E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.333GHz
Co-Processors/DSP	Signal Processing; SPE
RAM Controllers	DDR, DDR2, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (4)
SATA	-
USB	-
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8548cpxaujc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

Figure 1. Device Block Diagram

1.1 Key Features

The following list provides an overview of the device feature set:

- High-performance 32-bit core built on Power Architecture® technology.
 - 32-Kbyte L1 instruction cache and 32-Kbyte L1 data cache with parity protection. Caches can be locked entirely or on a per-line basis, with separate locking for instructions and data.
 - Signal-processing engine (SPE) APU (auxiliary processing unit). Provides an extensive instruction set for vector (64-bit) integer and fractional operations. These instructions use both the upper and lower words of the 64-bit GPRs as they are defined by the SPE APU.
 - Double-precision floating-point APU. Provides an instruction set for double-precision (64-bit) floating-point instructions that use the 64-bit GPRs.
 - 36-bit real addressing
 - Embedded vector and scalar single-precision floating-point APUs. Provide an instruction set for single-precision (32-bit) floating-point instructions.
 - Memory management unit (MMU). Especially designed for embedded applications. Supports 4-Kbyte to 4-Gbyte page sizes.
 - Enhanced hardware and software debug support

	9 (,		
Characteristic	Symbol	Max Value	Unit	Notes
Storage temperature range	T _{STG}	-55 to 150	°C	

Table 1. Absolute Maximum Ratings ¹ (continued)

Notes:

- 1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- 2. The -0.3 to 2.75 V range is for DDR and -0.3 to 1.98 V range is for DDR2.
- 3. The 3.63 V maximum is only supported when the port is configured in GMII, MII, RMII, or TBI modes; otherwise the 2.75 V maximum applies. See Section 8.2, "FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI AC Timing Specifications," for details on the recommended operating conditions per protocol.
- 4. (M,L,O)V_{IN} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.

2.1.2 Recommended Operating Conditions

The following table provides the recommended operating conditions for this device. Note that the values in this table are the recommended and tested operating conditions. Proper device operation outside these conditions is not guaranteed.

	Characteristic	Symbol	Recommended Value	Unit	Notes	
Core supply voltag	e	V _{DD}	1.1 V ± 55 mV	V		
PLL supply voltage		AV _{DD}	1.1 V ± 55 mV	V V		
Core power supply	for SerDes transceivers	SV _{DD}	1.1 V ± 55 mV	V		
Pad power supply	for SerDes transceivers	XV _{DD}	1.1 V ± 55 mV	V		
DDR and DDR2 DI	RAM I/O voltage	GV _{DD}	2.5 V ± 125 mV 1.8 V ± 90 mV	V	—	
Three-speed Ether	net I/O voltage	LV _{DD}	0D 3.3 V ± 165 mV 2.5 V ± 125 mV		4	
		TV _{DD}	3.3 V ± 165 mV 2.5 V ± 125 mV	_	4	
PCI/PCI-X, DUART Ethernet MII mana	F, system control and power management, I ² C, gement, and JTAG I/O voltage	OV _{DD}	3.3 V ± 165 mV	3		
Local bus I/O volta	ge	BV _{DD}	$\begin{array}{c c} 2.5 \ V \pm 125 \ mV \\ \hline 3.3 \ V \pm 165 \ mV \\ \hline 2.5 \ V \pm 125 \ mV \\ \hline \hline \end{array} \\ \hline \\ \hline$		—	
Input voltage	DDR and DDR2 DRAM signals	MV _{IN}	GND to GV _{DD}	V	2	
	DDR and DDR2 DRAM reference	MV _{REF}	GND to GV _{DD} /2	V	2	
	Three-speed Ethernet signals	LV _{IN} TV _{IN}	GND to LV _{DD} GND to TV _{DD}	V	4	
	Local bus signals	BV _{IN}	GND to BV _{DD}	V		
	PCI, DUART, SYSCLK, system control and power management, I ² C, Ethernet MII management, and JTAG signals	OV _{IN}	GND to OV _{DD}	V	3	

Table 2. Recommended Operating Conditions

4.5 Platform to FIFO Restrictions

Note the following FIFO maximum speed restrictions based on platform speed.

