneous open pages for DDR2

— Contiguous or discontiguous memory mapping

— Read-modify-write support for RapidIO atomic increment, decrement, set, and clear 
transactions

— Sleep mode support for self-refresh SDRAM

— On-die termination support when using DDR2

— Supports auto refreshing

— On-the-fly power management using CKE signal

— Registered DIMM support

— Fast memory access via JTAG port

— 2.5-V SSTL_2 compatible I/O (1.8-V SSTL_1.8 for DDR2)

— Support for battery-backed main memory

• Programmable interrupt controller (PIC)

— Programming model is compliant with the OpenPIC architecture.

— Supports 16 programmable interrupt and processor task priority levels

— Supports 12 discrete external interrupts

— Supports 4 message interrupts with 32-bit messages

— Supports connection of an external interrupt controller such as the 8259 programmable 
interrupt controller

— Four global high-resolution timers/counters that can generate interrupts

— Supports a variety of other internal interrupt sources

— Supports fully nested interrupt delivery

— Interrupts can be routed to external pin for external processing.

— Interrupts can be routed to the e500 core’s standard or critical interrupt inputs.

— Interrupt summary registers allow fast identification of interrupt source.

• Integrated security engine (SEC) optimized to process all the algorithms associated with IPSec, 
IKE, WTLS/WAP, SSL/TLS, and 3GPP

— Four crypto-channels, each supporting multi-command descriptor chains

–  Dynamic assignment of crypto-execution units via an integrated controller

–  Buffer size of 256 bytes for each execution unit, with flow control for large data sizes

— PKEU—public key execution unit

– RSA and Diffie-Hellman; programmable field size up to 2048 bits

– Elliptic curve cryptography with F2m and F(p) modes and programmable field size up to 
511 bits

— DEU—Data Encryption Standard execution unit

– DES, 3DES 

– Two key (K1, K2) or three key (K1, K2, K3)

– ECB and CBC modes for both DES and 3DES
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— AESU—Advanced Encryption Standard unit

– Implements the Rijndael symmetric key cipher

– ECB, CBC, CTR, and CCM modes

– 128-, 192-, and 256-bit key lengths

— AFEU—ARC four execution unit

–  Implements a stream cipher compatible with the RC4 algorithm 

–  40- to 128-bit programmable key

— MDEU—message digest execution unit

– SHA with 160- or 256-bit message digest 

– MD5 with 128-bit message digest

– HMAC with either algorithm

— KEU—Kasumi execution unit 

– Implements F8 algorithm for encryption and F9 algorithm for integrity checking

– Also supports A5/3 and GEA-3 algorithms

— RNG—random number generator

— XOR engine for parity checking in RAID storage applications

• Dual I2C controllers

— Two-wire interface

— Multiple master support

— Master or slave I2C mode support

— On-chip digital filtering rejects spikes on the bus

• Boot sequencer

— Optionally loads configuration data from serial ROM at reset via the I2C interface

— Can be used to initialize configuration registers and/or memory

— Supports extended I2C addressing mode

— Data integrity checked with preamble signature and CRC

• DUART

— Two 4-wire interfaces (SIN, SOUT, RTS, CTS)

— Programming model compatible with the original 16450 UART and the PC16550D

• Local bus controller (LBC)

— Multiplexed 32-bit address and data bus operating at up to 133 MHz

— Eight chip selects support eight external slaves

— Up to eight-beat burst transfers

— The 32-, 16-, and 8-bit port sizes are controlled by an on-chip memory controller.

— Three protocol engines available on a per chip select basis:

– General-purpose chip select machine (GPCM)

– Three user programmable machines (UPMs)
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2 Electrical Characteristics
This section provides the AC and DC electrical specifications and thermal characteristics for the device. 
This device is currently targeted to these specifications. Some of these specifications are independent of 
the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design 
specifications.

2.1 Overall DC Electrical Characteristics

This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings

The following table provides the absolute maximum ratings.

Table 1. Absolute Maximum Ratings 1

Characteristic Symbol Max Value Unit Notes

Core supply voltage VDD –0.3 to 1.21 V —

PLL supply voltage AVDD –0.3 to 1.21 V —

Core power supply for SerDes transceivers SVDD –0.3 to 1.21 V —

Pad power supply for SerDes transceivers XVDD –0.3 to 1.21 V —

DDR and DDR2 DRAM I/O voltage GVDD –0.3 to 2.75
–0.3 to 1.98

V 2

Three-speed Ethernet I/O voltage LVDD (for eTSEC1 
and eTSEC2)

–0.3 to 3.63
–0.3 to 2.75

V

TVDD (for eTSEC3 
and eTSEC4)

–0.3 to 3.63
–0.3 to 2.75

3

PCI/PCI-X, DUART, system control and power management, 
I2C, Ethernet MII management, and JTAG I/O voltage

