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— Performance monitor facility that is similar to, but separate from, the device performance 
monitor

The e500 defines features that are not implemented on this device. It also generally defines some features 
that this device implements more specifically. An understanding of these differences can be critical to 
ensure proper operations. 

• 512-Kbyte L2 cache/SRAM

— Flexible configuration.

— Full ECC support on 64-bit boundary in both cache and SRAM modes

— Cache mode supports instruction caching, data caching, or both.

— External masters can force data to be allocated into the cache through programmed memory 
ranges or special transaction types (stashing). 

— 1, 2, or 4 ways can be configured for stashing only.

— Eight-way set-associative cache organization (32-byte cache lines)

— Supports locking entire cache or selected lines. Individual line locks are set and cleared through 
Book E instructions or by externally mastered transactions.

— Global locking and Flash clearing done through writes to L2 configuration registers

— Instruction and data locks can be Flash cleared separately.

— SRAM features include the following:

– I/O devices access SRAM regions by marking transactions as snoopable (global).

– Regions can reside at any aligned location in the memory map.

– Byte-accessible ECC is protected using read-modify-write transaction accesses for 
smaller-than-cache-line accesses.

• Address translation and mapping unit (ATMU)

— Eight local access windows define mapping within local 36-bit address space.

— Inbound and outbound ATMUs map to larger external address spaces.

– Three inbound windows plus a configuration window on PCI/PCI-X and PCI Express

– Four inbound windows plus a default window on RapidIO™ 

– Four outbound windows plus default translation for PCI/PCI-X and PCI Express

– Eight outbound windows plus default translation for RapidIO with segmentation and 
sub-segmentation support

• DDR/DDR2 memory controller

— Programmable timing supporting DDR and DDR2 SDRAM

— 64-bit data interface

— Four banks of memory supported, each up to 4 Gbytes, to a maximum of 16 Gbytes

— DRAM chip configurations from 64 Mbits to 4 Gbits with ×8/×16 data ports

— Full ECC support

— Page mode support

– Up to 16 simultaneous open pages for DDR
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– Dedicated single data rate SDRAM controller

— Parity support

— Default boot ROM chip select with configurable bus width (8, 16, or 32 bits)

• Four enhanced three-speed Ethernet controllers (eTSECs)

— Three-speed support (10/100/1000 Mbps)

— Four controllers designed to comply with IEEE Std. 802.3®, 802.3u, 802.3x, 802.3z, 802.3ac, 
and 802.3ab

— Support for various Ethernet physical interfaces:

– 1000 Mbps full-duplex IEEE 802.3 GMII, IEEE 802.3z TBI, RTBI, and RGMII

– 10/100 Mbps full and half-duplex IEEE 802.3 MII, IEEE 802.3 RGMII, and RMII

— Flexible configuration for multiple PHY interface configurations. See Section 8.1, “Enhanced 
Three-Speed Ethernet Controller (eTSEC) 
(10/100/1Gb Mbps)—GMII/MII/TBI/RGMII/RTBI/RMII Electrical Characteristics,” for 
more information.

— TCP/IP acceleration and QoS features available

– IP v4 and IP v6 header recognition on receive

– IP v4 header checksum verification and generation

– TCP and UDP checksum verification and generation

– Per-packet configurable acceleration

– Recognition of VLAN, stacked (queue in queue) VLAN, IEEE Std 802.2™, PPPoE session, 
MPLS stacks, and ESP/AH IP-security headers

– Supported in all FIFO modes

— Quality of service support:

– Transmission from up to eight physical queues

– Reception to up to eight physical queues

— Full- and half-duplex Ethernet support (1000 Mbps supports only full duplex):

– IEEE 802.3 full-duplex flow control (automatic PAUSE frame generation or 
software-programmed PAUSE frame generation and recognition)

— Programmable maximum frame length supports jumbo frames (up to 9.6 Kbytes) and 
IEEE Std. 802.1™ virtual local area network (VLAN) tags and priority

— VLAN insertion and deletion

– Per-frame VLAN control word or default VLAN for each eTSEC

– Extracted VLAN control word passed to software separately

— Retransmission following a collision

— CRC generation and verification of inbound/outbound frames

— Programmable Ethernet preamble insertion and extraction of up to 7 bytes

— MAC address recognition:

– Exact match on primary and virtual 48-bit unicast addresses
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— Memory prefetching of PCI read accesses

— Supports posting of processor-to-PCI and PCI-to-memory writes

— PCI 3.3-V compatible

— Selectable hardware-enforced coherency

• Serial RapidIO™ interface unit

— Supports RapidIO™ Interconnect Specification, Revision 1.2

— Both 1× and 4× LP-serial link interfaces 

— Long- and short-haul electricals with selectable pre-compensation

— Transmission rates of 1.25, 2.5, and 3.125 Gbaud (data rates of 1.0, 2.0, and 2.5 Gbps) per lane

— Auto detection of 1- and 4-mode operation during port initialization

— Link initialization and synchronization

— Large and small size transport information field support selectable at initialization time

— 34-bit addressing

— Up to 256 bytes data payload

— All transaction flows and priorities

— Atomic set/clr/inc/dec for read-modify-write operations

— Generation of IO_READ_HOME and FLUSH with data for accessing cache-coherent data at 
a remote memory system

— Receiver-controlled flow control

— Error detection, recovery, and time-out for packets and control symbols as required by the 
RapidIO specification

— Register and register bit extensions as described in part VIII (Error Management) of the 
RapidIO specification

— Hardware recovery only

— Register support is not required for software-mediated error recovery.