For FIFO GMII mode:

FIFO TX/RX clock frequency ≤ platform clock frequency/4.2

For example, if the platform frequency is 533 MHz, the FIFO TX/RX clock frequency must be no more than 127 MHz.

For FIFO encoded mode:

FIFO TX/RX clock frequency \leq platform clock frequency/4.2

For example, if the platform frequency is 533 MHz, the FIFO TX/RX clock frequency must be no more than 167 MHz.

4.6 Platform Frequency Requirements for PCI-Express and Serial RapidIO

The CCB clock frequency must be considered for proper operation of the high-speed PCI-Express and Serial RapidIO interfaces as described below.

For proper PCI Express operation, the CCB clock frequency must be greater than:

See *MPC8548ERM*, *Rev.* 2, *PowerQUICC III Integrated Processor Family Reference Manual*, Section 18.1.3.2, "Link Width," for PCI Express interface width details.

For proper serial RapidIO operation, the CCB clock frequency must be greater than:

 $2 \times (0.80) \times (Serial RapidIO interface frequency) \times (Serial RapidIO link width)$

64

See *MPC8548ERM*, *Rev.* 2, *PowerQUICC III Integrated Processor Family Reference Manual*, Section 17.4, "1x/4x LP-Serial Signal Descriptions," for serial RapidIO interface width and frequency details.

4.7 Other Input Clocks

For information on the input clocks of other functional blocks of the platform see the specific section of this document.

Enhanced Three-Speed Ethernet (eTSEC)

Figure 10 shows the GMII receive AC timing diagram.

Figure 10. GMII Receive AC Timing Diagram

8.2.3 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

8.2.3.1 MII Transmit AC Timing Specifications

This table provides the MII transmit AC timing specifications.

fable 2	28.	MII	Transmit	AC	Timing	Specifications
---------	-----	-----	----------	----	--------	----------------

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
TX_CLK clock period 10 Mbps	t _{MTX} ²	_	400	_	ns
TX_CLK clock period 100 Mbps	t _{MTX}		40	_	ns
TX_CLK duty cycle	t _{MTXH/} t _{MTX}	35	_	65	%
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay	t _{MTKHDX}	1	5	15	ns
TX_CLK data clock rise (20%–80%)	t _{MTXR} ²	1.0	_	4.0	ns
TX_CLK data clock fall (80%–20%)	t _{MTXF} ²	1.0		4.0	ns

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

2. Guaranteed by design.

Figure 11 shows the MII transmit AC timing diagram.

Figure 11. MII Transmit AC Timing Diagram

8.2.3.2 MII Receive AC Timing Specifications

This table provides the MII receive AC timing specifications.

Table 29. MII Receive A	C Timing Specifications
-------------------------	-------------------------

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
RX_CLK clock period 10 Mbps	t _{MRX} ²	_	400	—	ns
RX_CLK clock period 100 Mbps	t _{MRX}	—	40	—	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	_	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	—	—	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	—	—	ns
RX_CLK clock rise (20%–80%)	t _{MRXR} ²	1.0	—	4.0	ns
RX_CLK clock fall time (80%–20%)	t _{MRXF} ²	1.0	_	4.0	ns

Notes:

1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

2. Guaranteed by design.

Figure 12 provides the AC test load for eTSEC.

Figure 12. eTSEC AC Test Load

Enhanced Three-Speed Ethernet (eTSEC)

Figure 19 provides the AC test load for eTSEC.

Figure 19. eTSEC AC Test Load

Figure 20 shows the RMII receive AC timing diagram.

Figure 20. RMII Receive AC Timing Diagram

9 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO (management data input/output) and MDC (management data clock). The electrical characteristics for GMII, RGMII, RMII, TBI, and RTBI are specified in "Section 8, "Enhanced Three-Speed Ethernet (eTSEC)."

9.1 MII Management DC Electrical Characteristics

The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in this table.

Parameter	Symbol	Min	Мах	Unit
Supply voltage (3.3 V)	OV _{DD}	3.13	3.47	V
Output high voltage ($OV_{DD} = Min, I_{OH} = -1.0 mA$)	V _{OH}	2.10	OV _{DD} + 0.3	V
Output low voltage (OV _{DD} =Min, I _{OL} = 1.0 mA)	V _{OL}	GND	0.50	V
Input high voltage	V _{IH}	2.0	—	V
Input low voltage	V _{IL}	—	0.90	V
Input high current ($OV_{DD} = Max, V_{IN}^{1} = 2.1 V$)	I _{IH}	—	40	μA
Input low current ($OV_{DD} = Max, V_{IN} = 0.5 V$)	I _{IL}	-600	—	μΑ

Table 36. MII Management DC Electrical Characteristics

Note:

1. Note that the symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

9.2 MII Management AC Electrical Specifications

This table provides the MII management AC timing specifications.

