

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.2GHz
Co-Processors/DSP	Signal Processing; SPE, Security; SEC
RAM Controllers	DDR, DDR2, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (4)
SATA	-
USB	-
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8548ecvtatgb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

 Performance monitor facility that is similar to, but separate from, the device performance monitor

The e500 defines features that are not implemented on this device. It also generally defines some features that this device implements more specifically. An understanding of these differences can be critical to ensure proper operations.

- 512-Kbyte L2 cache/SRAM
 - Flexible configuration.
 - Full ECC support on 64-bit boundary in both cache and SRAM modes
 - Cache mode supports instruction caching, data caching, or both.
 - External masters can force data to be allocated into the cache through programmed memory ranges or special transaction types (stashing).
 - 1, 2, or 4 ways can be configured for stashing only.
 - Eight-way set-associative cache organization (32-byte cache lines)
 - Supports locking entire cache or selected lines. Individual line locks are set and cleared through Book E instructions or by externally mastered transactions.
 - Global locking and Flash clearing done through writes to L2 configuration registers
 - Instruction and data locks can be Flash cleared separately.
 - SRAM features include the following:
 - I/O devices access SRAM regions by marking transactions as snoopable (global).
 - Regions can reside at any aligned location in the memory map.
 - Byte-accessible ECC is protected using read-modify-write transaction accesses for smaller-than-cache-line accesses.
- Address translation and mapping unit (ATMU)
 - Eight local access windows define mapping within local 36-bit address space.
 - Inbound and outbound ATMUs map to larger external address spaces.
 - Three inbound windows plus a configuration window on PCI/PCI-X and PCI Express
 - Four inbound windows plus a default window on RapidIO[™]
 - Four outbound windows plus default translation for PCI/PCI-X and PCI Express
 - Eight outbound windows plus default translation for RapidIO with segmentation and sub-segmentation support
- DDR/DDR2 memory controller
 - Programmable timing supporting DDR and DDR2 SDRAM
 - 64-bit data interface
 - Four banks of memory supported, each up to 4 Gbytes, to a maximum of 16 Gbytes
 - DRAM chip configurations from 64 Mbits to 4 Gbits with ×8/×16 data ports
 - Full ECC support
 - Page mode support
 - Up to 16 simultaneous open pages for DDR

- VRRP and HSRP support for seamless router fail-over
- Up to 16 exact-match MAC addresses supported
- Broadcast address (accept/reject)
- Hash table match on up to 512 multicast addresses
- Promiscuous mode
- Buffer descriptors backward compatible with MPC8260 and MPC860T 10/100 Ethernet programming models
- RMON statistics support
- 10-Kbyte internal transmit and 2-Kbyte receive FIFOs
- MII management interface for control and status
- Ability to force allocation of header information and buffer descriptors into L2 cache
- OCeaN switch fabric
 - Full crossbar packet switch
 - Reorders packets from a source based on priorities
 - Reorders packets to bypass blocked packets
 - Implements starvation avoidance algorithms
 - Supports packets with payloads of up to 256 bytes
- Integrated DMA controller
 - Four-channel controller
 - All channels accessible by both the local and remote masters
 - Extended DMA functions (advanced chaining and striding capability)
 - Support for scatter and gather transfers
 - Misaligned transfer capability
 - Interrupt on completed segment, link, list, and error
 - Supports transfers to or from any local memory or I/O port
 - Selectable hardware-enforced coherency (snoop/no snoop)
 - Ability to start and flow control each DMA channel from external 3-pin interface
 - Ability to launch DMA from single write transaction
- Two PCI/PCI-X controllers
 - PCI 2.2 and PCI-X 1.0 compatible
 - One 32-/64-bit PCI/PCI-X port with support for speeds of up to 133 MHz (maximum PCI-X frequency in synchronous mode is 110 MHz)
 - One 32-bit PCI port with support for speeds from 16 to 66 MHz (available when the other port is in 32-bit mode)
 - Host and agent mode support
 - 64-bit dual address cycle (DAC) support
 - PCI-X supports multiple split transactions
 - Supports PCI-to-memory and memory-to-PCI streaming

6 DDR and DDR2 SDRAM

This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the device. Note that $GV_{DD}(typ) = 2.5 \text{ V}$ for DDR SDRAM, and $GV_{DD}(typ) = 1.8 \text{ V}$ for DDR2 SDRAM.