OVDD –0.3 to 3.63 V —

Local bus I/O voltage BVDD –0.3 to 3.63
–0.3 to 2.75

V —

Input voltage DDR/DDR2 DRAM signals MVIN –0.3 to (GVDD + 0.3) V 4

DDR/DDR2 DRAM reference MVREF –0.3 to 
(GVDD/2 + 0.3)

V —

Three-speed Ethernet I/O signals LVIN
TVIN

–0.3 to (LVDD + 0.3)
–0.3 to (TVDD + 0.3)

V 4

Local bus signals BVIN –0.3 to (BVDD + 0.3) — —

DUART, SYSCLK, system control and power 
management, I2C, Ethernet MII management, 
and JTAG signals

OVIN –0.3 to (OVDD + 0.3) V 4

PCI/PCI-X OVIN –0.3 to (OVDD + 0.3) V 4
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4 Input Clocks
This section discusses the timing for the input clocks.

4.1 System Clock Timing

The following table provides the system clock (SYSCLK) AC timing specifications for the device.

4.2 Real Time Clock Timing

The RTC input is sampled by the platform clock (CCB clock). The output of the sampling latch is then 
used as an input to the counters of the PIC and the TimeBase unit of the e500. There is no jitter 
specification. The minimum pulse width of the RTC signal must be greater than 2x the period of the CCB 
clock. That is, minimum clock high time is 2  tCCB, and minimum clock low time is 2  tCCB. There is 
no minimum RTC frequency; RTC may be grounded if not needed.

Table 5. SYSCLK AC Timing Specifications
At recommended operating conditions (see Table 2) with OVDD = 3.3 V ± 165 mV.

Parameter/Condition Symbol Min Typ Max Unit Notes

SYSCLK frequency fSYSCLK 16 — 133 MHz 1, 6, 7, 8

SYSCLK cycle time tSYSCLK 7.5 — 60 ns 6, 7, 8

SYSCLK rise and fall time tKH, tKL 0.6 1.0 1.2 ns 2

SYSCLK duty cycle tKHK/tSYSCLK 40 — 60 % 3

SYSCLK jitter — — — ±150 ps 4, 5

Notes:
1. Caution: The CCB clock to SYSCLK ratio and e500 core to CCB clock ratio settings must be chosen such that the resulting 

SYSCLK frequency, e500 (core) frequency, and CCB clock frequency do not exceed their respective maximum or minimum 
operating frequencies.See Section 20.2, “CCB/SYSCLK PLL Ratio,” and Section 20.3, “e500 Core PLL Ratio,” for ratio 
settings.

2. Rise and fall times for SYSCLK are measured at 0.6 and 2.7 V.
3. Timing is guaranteed by design and characterization.
4. This represents the total input jitter—short term and long term—and is guaranteed by design.
5. The SYSCLK driver’s closed loop jitter bandwidth must be <500 kHz at –20 dB. The bandwidth must be set low to allow 

cascade-connected PLL-based devices to track SYSCLK drivers with the specified jitter.
6. This parameter has been adjusted slower according to the workaround for device erratum GEN 13.
7. For spread spectrum clocking. Guidelines are + 0% to –1% down spread at modulation rate between 20 and 60 kHz on 

SYSCLK.
8. System with operating core frequency less than 1200 MHz must limit SYSCLK frequency to 100 MHz maximum.
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4.3 eTSEC Gigabit Reference Clock Timing

The following table provides the eTSEC gigabit reference clocks (EC_GTX_CLK125) AC timing 
specifications for the device.

4.4 PCI/PCI-X Reference Clock Timing

When the PCI/PCI-X controller is configured for asynchronous operation, the reference clock for the 
PCI/PCI-x controller is not the SYSCLK input, but instead the PCIn_CLK. The following table provides 
the PCI/PCI-X reference clock AC timing specifications for the device.

Table 6. EC_GTX_CLK125 AC Timing Specifications

Parameter/Condition Symbol Min Typ Max Unit Notes

EC_GTX_CLK125 frequency fG125 — 125 — MHz —

EC_GTX_CLK125 cycle time tG125 — 8 — ns

EC_GTX_CLK125 rise and fall time

L/TVDD = 2.5 V
L/TVDD = 3.3 V

tG125R, tG125F — —
0.75
1.0

ns 1

EC_GTX_CLK125 duty cycle

GMII, TBI
1000Base-T for RGMII, RTBI

tG125H/tG125
45
47

—
55
53

% 2, 3

Notes:

1. Rise and fall times for EC_GTX_CLK125 are measured from 0.5 and 2.0 V for L/TVDD = 2.5 V, and from 0.6 and 2.7 V for 
L/TVDD = 3.3 V.

2. Timing is guaranteed by design and characterization.

3. EC_GTX_CLK125 is used to generate the GTX clock TSECn_GTX_CLK for the eTSEC transmitter with 2% degradation. 
EC_GTX_CLK125 duty cycle can be loosened from 47/53% as long as the PHY device can tolerate the duty cycle generated 
by the TSECn_ GTX_CLK. See Section 8.2.6, “RGMII and RTBI AC Timing Specifications,” for duty cycle for 10Base-T and 
100Base-T reference clock.