Table 37. MII Management AC Timing Specifications

At recommended operating conditions with OV_{DD} is 3.3 V ± 5%.

Parameter	Symbol ¹	Min	Тур	Мах	Unit	Notes
MDC frequency	f _{MDC}	0.72	2.5	8.3	MHz	2, 3, 4
MDC period	t _{MDC}	120.5		1389	ns	—
MDC clock pulse width high	t _{MDCH}	32		—	ns	—
MDC to MDIO valid	t _{MDKHDV}	$16 \times t_{CCB}$		—	ns	5
MDC to MDIO delay	t _{MDKHDX}	(16 × t _{CCB} × 8) – 3		$(16 \times t_{\rm CCB} \times 8) + 3$	ns	5
MDIO to MDC setup time	t _{MDDVKH}	5		—	ns	—
MDIO to MDC hold time	t _{MDDXKH}	0		—	ns	—
MDC rise time	t _{MDCR}	_	_	10	ns	4

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus cycle time	t _{LBK}	7.5	12	ns	2
Local bus duty cycle	t _{LBKH/} t _{LBK}	43	57	%	—
LCLK[n] skew to LCLK[m] or LSYNC_OUT	t _{LBKSKEW}	_	150	ps	7, 8
Input setup to local bus clock (except LGTA/UPWAIT)	t _{LBIVKH1}	1.9	—	ns	3, 4
LGTA/LUPWAIT input setup to local bus clock	t _{LBIVKH2}	1.8	—	ns	3, 4
Input hold from local bus clock (except LGTA/LUPWAIT)	t _{LBIXKH1}	1.1	—	ns	3, 4
LGTA/LUPWAIT input hold from local bus clock	t _{LBIXKH2}	1.1	—	ns	3, 4
LALE output transition to LAD/LDP output transition (LATCH hold time)	t _{LBOTOT}	1.5	—	ns	6
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKHOV1}	_	2.1	ns	—
Local bus clock to data valid for LAD/LDP	t _{LBKHOV2}		2.3	ns	3
Local bus clock to address valid for LAD	t _{LBKHOV3}		2.4	ns	3
Local bus clock to LALE assertion	t _{LBKHOV4}		2.4	ns	3
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKHOX1}	0.8	—	ns	3
Output hold from local bus clock for LAD/LDP	t _{LBKHOX2}	0.8	—	ns	3
Local bus clock to output high Impedance (except LAD/LDP and LALE)	t _{LBKHOZ1}		2.6	ns	5
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ2}		2.6	ns	5

Table 41 describes the timing parameters of the local bus interface at $BV_{DD} = 2.5$ V.

Table 41. Local Bus Timing Parameters (BV_{DD} = 2.5 V)—PLL Enabled

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKH0X} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
</sub></sub>

- 2. All timings are in reference to LSYNC_IN for PLL enabled and internal local bus clock for PLL bypass mode.
- 3. All signals are measured from $BV_{DD}/2$ of the rising edge of LSYNC_IN for PLL enabled or internal local bus clock for PLL bypass mode to $0.4 \times BV_{DD}$ of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.

5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

- 6. t_{LBOTOT} is a measurement of the minimum time between the negation of LALE and any change in LAD. t_{LBOTOT} is programmed with the LBCR[AHD] parameter.
- Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at BV_{DD}/2.
- 8. Guaranteed by design.

Figure 22 provides the AC test load for the local bus.

Figure 22. Local Bus AC Test Load

Figure 25. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (PLL Enabled)

11 Programmable Interrupt Controller

In IRQ edge trigger mode, when an external interrupt signal is asserted (according to the programmed polarity), it must remain the assertion for at least 3 system clocks (SYSCLK periods).

12 JTAG

This section describes the DC and AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the device.

12.1 JTAG DC Electrical Characteristics

This table provides the DC electrical characteristics for the JTAG interface.