6.1 DDR SDRAM DC Electrical Characteristics

The following table provides the recommended operating conditions for the DDR2 SDRAM controller of the device when $GV_{DD}(typ) = 1.8 \text{ V}.$

Parameter/Condition	Symbol	Min	Max	Unit	Notes
I/O supply voltage	GV _{DD}	1.71	1.89	V	1
I/O reference voltage	MV _{REF}	$0.49 \times GV_{DD}$	$0.51 \times GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.125	GV _{DD} + 0.3	V	—
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.125	V	—
Output leakage current	I _{OZ}	-50	50	μA	4
Output high current (V _{OUT} = 1.420 V)	I _{ОН}	-13.4	—	mA	—
Output low current (V _{OUT} = 0.280 V)	I _{OL}	13.4	—	mA	—

Table 11. DDR2 SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 1.8 V

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM V_{DD} at all times.

2. MV_{REF} is expected to be equal to 0.5 × GV_{DD} , and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail must track variations in the DC level of MV_{REF}.

4. Output leakage is measured with all outputs disabled, $0 V \le V_{OUT} \le GV_{DD}$.

This table provides the DDR2 I/O capacitance when $GV_{DD}(typ) = 1.8$ V.

Table 12. DDR2 SDRAM Capacitance for GV_{DD}(typ)=1.8 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS, DQS	C _{DIO}	—	0.5	pF	1

Note:

1. This parameter is sampled. $GV_{DD} = 1.8 \text{ V} \pm 0.090 \text{ V}$, f = 1 MHz, T_A = 25°C, $V_{OUT} = GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

Figure 4 shows the DDR SDRAM output timing diagram.+

Figure 4. DDR SDRAM Output Timing Diagram

Figure 5 provides the AC test load for the DDR bus.

Figure 5. DDR AC Test Load

DUART

7 DUART

This section describes the DC and AC electrical specifications for the DUART interface of the device.

7.1 DUART DC Electrical Characteristics

This table provides the DC electrical characteristics for the DUART interface.

Table 20. DUART DC Electrical Characteristics

Parameter	Symbol	Min	Max	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current $(V_{IN}^{1} = 0 V \text{ or } V_{IN} = V_{DD})$	I _{IN}	_	±5	μA
High-level output voltage ($OV_{DD} = min, I_{OH} = -2 mA$)	V _{OH}	2.4	_	V
Low-level output voltage (OV_{DD} = min, I_{OL} = 2 mA)	V _{OL}	—	0.4	V

Note:

1. Note that the symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

7.2 DUART AC Electrical Specifications

This table provides the AC timing parameters for the DUART interface.

Table 21. DUART AC Timing Specifications

Parameter	Value	Unit	Notes
Minimum baud rate	f _{CCB} /1,048,576	baud	1, 2
Maximum baud rate	f _{CCB} /16	baud	1, 2, 3
Oversample rate	16		1, 4

Notes:

1. Guaranteed by design.

2. f_{CCB} refers to the internal platform clock.

3. Actual attainable baud rate is limited by the latency of interrupt processing.

4. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.

8 Enhanced Three-Speed Ethernet (eTSEC)

This section provides the AC and DC electrical characteristics for the enhanced three-speed Ethernet controller. The electrical characteristics for MDIO and MDC are specified in Section 9, "Ethernet Management Interface Electrical Characteristics."

8.1 Enhanced Three-Speed Ethernet Controller (eTSEC) (10/100/1Gb Mbps)—GMII/MII/TBI/RGMII/RTBI/RMII Electrical Characteristics

The electrical characteristics specified here apply to all gigabit media independent interface (GMII), media independent interface (MII), ten-bit interface (TBI), reduced gigabit media independent interface (RGMII), reduced ten-bit interface (RTBI), and reduced media independent interface (RMII) signals except management data input/output (MDIO) and management data clock (MDC). The RGMII and RTBI interfaces are defined for 2.5 V, while the GMII, MII, and TBI interfaces can be operated at 3.3 or 2.5 V. The GMII, MII, or TBI interface timing is compliant with the IEEE 802.3. The RGMII and RTBI interfaces follow the *Reduced Gigabit Media-Independent Interface (RGMII) Specification Version 1.3* (12/10/2000). The RMII interface follows the *RMII Consortium RMII Specification Version 1.2* (3/20/1998). The electrical characteristics for MDIO and MDC are specified in Section 9, "Ethernet Management Interface Electrical Characteristics."

8.1.1 eTSEC DC Electrical Characteristics

All GMII, MII, TBI, RGMII, RMII, and RTBI drivers and receivers comply with the DC parametric attributes specified in Table 22 and Table 23. The RGMII and RTBI signals are based on a 2.5-V CMOS interface voltage as defined by JEDEC EIA/JESD8-5.