Table 7. PCIn_CLK AC Timing Specifications
At recommended operating conditions (see Table 2) with OVDD = 3.3 V ± 165 mV.

Parameter/Condition Symbol Min Typ Max Unit Notes

PCIn_CLK frequency fPCICLK 16 — 133 MHz —

PCIn_CLK cycle time tPCICLK 7.5 — 60 ns —

PCIn_CLK rise and fall time tPCIKH, tPCIKL 0.6 1.0 2.1 ns 1, 2

PCIn_CLK duty cycle tPCIKHKL/tPCICLK 40 — 60 % 2

Notes:
1. Rise and fall times for SYSCLK are measured at 0.6 and 2.7 V.

2. Timing is guaranteed by design and characterization.
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5 RESET Initialization
This section describes the AC electrical specifications for the RESET initialization timing requirements of 
the device. The following table provides the RESET initialization AC timing specifications for the DDR 
SDRAM component(s).

The following table provides the PLL lock times.

5.1 Power-On Ramp Rate

This section describes the AC electrical specifications for the power-on ramp rate requirements. 
Controlling the maximum power-on ramp rate is required to avoid falsely triggering the ESD circuitry. The 
following table provides the power supply ramp rate specifications.

Table 8. RESET Initialization Timing Specifications

Parameter/Condition Min Max Unit Notes

Required assertion time of HRESET 100 — s —

Minimum assertion time for SRESET 3 — SYSCLKs 1

PLL input setup time with stable SYSCLK before HRESET negation 100 — s —

Input setup time for POR configs (other than PLL config) with respect to 
negation of HRESET 

4 — SYSCLKs 1

Input hold time for all POR configs (including PLL config) with respect to 
negation of HRESET 

2 — SYSCLKs 1

Maximum valid-to-high impedance time for actively driven POR configs with 
respect to negation of HRESET 

— 5 SYSCLKs 1

Note:

1. SYSCLK is the primary clock input for the device. 

Table 9. PLL Lock Times

Parameter/Condition Min Max Unit

Core and platform PLL lock times — 100 s

Local bus PLL lock time — 50 s

PCI/PCI-X bus PLL lock time — 50 s

Table 10. Power Supply Ramp Rate

Parameter Min Max Unit Notes

Required ramp rate for MVREF — 3500 V/s 1

Required ramp rate for VDD — 4000 V/s 1, 2

Note:

1. Maximum ramp rate from 200 to 500 mV is most critical as this range may falsely trigger the ESD circuitry. 

2. VDD itself is not vulnerable to false ESD triggering; however, as per Section 22.2, “PLL Power Supply Filtering,” the 
recommended AVDD_CORE, AVDD_PLAT, AVDD_LBIU, AVDD_PCI1 and AVDD_PCI2 filters are all connected to VDD. 
Their ramp rates must be equal to or less than the VDD ramp rate.
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6.2 DDR SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR SDRAM interface. The DDR 
controller supports both DDR1 and DDR2 memories. DDR1 is supported with the following AC timings 
at data rates of 333 MHz. DDR2 is supported with the following AC timings at data rates down to 
333 MHz.

6.2.1 DDR SDRAM Input AC Timing Specifications

This table provides the input AC timing specifications for the DDR SDRAM when GVDD(typ) = 1.8 V.

Table 17 provides the input AC timing specifications for the DDR SDRAM when GVDD(typ) = 2.5 V.

This table provides the input AC timing specifications for the DDR SDRAM interface.

Table 16. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface
At recommended operating conditions

Parameter Symbol Min Max Unit

AC input low voltage VIL — MVREF – 0.25 V

AC input high voltage VIH MVREF + 0.25 — V

Table 17. DDR SDRAM Input AC Timing Specifications for 2.5-V Interface
At recommended operating conditions.

Parameter Symbol Min Max Unit

AC input low voltage VIL — MVREF – 0.31 V

AC input high voltage VIH MVREF + 0.31 — V

Table 18. DDR SDRAM Input AC Timing Specifications
At recommended operating conditions.

Parameter Symbol Min Max Unit Notes

Controller Skew for MDQS—MDQ/MECC

533 MHz
400 MHz
333 MHz

tCISKEW

–300
–365
–390

300
365
390

ps 1, 2

Notes:

1. tCISKEW represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that 
is captured with MDQS[n]. This must be subtracted from the total timing budget.

2. The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called tDISKEW. This can be 
determined by the following equation: tDISKEW = ± (T/4 – abs(tCISKEW)) where T is the clock period and abs(tCISKEW) is the 
absolute value of tCISKEW. 
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8.2 FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI AC Timing 
Specifications

The AC timing specifications for FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI are presented in this 
section. 