Parameter	Symbol ¹	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current ($V_{IN}^{1} = 0 V \text{ or } V_{IN} = V_{DD}$)	I _{IN}	—	±5	μA
High-level output voltage ($OV_{DD} = min, I_{OH} = -2 mA$)	V _{OH}	2.4	—	V
Low-level output voltage (OV _{DD} = min, I _{OL} = 2 mA)	V _{OL}	—	0.4	V

 Table 43. JTAG DC Electrical Characteristics

Note:

1. Note that the symbol V_{IN} in this case, represents the OV_{IN}

12.2 JTAG AC Electrical Specifications

This table provides the JTAG AC timing specifications as defined in Figure 30 through Figure 32.

Parameter	Symbol ²	Min	Мах	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	—
JTAG external clock cycle time	t _{JTG}	30	—	ns	—
JTAG external clock pulse width measured at 1.4 V	t _{JTKHKL}	15	—	ns	—
JTAG external clock rise and fall times	t _{JTGR} & t _{JTGF}	0	2	ns	6
TRST assert time	t _{TRST}	25	—	ns	3
Input setup times: Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 0	_	ns	4
Input hold times: Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	20 25		ns	4

Table 44. JTAG AC Timing Specifications (Independent of SYSCLK)¹

Parar	Symbol ²	Min	Мах	Unit	Notes	
Valid times:	Boundary-scan data TDO	t _{jtkldv} t _{jtklov}	4 2	20 10	ns	5
Output hold times:	Boundary-scan data TDO	t _{jtkldx} t _{jtklox}	30 30		ns	5
JTAG external clock to output high impedance: Boundary-scan data TDO		t _{jtkldz} t _{jtkloz}	3 3	19 9	ns	5, 6

 Table 44. JTAG AC Timing Specifications (Independent of SYSCLK)¹ (continued)

Notes:

- All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 29). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.
- 2. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}
- 3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- 4. Non-JTAG signal input timing with respect to t_{TCLK}.
- 5. Non-JTAG signal output timing with respect to t_{TCLK}.
- 6. Guaranteed by design.

Figure 29 provides the AC test load for TDO and the boundary-scan outputs.

Figure 29. AC Test Load for the JTAG Interface

Figure 30 provides the JTAG clock input timing diagram.

Figure 30. JTAG Clock Input Timing Diagram

PCI Express

Figure 48. Minimum Transmitter Timing and Voltage Output Compliance Specifications

17.4.3 Differential Receiver (RX) Input Specifications

Table 57 defines the specifications for the differential input at all receivers (RXs). The parameters are specified at the component pins.

Symbol	Parameter	Min	Nom	Max	Unit	Comments
UI	Unit interval	399.88	400	400.12	ps	Each UI is 400 ps \pm 300 ppm. UI does not account for spread spectrum clock dictated variations. See Note 1.
V _{RX-DIFFp-p}	Differential peak-to-peak input voltage	0.175	_	1.200	V	$V_{RX-DIFFp-p} = 2 \times V_{RX-D+} - V_{RX-D-} $. See Note 2.
T _{RX-EYE}	Minimum receiver eye width	0.4	_	_	UI	The maximum interconnect media and transmitter jitter that can be tolerated by the receiver can be derived as $T_{RX-MAX-JITTER} = 1 - T_{RX-EYE} = 0.6$ UI. See Notes 2 and 3.
T _{RX-EYE-MEDIAN-to-} MAX-JITTER	Maximum time between the jitter median and maximum deviation from the median	_	_	0.3	UI	Jitter is defined as the measurement variation of the crossing points ($V_{RX-DIFFp-p} = 0$ V) in relation to a recovered TX UI. A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI. See Notes 2, 3, and 7.

Table 57. Differential Receiver (RX) Input Specifications

18.5 Explanatory Note on Transmitter and Receiver Specifications

AC electrical specifications are given for transmitter and receiver. Long- and short-run interfaces at three baud rates (a total of six cases) are described.

The parameters for the AC electrical specifications are guided by the XAUI electrical interface specified in Clause 47 of IEEE 802.3ae-2002.

XAUI has similar application goals to Serial RapidIO, as described in Section 8.1. The goal of this standard is that electrical designs for Serial RapidIO can reuse electrical designs for XAUI, suitably modified for applications at the baud intervals and reaches described herein.