Parameter	Symbol	Min	Мах	Unit	Notes
Supply voltage 3.3 V	LV _{DD} TV _{DD}	3.13	3.47	V	1, 2
Output high voltage ($LV_{DD}/TV_{DD} = min$, $I_{OH} = -4.0 mA$)	V _{OH}	2.40	$LV_{DD}/TV_{DD} + 0.3$	V	_
Output low voltage ($LV_{DD}/TV_{DD} = min, I_{OL} = 4.0 mA$)	V _{OL}	GND	0.50	V	_
Input high voltage	V _{IH}	2.0	$LV_{DD}/TV_{DD} + 0.3$	V	_
Input low voltage	V _{IL}	-0.3	0.90	V	_
Input high current ($V_{IN} = LV_{DD}$, $V_{IN} = TV_{DD}$)	I _{IH}	—	40	μΑ	1, 2, 3
Input low current (V _{IN} = GND)	IIL	-600	_	μA	

Table 22.	GMII. MI	I. RMII. a	and TBI DC	Electrical	Characteristics
	O min, mi	.,		Licothour	onaraotoristios

Notes:

1. LV_{DD} supports eTSECs 1 and 2.

2. TV_DD supports eTSECs 3 and 4.

3. The symbol V_{IN}, in this case, represents the LV_{IN} and TV_{IN} symbols referenced in Table 1 and Table 2.

Enhanced Three-Speed Ethernet (eTSEC)

Figure 10 shows the GMII receive AC timing diagram.

Figure 10. GMII Receive AC Timing Diagram

8.2.3 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

8.2.3.1 MII Transmit AC Timing Specifications

This table provides the MII transmit AC timing specifications.

fable 2	28.	MII	Transmit	AC	Timing	Specifications
---------	-----	-----	----------	----	--------	----------------

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
TX_CLK clock period 10 Mbps	t _{MTX} ²	_	400	_	ns
TX_CLK clock period 100 Mbps	t _{MTX}		40	_	ns
TX_CLK duty cycle	t _{MTXH} /t _{MTX}	35	_	65	%
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay	t _{MTKHDX}	1	5	15	ns
TX_CLK data clock rise (20%–80%)	t _{MTXR} ²	1.0	_	4.0	ns
TX_CLK data clock fall (80%–20%)	t _{MTXF} ²	1.0		4.0	ns

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

2. Guaranteed by design.

Enhanced Three-Speed Ethernet (eTSEC)

Figure 13 shows the MII receive AC timing diagram.

Figure 13. MII Receive AC Timing Diagram

8.2.4 TBI AC Timing Specifications

This section describes the TBI transmit and receive AC timing specifications.

8.2.4.1 TBI Transmit AC Timing Specifications

This table provides the TBI transmit AC timing specifications.

Table 30	. TBI	Transmit	AC	Timing	Specifications
----------	-------	----------	----	--------	----------------

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
TCG[9:0] setup time GTX_CLK going high	t _{TTKHDV}	2.0	_	—	ns
TCG[9:0] hold time from GTX_CLK going high	t _{TTKHDX}	1.0	_	—	ns
GTX_CLK rise (20%–80%)	t _{TTXR} ²		_	1.0	ns
GTX_CLK fall time (80%–20%)	t _{TTXF} ²		_	1.0	ns

Notes:

1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{TTKHDV} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect data signals (D) reach the invalid state (X) or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{TTX} represents the TBI (T) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. Guaranteed by design.

10 Local Bus

This section describes the DC and AC electrical specifications for the local bus interface of the device.

10.1 Local Bus DC Electrical Characteristics

This table provides the DC electrical characteristics for the local bus interface operating at $BV_{DD} = 3.3 \text{ V DC}$.

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	BV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current ($V_{IN}^{1} = 0 V \text{ or } V_{IN} = BV_{DD}$)	I _{IN}	_	±5	μΑ
High-level output voltage ($BV_{DD} = min, I_{OH} = -2 mA$)	V _{OH}	2.4	—	V
Low-level output voltage (BV_{DD} = min, I_{OL} = 2 mA)	V _{OL}	_	0.4	V

Table 38. Local Bus DC Electrical Characteristics (3.3 V DC)

Note:

1. Note that the symbol V_{IN} , in this case, represents the BV_{IN} symbol referenced in Table 1 and Table 2.

Table 39 provides the DC electrical characteristics for the local bus interface operating at $BV_{DD} = 2.5 \text{ V DC}$.

Table 39. Local Bus DC Electrical Characteristics (2.5 V DC)

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	1.70	BV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.7	V
Input current $(V_{IN}^{1} = 0 V \text{ or } V_{IN} = BV_{DD})$	I _{IH}	—	10	μA
	IIL		-15	
High-level output voltage ($BV_{DD} = min, I_{OH} = -1 mA$)	V _{OH}	2.0	—	V
Low-level output voltage ($BV_{DD} = min$, $I_{OL} = 1 mA$)	V _{OL}	—	0.4	V

Note:

1. Note that the symbol V_{IN} , in this case, represents the BV_{IN} symbol referenced in Table 1 and Table 2.

10.2 Local Bus AC Electrical Specifications

This table describes the timing parameters of the local bus interface at $BV_{DD} = 3.3$ V. For information about the frequency range of local bus, see Section 20.1, "Clock Ranges."