8.2.1 FIFO AC Specifications

The basis for the AC specifications for the eTSEC’s FIFO modes is the double data rate RGMII and RTBI 
specifications, since they have similar performances and are described in a source-synchronous fashion 
like FIFO modes. However, the FIFO interface provides deliberate skew between the transmitted data and 
source clock in GMII fashion.

When the eTSEC is configured for FIFO modes, all clocks are supplied from external sources to the 
relevant eTSEC interface. That is, the transmit clock must be applied to the eTSECn’s TSECn_TX_CLK, 
while the receive clock must be applied to pin TSECn_RX_CLK. The eTSEC internally uses the transmit 
clock to synchronously generate transmit data and outputs an echoed copy of the transmit clock back out 
onto the TSECn_GTX_CLK pin (while transmit data appears on TSECn_TXD[7:0], for example). It is 
intended that external receivers capture eTSEC transmit data using the clock on TSECn_GTX_CLK as a 
source- synchronous timing reference. Typically, the clock edge that launched the data can be used, since 
the clock is delayed by the eTSEC to allow acceptable set-up margin at the receiver. Note that there is 
relationship between the maximum FIFO speed and the platform speed. For more information see 
Section 4.5, “Platform to FIFO Restrictions.”

Table 23. GMII, MII, RMII, TBI, RGMII, RTBI, and FIFO DC Electrical Characteristics

Parameters Symbol Min Max Unit Notes

Supply voltage 2.5 V LVDD/TVDD 2.37 2.63 V 1, 2

Output high voltage (LVDD/TVDD = Min, 
IOH = –1.0 mA)

VOH 2.00 LVDD/TVDD + 0.3 V —

Output low voltage (LVDD/TVDD = Min, 
IOL = 1.0 mA)

VOL GND–0.3 0.40 V —

Input high voltage VIH 1.70 LVDD/TVDD + 0.3 V —

Input low voltage VIL –0.3 0.90 V —

Input high current (VIN
 = LVDD, VIN = TVDD) IIH — 10 A 1, 2, 3

Input low current (VIN = GND) IIL –15 — A 3

Notes:
1. LVDD supports eTSECs 1 and 2.
2. TVDD supports eTSECs 3 and 4.
3. Note that the symbol VIN, in this case, represents the LVIN and TVIN symbols referenced in Table 1 and Table 2.
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Figure 10 shows the GMII receive AC timing diagram.

Figure 10. GMII Receive AC Timing Diagram

8.2.3 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

8.2.3.1 MII Transmit AC Timing Specifications

This table provides the MII transmit AC timing specifications.

Table 28. MII Transmit AC Timing Specifications

Parameter/Condition Symbol1 Min Typ Max Unit

TX_CLK clock period 10 Mbps tMTX
2 — 400 — ns

TX_CLK clock period 100 Mbps tMTX — 40 — ns

TX_CLK duty cycle tMTXH/tMTX 35 — 65 %

TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay tMTKHDX 1 5 15 ns

TX_CLK data clock rise (20%–80%) tMTXR
2 1.0 — 4.0 ns

TX_CLK data clock fall (80%–20%) tMTXF
2 1.0 — 4.0 ns

Notes:

1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for 
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMTKHDX symbolizes MII transmit 
timing (MT) for the time tMTX clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, 
the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. 
For example, the subscript of tMTX represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is 
used with the appropriate letter: R (rise) or F (fall).

2. Guaranteed by design.

RX_CLK

RXD[7:0]

tGRDXKH

tGRX

tGRXH

tGRXR

tGRXF

tGRDVKH

RX_DV
RX_ER



MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 9

Freescale Semiconductor 35
 

Enhanced Three-Speed Ethernet (eTSEC)

Figure 14 shows the TBI transmit AC timing diagram.

Figure 14. TBI Transmit AC Timing Diagram

8.2.4.2 TBI Receive AC Timing Specifications

This table provides the TBI receive AC timing specifications.

Table 31. TBI Receive AC Timing Specifications

Parameter/Condition Symbol1 Min Typ Max Unit

TSECn_RX_CLK[0:1] clock period tTRX — 16.0 — ns

TSECn_RX_CLK[0:1] skew tSKTRX 7.5 — 8.5 ns

TSECn_RX_CLK[0:1] duty cycle tTRXH/tTRX 40 — 60 %

RCG[9:0] setup time to rising TSECn_RX_CLK tTRDVKH 2.5 — — ns

RCG[9:0] hold time to rising TSECn_RX_CLK tTRDXKH 1.5 — — ns

TSECn_RX_CLK[0:1] clock rise time (20%–80%) tTRXR
2 0.7 — 2.4 ns

TSECn_RX_CLK[0:1] clock fall time (80%–20%) tTRXF
2 0.7 — 2.4 ns

Notes:

1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for 
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tTRDVKH symbolizes TBI receive 
timing (TR) with respect to the time data input signals (D) reach the valid state (V) relative to the tTRX clock reference (K) 
going to the high (H) state or setup time. Also, tTRDXKH symbolizes TBI receive timing (TR) with respect to the time data input 
signals (D) went invalid (X) relative to the tTRX clock reference (K) going to the high (H) state. Note that, in general, the clock 
reference symbol representation is based on three letters representing the clock of a particular functional. For example, the 
subscript of tTRX represents the TBI (T) receive (RX) clock. For rise and fall times, the latter convention is used with the 
appropriate letter: R (rise) or F (fall). For symbols representing skews, the subscript is skew (SK) followed by the clock that 
is being skewed (TRX).