18.6 Transmitter Specifications

LP-serial transmitter electrical and timing specifications are stated in the text and tables of this section.

The differential return loss, S11, of the transmitter in each case shall be better than:

- -10 dB for (baud frequency)/10 < Freq(f) < 625 MHz, and
- $-10 \text{ dB} + 10\log(f/625 \text{ MHz}) \text{ dB}$ for $625 \text{ MHz} \le \text{Freq}(f) \le \text{baud}$ frequency

The reference impedance for the differential return loss measurements is $100-\Omega$ resistive. Differential return loss includes contributions from on-chip circuitry, chip packaging, and any off-chip components related to the driver. The output impedance requirement applies to all valid output levels.

It is recommended that the 20%–80% rise/fall time of the transmitter, as measured at the transmitter output, in each case have a minimum value 60 ps.

It is recommended that the timing skew at the output of an LP-serial transmitter between the two signals that comprise a differential pair not exceed 25 ps at 1.25 GB, 20 ps at 2.50 GB, and 15 ps at 3.125 GB.

Characteristic	Symbol	Range		Unit	Notos
Characteristic	Symbol	Min	Max	Unit	NOIES
Output voltage	Vo	-0.40	2.30	V	Voltage relative to COMMON of either signal comprising a differential pair
Differential output voltage	V _{DIFFPP}	500	1000	mV p-p	_
Deterministic jitter	J _D	_	0.17	UI p-p	_
Total jitter	J _T	_	0.35	UI p-p	_
Multiple output skew	S _{MO}	—	1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	800	800	ps	±100 ppm

Table 59. Short Run Transmitter AC Timing Specifications—1.25 GBaud

Signal	Package Pin Number	Pin Type	Power Supply	Notes
SENSEVSS	M16	—	—	13
	Analog Signals			
MVREF	A18	I Reference voltage signal for DDR	MVREF	
SD_IMP_CAL_RX	L28	I	200Ω to GND	_
SD_IMP_CAL_TX	AB26	I	100Ω to GND	
SD_PLL_TPA	U26	0	—	24

Table 71. MPC8548E Pinout Listing (continued)

Notes:

1. All multiplexed signals are listed only once and do not re-occur. For example, LCS5/DMA_REQ2 is listed only once in the local bus controller section, and is not mentioned in the DMA section even though the pin also functions as DMA_REQ2.

- 2. Recommend a weak pull-up resistor (2-10 kΩ) be placed on this pin to OV_{DD}.
- 3. A valid clock must be provided at POR if TSEC4_TXD[2] is set = 1.
- 4. This pin is an open drain signal.
- 5. This pin is a reset configuration pin. It has a weak internal pull-up P-FET which is enabled only when the processor is in the reset state. This pull-up is designed such that it can be overpowered by an external 4.7-kΩ pull-down resistor. However, if the signal is intended to be high after reset, and if there is any device on the net which might pull down the value of the net at reset, then a pullup or active driver is needed.
- 6. Treat these pins as no connects (NC) unless using debug address functionality.
- The value of LA[28:31] during reset sets the CCB clock to SYSCLK PLL ratio. These pins require 4.7-kΩ pull-up or pull-down resistors. See Section 20.2, "CCB/SYSCLK PLL Ratio."
- 8. The value of LALE, LGPL2, and LBCTL at reset set the e500 core clock to CCB clock PLL ratio. These pins require 4.7-kΩ pull-up or pull-down resistors. See the Section 20.3, "e500 Core PLL Ratio."
- 9. Functionally, this pin is an output, but structurally it is an I/O because it either samples configuration input during reset or because it has other manufacturing test functions. This pin therefore is described as an I/O for boundary scan.
- 10. This pin functionally requires a pull-up resistor, but during reset it is a configuration input that controls 32- vs. 64-bit PCI operation. Therefore, it must be actively driven low during reset by reset logic if the device is to be configured to be a 64-bit PCI device. See the *PCI Specification*.
- 11. This output is actively driven during reset rather than being three-stated during reset.
- 12. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
- 13. These pins are connected to the V_{DD}/GND planes internally and may be used by the core power supply to improve tracking and regulation.
- 14.Internal thermally sensitive resistor.
- 15.No connections must be made to these pins if they are not used.
- 16. These pins are not connected for any use.
- 17.PCI specifications recommend that a weak pull-up resistor (2–10 kΩ) be placed on the higher order pins to OV_{DD} when using 64-bit buffer mode (pins PCI_AD[63:32] and PCI1_C_BE[7:4]).
- 19.If this pin is connected to a device that pulls down during reset, an external pull-up is required to drive this pin to a safe state during reset.
- 20. This pin is only an output in FIFO mode when used as Rx flow control.