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus cycle time	t _{LBK}	7.5	12	ns	2
Local bus duty cycle	t _{LBKH/} t _{LBK}	43	57	%	—
LCLK[n] skew to LCLK[m] or LSYNC_OUT	t _{LBKSKEW}	—	150	ps	7, 8
Input setup to local bus clock (except LGTA/LUPWAIT)	t _{LBIVKH1}	1.8	—	ns	3, 4
LGTA/LUPWAIT input setup to local bus clock	t _{LBIVKH2}	1.7	—	ns	3, 4
Input hold from local bus clock (except LGTA/LUPWAIT)	t _{LBIXKH1}	1.0	—	ns	3, 4
LGTA/LUPWAIT input hold from local bus clock	t _{LBIXKH2}	1.0	—	ns	3, 4
LALE output transition to LAD/LDP output transition (LATCH hold time)	t _{LBOTOT}	1.5	—	ns	6
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKHOV1}	—	2.0	ns	—
Local bus clock to data valid for LAD/LDP	t _{LBKHOV2}	—	2.2	ns	3
Local bus clock to address valid for LAD	t _{LBKHOV3}	—	2.3	ns	3
Local bus clock to LALE assertion	t _{LBKHOV4}	—	2.3	ns	3
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKHOX1}	0.7	—	ns	3
Output hold from local bus clock for LAD/LDP	t _{LBKHOX2}	0.7	—	ns	3
Local bus clock to output high Impedance (except LAD/LDP and LALE)	t _{LBKHOZ1}	_	2.5	ns	5
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ2}		2.5	ns	5

Table 40. Local Bus Timing Parameters (BV_{DD} = 3.3 V)—PLL Enabled

Notes:

- The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKH0X} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
- 2. All timings are in reference to LSYNC_IN for PLL enabled and internal local bus clock for PLL bypass mode.
- 3. All signals are measured from $BV_{DD}/2$ of the rising edge of LSYNC_IN for PLL enabled or internal local bus clock for PLL bypass mode to $0.4 \times BV_{DD}$ of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 6. t_{LBOTOT} is a measurement of the minimum time between the negation of LALE and any change in LAD. t_{LBOTOT} is programmed with the LBCR[AHD] parameter.
- 7. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at BV_{DD}/2.
- 8. Guaranteed by design.

of a balanced interchange circuit and ground. In this example, for SerDes output, $V_{cm_out} = V_{SD_TX} + V_{\overline{SD}_TX} = (A + B)/2$, which is the arithmetic mean of the two complimentary output voltages within a differential pair. In a system, the common mode voltage may often differ from one component's output to the other's input. Sometimes, it may be even different between the receiver input and driver output circuits within the same component. It is also referred to as the DC offset.

To illustrate these definitions using real values, consider the case of a CML (current mode logic) transmitter that has a common mode voltage of 2.25 V and each of its outputs, TD and TD, has a swing that goes between 2.5 and 2.0 V. Using these values, the peak-to-peak voltage swing of each signal (TD or TD) is 500 mVp-p, which is referred as the single-ended swing for each signal. In this example, since the differential signaling environment is fully symmetrical, the transmitter output's differential swing (V_{OD}) has the same amplitude as each signal's single-ended swing. The differential output signal ranges between 500 and -500 mV, in other words, V_{OD} is 500 mV in one phase and -500 mV in the other phase. The peak differential voltage (V_{DIFFp}) is 500 mV. The peak-to-peak differential voltage (V_{DIFFp}) is 1000 mVp-p.

16.2 SerDes Reference Clocks

The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by the corresponding SerDes lanes. The SerDes reference clocks inputs are SD_REF_CLK and SD_REF_CLK for PCI Express and serial RapidIO.

The following sections describe the SerDes reference clock requirements and some application information.

16.2.1 SerDes Reference Clock Receiver Characteristics

Figure 39 shows a receiver reference diagram of the SerDes reference clocks.

- The supply voltage requirements for $XV_{DD SRDS2}$ are specified in Table 1 and Table 2.
- SerDes Reference clock receiver reference circuit structure:

PCI Express

Figure 48. Minimum Transmitter Timing and Voltage Output Compliance Specifications

17.4.3 Differential Receiver (RX) Input Specifications

Table 57 defines the specifications for the differential input at all receivers (RXs). The parameters are specified at the component pins.