2. Guaranteed by design.

GTX_CLK

TCG[9:0]

tTTXR

tTTX

tTTXH

tTTXR

tTTXF

tTTKHDV

tTTKHDX

tTTXF
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Figure 27. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 8 or 16 (PLL Enabled)

LSYNC_IN

UPM Mode Input Signal:
LUPWAIT

tLBIXKH2

tLBIVKH2

tLBIVKH1

tLBIXKH1

tLBKHOZ1

T1

T3

UPM Mode Output Signals:
LCS[0:7]/LBS[0:3]/LGPL[0:5]

GPCM Mode Output Signals:
LCS[0:7]/LWE

tLBKHOV1

tLBKHOV1 tLBKHOZ1

T2

T4

Input Signals:
LAD[0:31]/LDP[0:3]

GPCM Mode Input Signal:
LGTA
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of a balanced interchange circuit and ground. In this example, for SerDes output, Vcm_out = 
VSD_TX + VSD_TX = (A + B)/2, which is the arithmetic mean of the two complimentary output 
voltages within a differential pair. In a system, the common mode voltage may often differ from 
one component’s output to the other’s input. Sometimes, it may be even different between the 
receiver input and driver output circuits within the same component. It is also referred to as the DC 
offset.

Figure 38. Differential Voltage Definitions for Transmitter or Receiver

To illustrate these definitions using real values, consider the case of a CML (current mode logic) 
transmitter that has a common mode voltage of 2.25 V and each of its outputs, TD and TD, has a swing 
that goes between 2.5 and 2.0 V. Using these values, the peak-to-peak voltage swing of each signal (TD or 
TD) is 500 mVp-p, which is referred as the single-ended swing for each signal. In this example, since the 
differential signaling environment is fully symmetrical, the transmitter output’s differential swing (VOD) 
has the same amplitude as each signal’s single-ended swing. The differential output signal ranges between 
500 and –500 mV, in other words, VOD is 500 mV in one phase and –500 mV in the other phase. The peak 
differential voltage (VDIFFp) is 500 mV. The peak-to-peak differential voltage (VDIFFp-p) is 1000 mVp-p.

16.2 SerDes Reference Clocks

The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by 
the corresponding SerDes lanes. The SerDes reference clocks inputs are SD_REF_CLK and 
SD_REF_CLK for PCI Express and serial RapidIO.

The following sections describe the SerDes reference clock requirements and some application 
information.

16.2.1 SerDes Reference Clock Receiver Characteristics

Figure 39 shows a receiver reference diagram of the SerDes reference clocks.

• The supply voltage requirements for XVDD_SRDS2 are specified in Table 1 and Table 2.

• SerDes Reference clock receiver reference circuit structure:

Differential Swing, VID or VOD = A – B

A Volts

B Volts

SD_TX or 
SD_RX

SD_TX or 
SD_RX

Differential Peak Voltage, VDIFFp = |A – B|
Differential Peak-Peak Voltage, VDIFFpp = 2*VDIFFp (not shown)

Vcm = (A + B)/2
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Table 56. Differential Transmitter (TX) Output Specifications

Symbol Parameter Min Nom Max Unit Comments

UI Unit interval 399.88 400 400.12 ps Each UI is 400 ps ± 300 ppm. UI does not account 
for spread spectrum clock dictated variations. 
See Note 1.

VTX-DIFFp-p Differential 
peak-to-peak 
output voltage

0.8 — 1.2 V VTX-DIFFp-p = 2 × |VTX-D+ – VTX-D–|. See Note 2.

VTX-DE-RATIO De- emphasized 
differential 

output voltage 
(ratio)

–3.0 –3.5 –4.0 dB Ratio of the VTX-DIFFp-p of the second and 
following bits after a transition divided by the 
VTX-DIFFp-p of the first bit after a transition. 
See Note 2.

TTX-EYE Minimum TX 
eye width

0.70 — — UI The maximum transmitter jitter can be derived as 
TTX-MAX-JITTER = 1 – TTX-EYE = 0.3 UI.

See Notes 2 and 3.

TTX-EYE-MEDIAN-to-

MAX-JITTER

Maximum time 
between the 

jitter median and 
maximum 

deviation from 
the median.