24.Do not connect.

Package Description

Signal	Package Pin Number	Pin Type	Power Supply	Notes					
BV _{DD}	C21, C24, C27, E20, E25, G19, G23, H26, J20	Power for local bus (1.8 V, 2.5 V, 3.3 V)	BV _{DD}	_					
V _{DD}	M19, N12, N14, N16, N18, P11, P13, P15, P17, P19, R12, R14, R16, R18, T11, T13, T15, T17, T19, U12, U14, U16, U18, V17, V19	Power for core (1.1 V)	V _{DD}	—					
SV _{DD}	L25, L27, M24, N28, P24, P26, R24, R27, T25, V24, V26, W24, W27, Y25, AA28, AC27	Core power for SerDes transceivers (1.1 V)	SV _{DD}	_					
XV _{DD}	L20, L22, N23, P21, R22, T20, U23, V21, W22, Y20	Pad Power for SerDes transceivers (1.1 V)	XV _{DD}	_					
AVDD_LBIU	J28	Power for local bus PLL (1.1 V)	_	26					
AVDD_PCI1	AH21	Power for PCI1 PLL (1.1 V)	_	26					
AVDD_PCI2	AH22	Power for PCI2 PLL (1.1 V)	_	26					
AVDD_CORE	AH15	Power for e500 PLL (1.1 V)	_	26					
AVDD_PLAT	AH19	Powerfor CCB PLL (1.1 V)	—	26					
AVDD_SRDS	U25	Power for SRDSPLL (1.1 V)		26					
SENSEVDD	M14	0	V_{DD}	13					
SENSEVSS	M16	_		13					
	Analog Signals								
MVREF	A18	I Reference voltage signal for DDR	MVREF						
SD_IMP_CAL_RX	L28	I	200 Ω to GND	_					
SD_IMP_CAL_TX	AB26	I	100 Ω to GND						

Table 72. MPC8547E Pinout Listing (continued)

Table 72. MPC8547E Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
SD_PLL_TPA	U26	0		24

Note: All note references in this table use the same numbers as those for Table 71. See Table 71 for the meanings of these notes.

Table 73 provides the pin-out listing for the MPC8545E 783 FC-PBGA package.

NOTE

All note references in the following table use the same numbers as those for Table 71. See Table 71 for the meanings of these notes.

Signal	Package Pin Number	Pin Type	Power Supply	Notes					
	PCI1 and PCI2 (One 64-Bit or Two 32-Bit)		1						
PCI1_AD[63:32]/PCI2_AD[31:0]	AB14, AC15, AA15, Y16, W16, AB16, AC16, AA16, AE17, AA18, W18, AC17, AD16, AE16, Y17, AC18, AB18, AA19, AB19, AB21, AA20, AC20, AB20, AB22, AC22, AD21, AB23, AF23, AD23, AE23, AC23, AC24	I/O	OV _{DD}	17					
PCI1_AD[31:0]	AH6, AE7, AF7, AG7, AH7, AF8, AH8, AE9, AH9, AC10, AB10, AD10, AG10, AA10, AH10, AA11, AB12, AE12, AG12, AH12, AB13, AA12, AC13, AE13, Y14, W13, AG13, V14, AH13, AC14, Y15, AB15	I/O	OV _{DD}	17					
PCI1_C_BE[7:4]/PCI2_C_BE[3:0]	AF15, AD14, AE15, AD15	I/O	OV _{DD}	17					
PCI1_C_BE[3:0]	AF9, AD11, Y12, Y13	I/O	OV _{DD}	17					
PCI1_PAR64/PCI2_PAR	W15	I/O	OV _{DD}	—					
PCI1_GNT[4:1]	AG6, AE6, AF5, AH5	0	OV _{DD}	5, 9, 35					
PCI1_GNT0	AG5	I/O	OV _{DD}	—					
PCI1_IRDY	AF11	I/O	OV _{DD}	2					
PCI1_PAR	AD12	I/O	OV _{DD}	—					
PCI1_PERR	AC12	I/O	OV _{DD}	2					
PCI1_SERR	V13	I/O	OV _{DD}	2, 4					
PCI1_STOP	W12	I/O	OV _{DD}	2					
PCI1_TRDY	AG11	I/O	OV _{DD}	2					
PCI1_REQ[4:1]	AH2, AG4, AG3, AH4	I	OV _{DD}	—					
PCI1_REQ0	AH3	I/O	OV _{DD}	—					
PCI1_CLK	AH26	I	OV _{DD}	39					
PCI1_DEVSEL	AH11	I/O	OV _{DD}	2					