Symbol	Parameter	Min	Nom	Max	Unit	Comments
UI	Unit interval	399.88	400	400.12	ps	Each UI is 400 ps \pm 300 ppm. UI does not account for spread spectrum clock dictated variations. See Note 1.
V _{RX-DIFFp-p}	Differential peak-to-peak input voltage	0.175	_	1.200	V	$V_{RX-DIFFp-p} = 2 \times V_{RX-D+} - V_{RX-D-} $. See Note 2.
T _{RX-EYE}	Minimum receiver eye width	0.4	_	_	UI	The maximum interconnect media and transmitter jitter that can be tolerated by the receiver can be derived as $T_{RX-MAX-JITTER} = 1 - T_{RX-EYE} = 0.6$ UI. See Notes 2 and 3.
T _{RX-EYE-MEDIAN-to-} MAX-JITTER	Maximum time between the jitter median and maximum deviation from the median	_	_	0.3	UI	Jitter is defined as the measurement variation of the crossing points ($V_{RX-DIFFp-p} = 0$ V) in relation to a recovered TX UI. A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI. See Notes 2, 3, and 7.

Table 57. Differential Receiver (RX) Input Specifications

PCI Express

The eye diagram must be valid for any 250 consecutive UIs.

A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI.

NOTE

The reference impedance for return loss measurements is 50. to ground for both the D+ and D– line (that is, as measured by a vector network analyzer with 50- Ω probes—see Figure 50). Note that the series capacitors, CTX, are optional for the return loss measurement.

Figure 49. Minimum Receiver Eye Timing and Voltage Compliance Specification

17.5.1 Compliance Test and Measurement Load

The AC timing and voltage parameters must be verified at the measurement point, as specified within 0.2 inches of the package pins, into a test/measurement load shown in Figure 50.

NOTE

The allowance of the measurement point to be within 0.2 inches of the package pins is meant to acknowledge that package/board routing may benefit from D+ and D- not being exactly matched in length at the package pin boundary.

Figure 50. Compliance Test/Measurement Load

Package Description

Signal	Package Pin Number	Pin Type	Power Supply	Notes
LV _{DD}	N8, R7, T9, U6	Power for TSEC1 and TSEC2 (2.5 V, 3.3 V)	LV _{DD}	_
TV _{DD}	W9, Y6	Power for TSEC3 and TSEC4 (2,5 V, 3.3 V)	TV _{DD}	_
GV _{DD}	B3, B11, C7, C9, C14, C17, D4, D6, D10, D15, E2, E8, E11, E18, F5, F12, F16, G3, G7, G9, G11, H5, H12, H15, H17, J10, K3, K12, K16, K18, L6, M4, M8, M13	Power for DDR1 and DDR2 DRAM I/O voltage (1.8 V, 2.5)	GV _{DD}	_
BV _{DD}	C21, C24, C27, E20, E25, G19, G23, H26, J20	Power for local bus (1.8 V, 2.5 V, 3.3 V)	ΒV _{DD}	-
V _{DD}	M19, N12, N14, N16, N18, P11, P13, P15, P17, P19, R12, R14, R16, R18, T11, T13, T15, T17, T19, U12, U14, U16, U18, V17, V19	Power for core (1.1 V)	V _{DD}	-
SV _{DD}	L25, L27, M24, N28, P24, P26, R24, R27, T25, V24, V26, W24, W27, Y25, AA28, AC27	Core Power for SerDes transceivers (1.1 V)	SV _{DD}	_
XV _{DD}	L20, L22, N23, P21, R22, T20, U23, V21, W22, Y20	Pad Power for SerDes transceivers (1.1 V)	XV _{DD}	_
AVDD_LBIU	J28	Power for local bus PLL (1.1 V)	_	26
AVDD_PCI1	AH21	Power for PCI1 PLL (1.1 V)	_	26
AVDD_PCI2	AH22	Power for PCI2 PLL (1.1 V)	_	26
AVDD_CORE	AH15	Power for e500 PLL (1.1 V)	_	26
AVDD_PLAT	AH19	Powerfor CCB PLL (1.1 V)	—	26
AVDD_SRDS	U25	Power for SRDSPLL (1.1 V)	—	26
SENSEVDD	M14	0	V _{DD}	13

Table 71. MPC8548E Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
SENSEVSS	M16	—	—	13
	Analog Signals			
MVREF	A18	I Reference voltage signal for DDR	MVREF	
SD_IMP_CAL_RX	L28	I	200Ω to GND	_
SD_IMP_CAL_TX	AB26	I	100Ω to GND	
SD_PLL_TPA	U26	0	—	24

Table 71. MPC8548E Pinout Listing (continued)

Notes:

1. All multiplexed signals are listed only once and do not re-occur. For example, LCS5/DMA_REQ2 is listed only once in the local bus controller section, and is not mentioned in the DMA section even though the pin also functions as DMA_REQ2.