— — 0.15 UI Jitter is defined as the measurement variation of 
the crossing points (VTX-DIFFp-p = 0 V) in relation 
to a recovered TX UI. A recovered TX UI is 
calculated over 3500 consecutive unit intervals of 
sample data. Jitter is measured using all edges of 
the 250 consecutive UI in the center of the 3500 
UI used for calculating the TX UI. 
See Notes 2 and 3.

TTX-RISE, TTX-FALL D+/D– TX output 
rise/fall time

0.125 — — UI See Notes 2 and 5.

VTX-CM-ACp RMS AC peak 
common mode 
output voltage

— — 20 mV VTX-CM-ACp = RMS(|VTXD+ + VTXD–|/2 – 
VTX-CM-DC)

VTX-CM-DC = DC(avg) of |VTX-D+ + VTX-D–|/2. 

See Note 2.

VTX-CM-DC-ACTIVE-

IDLE-DELTA

Absolute delta of 
dc common 

mode voltage 
during L0 and 
electrical idle

0 — 100 mV |VTX-CM-DC (during L0) + VTX-CM-Idle-DC (during 

electrical idle)|  100 mV

VTX-CM-DC = DC(avg) of |VTX-D+ + VTX-D–|/2 [L0]

VTX-CM-Idle-DC = DC(avg) of |VTX-D+ + VTX-D–|/2 
[electrical idle] 

See Note 2.

VTX-CM-DC-LINE-DELTA Absolute delta of 
DC common 

mode between 
D+ and D–

0 — 25 mV |VTX-CM-DC-D+ – VTX-CM-DC-D–|  25 mV

VTX-CM-DC-D+ = DC(avg) of |VTX-D+|

VTX-CM-DC-D–= DC(avg) of |VTX-D–|.

See Note 2.

VTX-IDLE-DIFFp Electrical idle 
differential peak 
output voltage

0 — 20 mV VTX-IDLE-DIFFp = |VTX-IDLE-D+ – VTX-IDLE-D–| 
 20 mV.

See Note 2. 

VTX-RCV-DETECT The amount of 
voltage change 
allowed during 

receiver 
detection

— — 600 mV The total amount of voltage change that a 
transmitter can apply to sense whether a low 
impedance receiver is present. See Note 6.
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VRX-CM-ACp AC peak 
common mode 
input voltage

— — 150 mV VRX-CM-ACp = |VRXD+ – VRXD-|/2 + VRX-CM-DC

VRX-CM-DC = DC(avg) of |VRX-D+ + VRX-D–| 2. 

See Note 2.

RLRX-DIFF Differential 
return loss

15 — — dB Measured over 50 MHz to 1.25 GHz with the D+ 
and D– lines biased at +300 mV and –300 mV, 
respectively. See Note 4.

RLRX-CM Common mode 
return loss

6 — — dB Measured over 50 MHz to 1.25 GHz with the D+ 
and D– lines biased at 0 V. See Note 4.

ZRX-DIFF-DC DC differential 
input impedance

80 100 120  RX DC differential mode impedance. See Note 5.

ZRX-DC DC input 
impedance

40 50 60  Required RX D+ as well as D– DC impedance 
(50 ± 20% tolerance). See Notes 2 and 5.

ZRX-HIGH-IMP-DC Powered down 
DC input 

impedance

200 k — —  Required RX D+ as well as D– DC impedance 
when the receiver terminations do not have 
power. See Note 6.

VRX-IDLE-DET-DIFFp-p Electrical idle 
detect threshold

65 — 175 mV VRX-IDLE-DET-DIFFp-p = 2 × |VRX-D+ –VRX-D–|. 

Measured at the package pins of the receiver 

TRX-IDLE-DET-DIFF-

ENTERTIME

Unexpected 
electrical idle 
enter detect 

threshold 
integration time

— — 10 ms An unexpected electrical idle (VRX-DIFFp-p < 
VRX-IDLE-DET-DIFFp-p) must be recognized no 
longer than TRX-IDLE-DET-DIFF-ENTERING to signal 
an unexpected idle condition.

Table 57. Differential Receiver (RX) Input Specifications (continued)

Symbol Parameter Min Nom Max Unit Comments
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18.8 Receiver Eye Diagrams

For each baud rate at which an LP-serial receiver is specified to operate, the receiver shall meet the 
corresponding bit error rate specification (Table 66, Table 67, and Table 68) when the eye pattern of the 
receiver test signal (exclusive of sinusoidal jitter) falls entirely within the unshaded portion of the receiver 
input compliance mask shown in Figure 54 with the parameters specified in Table 69. The eye pattern of 
the receiver test signal is measured at the input pins of the receiving device with the device replaced with 
a 100- ± 5% differential resistive load.

Figure 54. Receiver Input Compliance Mask

18.9 Measurement and Test Requirements

Since the LP-serial electrical specification are guided by the XAUI electrical interface specified in 
Clause 47 of IEEE Std. 802.3ae-2002, the measurement and test requirements defined here are similarly 
guided by Clause 47. Additionally, the CJPAT test pattern defined in Annex 48A of IEEE Std. 