Table 73. MPC8545E Pinout Listing

Signal	Package Pin Number	Pin Type	Power Supply	Notes					
TDO	AF28	0	OV _{DD}	—					
TMS	AH27	I	OV _{DD}	12					
TRST	AH23	I	OV _{DD}	12					
	DFT								
L1_TSTCLK	AC25	I	OV _{DD}	25					
L2_TSTCLK	AE22	I	OV _{DD}	25					
LSSD_MODE	AH20	I	OV_{DD}	25					
TEST_SEL	AH14	I	OV _{DD}	25					
	Thermal Management								
THERM0	AG1	—	_	14					
THERM1	AH1	_	_	14					
	Power Management								
ASLEEP	AH18	0	OV _{DD}	9, 19, 29					
	Power and Ground Signals								
GND	 A11, B7, B24, C1, C3, C5, C12, C15, C26, D8, D11, D16, D20, D22, E1, E5, E9, E12, E15, E17, F4, F26, G12, G15, G18, G21, G24, H2, H6, H8, H28, J4, J12, J15, J17, J27, K7, K9, K11, K27, L3, L5, L12, L16, N11, N13, N15, N17, N19, P4, P9, P12, P14, P16, P18, R11, R13, R15, R17, R19, T4, T12, T14, T16, T18, U8, U11, U13, U15, U17, U19, V4, V12, V18, W6, W19, Y4, Y9, Y11, Y19, AA6, AA14, AA17, AA22, AA23, AB4, AC2, AC11, AC19, AC26, AD5, AD9, AD22, AE3, AE14, AF6, AF10, AF13, AG8, AG27, K28, L24, L26, N24, N27, P25, R28, T24, T26, U24, V25, W28, Y24, Y26, AA24, AA27, AB25, AC28, L21, L23, N22, P20, R23, T21, U22, V20, W23, Y21, U27 								
OV _{DD}	V16, W11, W14, Y18, AA13, AA21, AB11, AB17, AB24, AC4, AC9, AC21, AD6, AD13, AD17, AD19, AE10, AE8, AE24, AF4, AF12, AF22, AF27, AG26	Power for PCI and other standards (3.3 V)	OV _{DD}	_					
LV _{DD}	N8, R7, T9, U6	Power for TSEC1 and TSEC2 (2.5 V, 3.3 V)	LV _{DD}	_					
TV _{DD}	W9, Y6	Power for TSEC3 and TSEC4 (2,5 V, 3.3 V)	TV _{DD}						

20.3 e500 Core PLL Ratio

This table describes the clock ratio between the e500 core complex bus (CCB) and the e500 core clock. This ratio is determined by the binary value of LBCTL, LALE, and LGPL2 at power up, as shown in this table.

Binary Value of LBCTL, LALE, LGPL2 Signals	e500 core:CCB Clock Ratio	Binary Value of LBCTL, LALE, LGPL2 Signals	e500 core:CCB Clock Ratio	
000	4:1	100	2:1	
001	9:2	101	5:2	
010	Reserved	110	3:1	
011	3:2	111	7:2	

Table 82	. e500	Core t	o CCB	Clock Ratio
----------	--------	--------	-------	--------------------

20.4 Frequency Options

Table 83This table shows the expected frequency values for the platform frequency when using a CCB clock to SYSCLK ratio in comparison to the memory bus clock speed.