- 2. Recommend a weak pull-up resistor (2-10 kΩ) be placed on this pin to OV_{DD}.
- 3. A valid clock must be provided at POR if TSEC4_TXD[2] is set = 1.
- 4. This pin is an open drain signal.
- 5. This pin is a reset configuration pin. It has a weak internal pull-up P-FET which is enabled only when the processor is in the reset state. This pull-up is designed such that it can be overpowered by an external 4.7-kΩ pull-down resistor. However, if the signal is intended to be high after reset, and if there is any device on the net which might pull down the value of the net at reset, then a pullup or active driver is needed.
- 6. Treat these pins as no connects (NC) unless using debug address functionality.
- The value of LA[28:31] during reset sets the CCB clock to SYSCLK PLL ratio. These pins require 4.7-kΩ pull-up or pull-down resistors. See Section 20.2, "CCB/SYSCLK PLL Ratio."
- 8. The value of LALE, LGPL2, and LBCTL at reset set the e500 core clock to CCB clock PLL ratio. These pins require 4.7-kΩ pull-up or pull-down resistors. See the Section 20.3, "e500 Core PLL Ratio."
- 9. Functionally, this pin is an output, but structurally it is an I/O because it either samples configuration input during reset or because it has other manufacturing test functions. This pin therefore is described as an I/O for boundary scan.
- 10. This pin functionally requires a pull-up resistor, but during reset it is a configuration input that controls 32- vs. 64-bit PCI operation. Therefore, it must be actively driven low during reset by reset logic if the device is to be configured to be a 64-bit PCI device. See the *PCI Specification*.
- 11. This output is actively driven during reset rather than being three-stated during reset.
- 12. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
- 13. These pins are connected to the V_{DD}/GND planes internally and may be used by the core power supply to improve tracking and regulation.
- 14.Internal thermally sensitive resistor.
- 15.No connections must be made to these pins if they are not used.
- 16. These pins are not connected for any use.
- 17.PCI specifications recommend that a weak pull-up resistor (2–10 kΩ) be placed on the higher order pins to OV_{DD} when using 64-bit buffer mode (pins PCI_AD[63:32] and PCI1_C_BE[7:4]).
- 19.If this pin is connected to a device that pulls down during reset, an external pull-up is required to drive this pin to a safe state during reset.
- 20. This pin is only an output in FIFO mode when used as Rx flow control.

24.Do not connect.