Table 69. Receiver Input Compliance Mask Parameters Exclusive of Sinusoidal Jitter

Receiver Type
VDIFFmin 

(mV)
VDIFFmax 

(mV)
A (UI) B (UI)

1.25 GBaud 100 800 0.275 0.400

2.5 GBaud 100 800 0.275 0.400

3.125 GBaud 100 800 0.275 0.400

10

VDIFF max

–VDIFF max
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802.3ae-2002 is specified as the test pattern for use in eye pattern and jitter measurements. Annex 48B of 
IEEE Std. 802.3ae-2002 is recommended as a reference for additional information on jitter test methods.

18.9.1 Eye Template Measurements

For the purpose of eye template measurements, the effects of a single-pole high pass filter with a 3 dB point 
at (baud frequency)/1667 is applied to the jitter. The data pattern for template measurements is the 
continuous jitter test pattern (CJPAT) defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-serial 
link shall be active in both the transmit and receive directions, and opposite ends of the links shall use 
asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane 
implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. The 
amount of data represented in the eye shall be adequate to ensure that the bit error ratio is less than 10–12. 
The eye pattern shall be measured with AC coupling and the compliance template centered at 0 V 
differential. The left and right edges of the template shall be aligned with the mean zero crossing points of 
the measured data eye. The load for this test shall be 100- resistive ± 5% differential to 2.5 GHz. 

18.9.2 Jitter Test Measurements

For the purpose of jitter measurement, the effects of a single-pole high pass filter with a 3 dB point at (baud 
frequency)/1667 is applied to the jitter. The data pattern for jitter measurements is the Continuous Jitter test 
pattern (CJPAT) pattern defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-serial link shall be 
active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous 
clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations 
shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. Jitter shall be measured 
with AC coupling and at 0 V differential. Jitter measurement for the transmitter (or for calibration of a jitter 
tolerance setup) shall be performed with a test procedure resulting in a BER curve such as that described 
in Annex 48B of IEEE 802.3ae.

18.9.3 Transmit Jitter

Transmit jitter is measured at the driver output when terminated into a load of 100  resistive ± 5% 
differential to 2.5 GHz. 

18.9.4 Jitter Tolerance

Jitter tolerance is measured at the receiver using a jitter tolerance test signal. This signal is obtained by first 
producing the sum of deterministic and random jitter defined in Section 18.7, “Receiver Specifications,” 
and then adjusting the signal amplitude until the data eye contacts the 6 points of the minimum eye opening 
of the receive template shown in Figure 54 and Table 69. Note that for this to occur, the test signal must 
have vertical waveform symmetry about the average value and have horizontal symmetry (including jitter) 
about the mean zero crossing. Eye template measurement requirements are as defined above. Random 
jitter is calibrated using a high pass filter with a low frequency corner at 20 MHz and a 20 dB/decade 
roll-off below this. The required sinusoidal jitter specified in Section 18.7, “Receiver Specifications,” is 
then added to the signal and the test load is replaced by the receiver being tested. 
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Notes:

1. All dimensions are in millimeters.

2. Dimensioning and tolerancing per ASME Y14.5M-1994.

3. Maximum solder ball diameter measured parallel to datum A.

4. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.

5. Parallelism measurement shall exclude any effect of mark on top surface of package.

6. All dimensions are symmetric across the package center lines unless dimensioned otherwise.
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Reserved AE26 — — 2

cfg_pci1_clk AG24 I OVDD 5

Reserved AF25 — — 101

Reserved AE25 — — 2

Reserved AG25 — — 2

Reserved AD24 — — 2

Reserved AF24 — — 2

Reserved AD27 — — 2

Reserved AD28, AE27, W17, AF26 — — 2

Reserved AH25 — — 2

DDR SDRAM Memory Interface

MDQ[0:63] L18, J18, K14, L13, L19, M18, L15, L14, A17, 
B17, A13, B12, C18, B18, B13, A12, H18, F18, 
J14, F15, K19, J19, H16, K15, D17, G16, K13, 
D14, D18, F17, F14, E14, A7, A6, D5, A4, C8, 

D7, B5, B4, A2, B1, D1, E4, A3, B2, D2, E3, F3, 
G4, J5, K5, F6, G5, J6, K4, J1, K2, M5, M3, J3, 

J2, L1, M6

I/O GVDD —

MECC[0:7] H13, F13, F11, C11, J13, G13, D12, M12 I/O GVDD —

MDM[0:8] M17, C16, K17, E16, B6, C4, H4, K1, E13 O GVDD —

MDQS[0:8] M15, A16, G17, G14, A5, D3, H1, L2, C13 I/O GVDD —

MDQS[0:8] L17, B16, J16, H14, C6, C2, H3, L4, D13 I/O GVDD —

MA[0:15] A8, F9, D9, B9, A9, L10, M10, H10, K10, G10, 
B8, E10, B10, G6, A10, L11

O GVDD —

MBA[0:2] F7, J7, M11 O GVDD —

MWE E7 O GVDD —

MCAS H7 O GVDD —

MRAS L8 O GVDD —

MCKE[0:3] F10, C10, J11, H11 O GVDD 11

MCS[0:3] K8, J8, G8, F8 O GVDD —

MCK[0:5] H9, B15, G2, M9, A14, F1 O GVDD —

MCK[0:5] J9, A15, G1, L9, B14, F2 O GVDD —

MODT[0:3] E6, K6, L7, M7 O GVDD —

MDIC[0:1] A19, B19 I/O GVDD 36

Table 72. MPC8547E Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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TSEC2_TX_ER R10 O LVDD 5, 9, 33