CCB to SYSCLK Ratio	SYSCLK (MHz)								
	16.66	25	33.33	41.66	66.66	83	100	111	133.33
	Platform/CCB Frequency (MHz)								
2									
3								333	400
4						333	400	445	533
5					333	415	500		
6					400	500		-	
8				333	533				
9				375					
10			333	417					
12			400	500					
16		400	533		-				
20	333	500		-					

Table 83. Frequency Options of SYSCLK with Respect to Memory Bus Speeds

Note: Due to errata Gen 13 the max sys clk frequency must not exceed 100 MHz if the core clk frequency is below 1200 MHz.

System Design Information

22.10 Guidelines for High-Speed Interface Termination

This section provides the guidelines for high-speed interface termination when the SerDes interface is entirely unused and when it is partly unused.

22.10.1 SerDes Interface Entirely Unused

If the high-speed SerDes interface is not used at all, the unused pin must be terminated as described in this section.

The following pins must be left unconnected (float):

- SD_TX[7:0]
- <u>SD_TX</u>[7:0]
- Reserved pins T22, T23, M20, M21

The following pins must be connected to GND:

- SD_RX[7:0]
- <u>SD_RX</u>[7:0]
- SD_REF_CLK
- SD_REF_CLK

NOTE

It is recommended to power down the unused lane through SRDSCR1[0:7] register (offset = $0xE_0F08$) (This prevents the oscillations and holds the receiver output in a fixed state.) that maps to SERDES lane 0 to lane 7 accordingly.

Pins V28 and M26 must be tied to XV_{DD} . Pins V27 and M25 must be tied to GND through a 300- Ω resistor.

In Rev 2.0 silicon, POR configuration pin cfg_srds_en on TSEC4_TXD[2]/TSEC3_TXD[6] can be used to power down SerDes block.

22.10.2 SerDes Interface Partly Unused

If only part of the high-speed SerDes interface pins are used, the remaining high-speed serial I/O pins must be terminated as described in this section.

The following pins must be left unconnected (float) if not used:

- SD_TX[7:0]
- <u>SD_TX</u>[7:0]
- Reserved pins: T22, T23, M20, M21

The following pins must be connected to GND if not used:

- SD_RX[7:0]
- $\overline{\text{SD}_{RX}}[7:0]$
- SD_REF_CLK

23 Ordering Information

.....

Ordering information for the parts fully covered by this specification document is provided in Section 23.1, "Part Numbers Fully Addressed by this Document."

23.1 Part Numbers Fully Addressed by this Document

This table provides the Freescale part numbering nomenclature for the device. Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact your local Freescale sales office. In addition to the processor frequency, the part-numbering scheme also includes an application modifier that may specify special application conditions. Each part number also contains a revision code that refers to the die mask revision number.

MPC	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	t	pp	11	C	r
Product Code	Part Identifier	Temperature	Package ^{1, 2, 3}	Processor Frequency ⁴	Core Frequency	Silicon Version
MPC	8548E	Blank = 0 to 105°C C = -40° to 105°C	HX = CBGA VU = Pb-free CBGA PX = PBGA VT = Pb-free PBGA	AV = 1500 ³ AU = 1333 AT = 1200 AQ = 1000	J = 533 H = 500 ⁵ G = 400	Blank = Ver. 2.0 (SVR = 0x80390020) A = Ver. 2.1.1 B = Ver. 2.1.2 C = Ver. 2.1.3 (SVR = 0x80390021) D = Ver. 3.1.x (SVR = 0x80390031)
	8548					Blank = Ver. 2.0 (SVR = 0x80310020) A = Ver. 2.1.1 B = Ver. 2.1.2 C = Ver. 2.1.3 (SVR = 0x80310021) D = Ver. 3.1.x (SVR = 0x80310031)
	8547E			AU = 1333 AT = 1200 AQ = 1000	J = 533 G = 400	Blank = Ver. 2.0 (SVR = 0x80390120) A = Ver. 2.1.1 B = Ver. 2.1.2 C = Ver. 2.1.3 (SVR = 0x80390121) D = Ver. 3.1.x (SVR = 0x80390131)
	8547					Blank = Ver. 2.0 (SVR = 0x80390120) A = Ver. 2.1.1 B = Ver. 2.1.2 C = Ver. 2.1.3 (SVR = 0x80310121) D = Ver. 3.1.x (SVR = 0x80310131)

Table 87. Part Numbering Nomenclature

...