Package Description

Table 71. MPC8548E Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes			
25. These are test signals for factory use only and must be pulled up (100 Ω –1 k Ω) to OV _{DD} for normal machine operation.							
26.Independent supplies derived from board V _{DD} .							
27.Recommend a pull-up resistor (~1	$k\Omega$) be placed on this pin to OV _{DD} .						
29. The following pins must NOT be p HRESET_REQ, TRIG_OUT/READ	oul <u>led down du</u> ring power-on reset: TSEC3_TXD Y/QUIESCE, MSRCID[2:4], ASLEEP.	3], TSEC4_TXD	3/TSEC3_TXD	07,			
30. This pin requires an external 4.7-k driven.	2 pull-down resistor to prevent PHY from seeing a	valid transmit en	able before it is	actively			
31. This pin is only an output in eTSE	C3 FIFO mode when used as Rx flow control.						
32. These pins must be connected to 2	XV _{DD} .						
33.TSEC2_TXD1, TSEC2_TX_ER an HRESET assertion.	e multiplexed as cfg_dram_type[0:1]. They must	be valid at powe	r-up, even befo	ore			
34. These pins must be pulled to group	nd through a 300- Ω (±10%) resistor.						
35.When a PCI block is disabled, eith down to select external arbiter if the connect' or terminated through 2–1 connected to any other PCI device. POR config pins—irrespective of w any other PCI device connected or	er the POR config pin that selects between interrere is any other PCI device connected on the PCI $0 \ k\Omega$ pull-up resistors with the default of internal. The PCI block drives the PCI <i>n_</i> AD pins if it is context. The block drives the DEVDISR register or the bus.	hal and external a bus, or leave th arbiter if the PCI nfigured to be th not. It may caus	arbiter must be e PCI <i>n_</i> AD pin <i>n_</i> AD pins are e PCI arbiter— e contention if	e pulled is as 'no not through there is			
36.MDIC0 is grounded through an 18. 1% resistor. These pins are used for	2- Ω precision 1% resistor and MDIC1 is connected or automatic calibration of the DDR IOs.	ed to GV _{DD} throu	gh an 18.2-Ω p	recision			
38. These pins must be left floating.							
39. If PCI1 or PCI2 is configured as P Otherwise the processor will not be	CI asynchronous mode, a valid clock must be pro oot up.	ovided on pin PC	I1_CLK or PCI	2_CLK.			
40.These pins must be connected to	GND.						
101.This pin requires an external 4.7-	kΩ resistor to GND.						
102.For Rev. 2.x silicon, DMA_DACK POR configuration are don't care.	[0:1] must be 0b11 during POR configuration; for	rev. 1.x silicon, t	he pin values o	during			
103.If these pins are not used as GPI $2-10 \text{ k}\Omega$ resistors.	Nn (general-purpose input), they must be pulled	low (to GND) or	high (to LV _{DD})	through			
104.These must be pulled low to GNE	D through 2–10 k Ω resistors if they are not used.						
105.These must be pulled low or high	to LV_{DD} through 2–10 k Ω resistors if they are no	t used.					
106.For rev. 2.x silicon, DMA_DACK[0 configuration are don't care.):1] must be 0b10 during POR configuration; for re	v. 1.x silicon, the	pin values duri	ng POR			
107.For rev. 2.x silicon, DMA_DACK[C configuration are don't care.):1] must be 0b01 during POR configuration; for re	v. 1.x silicon, the	pin values duri	ng POR			
108.For rev. 2.x silicon, DMA_DACK[C configuration are don't care.):1] must be 0b11 during POR configuration; for re	v. 1.x silicon, the	pin values duri	ng POR			
109. This is a test signal for factory us	e only and must be pulled down (100 Ω – 1 k Ω) t	o GND for norma	al machine ope	eration.			
111. If these pins are not used as GPI	111. If these pins are not used as GPIN <i>n</i> (general-purpose input), they must be pulled low (to GND) or high (to OV_{DD}) through						
2-10 K22 HESISIUIS.	during DOP configuration						
112. This pin must not be pulled down during POR conliguration.							
	$\int \int \nabla \nabla D = \int \nabla \nabla \nabla \nabla D = \int \nabla \nabla \nabla \nabla \nabla \nabla D = \int \nabla \nabla$						

Package Description

Signal	Package Pin Number	Pin Type	Power Supply	Notes				
Reserved	U20, V22, W20, Y22	_	—	15				
Reserved	U21, V23, W21, Y23	—	—	15				
SD_PLL_TPD	U28	0	XV _{DD}	24				
SD_REF_CLK	T28	I	XV _{DD}	—				
SD_REF_CLK	T27	I	XV _{DD}	—				
Reserved	AC1, AC3	—	—	2				
Reserved	M26, V28	—	—	32				
Reserved	M25, V27	—	—	34				
Reserved	M20, M21, T22, T23	—	—	38				
	General-Purpose Output							
GPOUT[24:31]	K26, K25, H27, G28, H25, J26, K24, K23	0	BV _{DD}	—				
	System Control							
HRESET	AG17	I	OV _{DD}	—				
HRESET_REQ	AG16	0	OV _{DD}	29				
SRESET	AG20	I	OV _{DD}	—				
CKSTP_IN	AA9	I	OV _{DD}	—				
CKSTP_OUT	AA8	0	OV _{DD}	2, 4				
Debug								
TRIG_IN	AB2	I	OV _{DD}	—				
TRIG_OUT/READY/QUIESCE	AB1	0	OV _{DD}	6, 9, 19, 29				
MSRCID[0:1]	AE4, AG2	0	OV _{DD}	5, 6, 9				
MSRCID[2:4]	AF3, AF1, AF2	0	OV _{DD}	6, 19, 29				
MDVAL	AE5	0	OV _{DD}	6				
CLK_OUT	AE21	0	OV _{DD}	11				
	Clock							
RTC	AF16	I	OV _{DD}	—				
SYSCLK	AH17	I	OV _{DD}	—				
JTAG								
тск	AG28	I	OV _{DD}	—				
TDI	AH28	Ι	OV _{DD}	12				
TDO	AF28	0	OV _{DD}	_				
TMS	AH27	I	OV _{DD}	12				
TRST	AH23	I	OV _{DD}	12				