Three-Speed Ethernet Controller (Gigabit Ethernet 3)

TSEC3_TXD[3:0] V8, W10, Y10, W7 O TVDD 5, 9, 29

TSEC3_RXD[3:0] Y1, W3, W5, W4 I TVDD —

TSEC3_GTX_CLK W8 O TVDD —

TSEC3_RX_CLK W2 I TVDD —

TSEC3_RX_DV W1 I TVDD —

TSEC3_RX_ER Y2 I TVDD —

TSEC3_TX_CLK V10 I TVDD —

TSEC3_TX_EN V9 O TVDD 30

Three-Speed Ethernet Controller (Gigabit Ethernet 4)

TSEC4_TXD[3:0]/TSEC3_TXD[7:4] AB8, Y7, AA7, Y8 O TVDD 1, 5, 9, 
29

TSEC4_RXD[3:0]/TSEC3_RXD[7:4] AA1, Y3, AA2, AA4 I TVDD 1

TSEC4_GTX_CLK AA5 O TVDD

TSEC4_RX_CLK/TSEC3_COL Y5 I TVDD 1

TSEC4_RX_DV/TSEC3_CRS AA3 I/O TVDD 1, 31

TSEC4_TX_EN/TSEC3_TX_ER AB6 O TVDD 1, 30

DUART

UART_CTS[0:1] AB3, AC5 I OVDD —

UART_RTS[0:1] AC6, AD7 O OVDD —

UART_SIN[0:1] AB5, AC7 I OVDD —

UART_SOUT[0:1] AB7, AD8 O OVDD —

I2C Interface

IIC1_SCL AG22 I/O OVDD 4, 27

IIC1_SDA AG21 I/O OVDD 4, 27

IIC2_SCL AG15 I/O OVDD 4, 27

IIC2_SDA AG14 I/O OVDD 4, 27

SerDes

SD_RX[0:3] M28, N26, P28, R26 I XVDD —

SD_RX[0:3] M27, N25, P27, R25 I XVDD —

SD_TX[0:3] M22, N20, P22, R20 O XVDD —

SD_TX[0:3] M23, N21, P23, R21 O XVDD —

Reserved W26, Y28, AA26, AB28 — — 40

Reserved W25, Y27, AA25, AB27 — — 40

Table 72. MPC8547E Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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level must always be equivalent to VDD, and preferably these voltages are derived directly from VDD 
through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to 
provide independent filter circuits per PLL power supply as illustrated in Figure 57, one to each of the 
AVDD pins. By providing independent filters to each PLL the opportunity to cause noise injection from 
one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz 
range. It must be built with surface mount capacitors with minimum Effective Series Inductance (ESL). 
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook 
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a 
single large value capacitor.

Each circuit must be placed as close as possible to the specific AVDD pin being supplied to minimize noise 
coupled from nearby circuits. It must be routed directly from the capacitors to the AVDD pin, which is on 
the periphery of the footprint, without the inductance of vias.

Figure 57 through Figure 59 shows the PLL power supply filter circuits.

Figure 57. PLL Power Supply Filter Circuit with PLAT Pins

Figure 58. PLL Power Supply Filter Circuit with CORE Pins

Figure 59. PLL Power Supply Filter Circuit with PCI/LBIU Pins

The AVDD_SRDS signal provides power for the analog portions of the SerDes PLL. To ensure stability of 
the internal clock, the power supplied to the PLL is filtered using a circuit similar to the one shown in 
following figure. For maximum effectiveness, the filter circuit is placed as closely as possible to the 
AVDD_SRDS ball to ensure it filters out as much noise as possible. The ground connection must be near 
the AVDD_SRDS ball. The 0.003-µF capacitor is closest to the ball, followed by the two 2.2 µF capacitors, 
and finally the 1  resistor to the board supply plane. The capacitors are connected from AVDD_SRDS to 

 VDD AVDD_PLAT

 2.2 µF  2.2 µF

 GND
Low ESL Surface Mount Capacitors

150

 VDD AVDD_CORE

 2.2 µF  2.2 µF

 GND
Low ESL Surface Mount Capacitors

180

 VDD AVDD_PCI/AVDD_LBIU

 2.2 µF  2.2 µF

 GND
Low ESL Surface Mount Capacitors

10