Table 74. MPC8543E Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MWE	E7	0	GV _{DD}	_
MCAS	H7	0	GV _{DD}	_
MRAS	L8	0	GV _{DD}	
MCKE[0:3]	F10, C10, J11, H11	0	GV _{DD}	11
MCS[0:3]	K8, J8, G8, F8	0	GV _{DD}	
MCK[0:5]	H9, B15, G2, M9, A14, F1	0	GV _{DD}	_
MCK[0:5]	J9, A15, G1, L9, B14, F2	0	GV _{DD}	
MODT[0:3]	E6, K6, L7, M7	0	GV _{DD}	_
MDIC[0:1]	A19, B19	I/O	GV _{DD}	36
	Local Bus Controller Interface			
LAD[0:31]	E27, B20, H19, F25, A20, C19, E28, J23, A25, K22, B28, D27, D19, J22, K20, D28, D25, B25, E22, F22, F21, C25, C22, B23, F20, A23, A22, E19, A21, D21, F19, B21	I/O	BV _{DD}	
LDP[0:3]	K21, C28, B26, B22	I/O	BV _{DD}	
LA[27]	H21	0	BV _{DD}	5, 9
LA[28:31]	H20, A27, D26, A28	0	BV _{DD}	5, 7, 9
LCS[0:4]	J25, C20, J24, G26, A26	0	BV _{DD}	_
LCS5/DMA_DREQ2	D23	I/O	BV _{DD}	1
LCS6/DMA_DACK2	G20	0	BV _{DD}	1
LCS7/DMA_DDONE2	E21	0	BV _{DD}	1
LWE0/LBS0/LSDDQM[0]	G25	0	BV _{DD}	5, 9
LWE1/LBS1/LSDDQM[1]	C23	0	BV _{DD}	5, 9
LWE2/LBS2/LSDDQM[2]	J21	0	BV _{DD}	5, 9
LWE3/LBS3/LSDDQM[3]	A24	0	BV _{DD}	5, 9
LALE	H24	0	BV _{DD}	5, 8, 9
LBCTL	G27	0	BV _{DD}	5, 8, 9
LGPL0/LSDA10	F23	0	BV _{DD}	5, 9
LGPL1/LSDWE	G22	0	BV _{DD}	5, 9
LGPL2/LOE/LSDRAS	B27	0	BV _{DD}	5, 8, 9
LGPL3/LSDCAS	F24	0	BV _{DD}	5, 9
LGPL4/LGTA/LUPWAIT/LPBSE	H23	I/O	BV _{DD}	
LGPL5	E26	0	BV _{DD}	5, 9
LCKE	E24	0	BV _{DD}	
LCLK[0:2]	E23, D24, H22	0	BV _{DD}	_

Package Description

Signal	Package Pin Number	Pin Type	Power Supply	Notes
TV _{DD}	W9, Y6	Power for TSEC3 and TSEC4 (2,5 V, 3.3 V)	TV _{DD}	_
GV _{DD}	B3, B11, C7, C9, C14, C17, D4, D6, D10, D15, E2, E8, E11, E18, F5, F12, F16, G3, G7, G9, G11, H5, H12, H15, H17, J10, K3, K12, K16, K18, L6, M4, M8, M13	Power for DDR1 and DDR2 DRAM I/O voltage (1.8 V,2.5 V)	GV _{DD}	_
BV _{DD}	C21, C24, C27, E20, E25, G19, G23, H26, J20	Power for local bus (1.8 V, 2.5 V, 3.3 V)	BV _{DD}	—
V _{DD}	M19, N12, N14, N16, N18, P11, P13, P15, P17, P19, R12, R14, R16, R18, T11, T13, T15, T17, T19, U12, U14, U16, U18, V17, V19	Power for core (1.1 V)	V _{DD}	_
SV _{DD}	L25, L27, M24, N28, P24, P26, R24, R27, T25, V24, V26, W24, W27, Y25, AA28, AC27	Core power for SerDes transceivers (1.1 V)	SV _{DD}	_
XV _{DD}	L20, L22, N23, P21, R22, T20, U23, V21, W22, Y20	Pad power for SerDes transceivers (1.1 V)	XV _{DD}	_
AVDD_LBIU	J28	Power for local bus PLL (1.1 V)	_	26
AVDD_PCI1	AH21	Power for PCI1 PLL (1.1 V)	_	26
AVDD_PCI2	AH22	Power for PCI2 PLL (1.1 V)	_	26
AVDD_CORE	AH15	Power for e500 PLL (1.1 V)	_	26
AVDD_PLAT	AH19	Power for CCB PLL (1.1 V)		26
AVDD_SRDS	U25	Power for SRDSPLL (1.1 V)	—	26
SENSEVDD	M14	0	V _{DD}	13

Table 74. MPC8543E Pinout Listing (continued)

as shown in Figure 63. If this is not possible, the isolation resistor allows future access to $\overline{\text{TRST}}$ in case a JTAG interface may need to be wired onto the system in future debug situations.

• No pull-up/pull-down is required for TDI, TMS, TDO, or TCK.

Figure 62. COP Connector Physical Pinout