— Accept-all mode of operation for fail-over support

— Support for RapidIO error injection

— Internal LP-serial and application interface-level loopback modes

— Memory and PHY BIST for at-speed production test

• RapidIO-compatible message unit

— 4 Kbytes of payload per message 

— Up to sixteen 256-byte segments per message

— Two inbound data message structures within the inbox

— Capable of receiving three letters at any mailbox

— Two outbound data message structures within the outbox

— Capable of sending three letters simultaneously

— Single segment multicast to up to 32 devIDs

— Chaining and direct modes in the outbox
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9 Ethernet Management Interface Electrical 
Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO 
(management data input/output) and MDC (management data clock). The electrical characteristics for 
GMII, RGMII, RMII, TBI, and RTBI are specified in “Section 8, “Enhanced Three-Speed Ethernet 
(eTSEC).”

9.1 MII Management DC Electrical Characteristics

The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics 
for MDIO and MDC are provided in this table.

9.2 MII Management AC Electrical Specifications

This table provides the MII management AC timing specifications.

Table 36. MII Management DC Electrical Characteristics

Parameter Symbol Min Max Unit

Supply voltage (3.3 V) OVDD 3.13 3.47 V

Output high voltage (OVDD = Min, IOH = –1.0 mA) VOH 2.10 OVDD + 0.3 V

Output low voltage (OVDD =Min, IOL = 1.0 mA) VOL GND 0.50 V

Input high voltage VIH 2.0 — V

Input low voltage VIL — 0.90 V

Input high current (OVDD = Max, VIN
1 = 2.1 V) IIH — 40 A

Input low current (OVDD = Max, VIN = 0.5 V) IIL –600 — A

Note:
1. Note that the symbol VIN, in this case, represents the OVIN symbol referenced in Table 1 and Table 2.

Table 37. MII Management AC Timing Specifications
At recommended operating conditions with OVDD is 3.3 V ± 5%.

Parameter Symbol1 Min Typ Max Unit Notes

MDC frequency fMDC 0.72 2.5 8.3 MHz 2, 3, 4

MDC period tMDC 120.5 — 1389 ns —

MDC clock pulse width high tMDCH 32 — — ns —

MDC to MDIO valid tMDKHDV 16  tCCB — — ns 5

MDC to MDIO delay tMDKHDX (16 × tCCB× 8) – 3 — (16 × tCCB × 8) + 3 ns 5

MDIO to MDC setup time tMDDVKH 5 — — ns —

MDIO to MDC hold time tMDDXKH 0 — — ns —

MDC rise time tMDCR — — 10 ns 4
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Local Bus

Figure 24. Local Bus Signals (PLL Bypass Mode)

NOTE

In PLL bypass mode, LCLK[n] is the inverted version of the internal clock 
with the delay of tLBKHKT. In this mode, signals are launched at the rising edge 
of the internal clock and are captured at falling edge of the internal clock 
with the exception of LGTA/LUPWAIT (which is captured on the rising 
edge of the internal clock).
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Figure 26. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (PLL Bypass Mode)
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Figure 27. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 8 or 16 (PLL Enabled)
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15 PCI/PCI-X
This section describes the DC and AC electrical specifications for the PCI/PCI-X bus of the device.

Note that the maximum PCI-X frequency in synchronous mode is 110 MHz.

15.1 PCI/PCI-X DC Electrical Characteristics

This table provides the DC electrical characteristics for the PCI/PCI-X interface.

15.2 PCI/PCI-X AC Electrical Specifications

This section describes the general AC timing parameters of the PCI/PCI-X bus. Note that the clock 
reference CLK is represented by SYSCLK when the PCI controller is configured for synchronous mode 
and by PCIn_CLK when it is configured for asynchronous mode.

Table 50. GPIN DC Electrical Characteristics (2.5 V DC)

Parameter Symbol Min Max Unit

Supply voltage 2.5 V BVDD 2.37 2.63 V

High-level input voltage VIH 1.70 BVDD + 0.3 V

Low-level input voltage VIL –0.3 0.7 V

Input current 

(BVIN 
1 = 0 V or BVIN = BVDD)

IIH — 10 A

Note:

1. The symbol BVIN, in this case, represents the BVIN symbol referenced in Table 1.

Table 51. PCI/PCI-X DC Electrical Characteristics1

Parameter Symbol Min Max Unit Notes

High-level input voltage VIH 2 OVDD + 0.3 V —

Low-level input voltage VIL –0.3 0.8 V —

Input current (VIN = 0 V or VIN = VDD) IIN — ±5 A 2

High-level output voltage (OVDD = min, IOH = –2 mA) VOH 2.4 — V —

Low-level output voltage (OVDD = min, IOL = 2 mA) VOL — 0.4 V —

Notes:
1. Ranges listed do not meet the full range of the DC specifications of the PCI 2.2 Local Bus Specifications.
2. The symbol VIN, in this case, represents the OVIN symbol referenced in Table 1 and Table 2.
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This table provides the PCI AC timing specifications at 66 MHz. 

Figure 35 provides the AC test load for PCI and PCI-X.

Figure 35. PCI/PCI-X AC Test Load

Table 52. PCI AC Timing Specifications at 66 MHz

Parameter Symbol1 Min Max Unit Notes

CLK to output valid tPCKHOV — 6.0 ns 2, 3

Output hold from CLK tPCKHOX 2.0 — ns 2, 10

CLK to output high impedance tPCKHOZ — 14 ns 2, 4, 11

Input setup to CLK tPCIVKH 3.0 — ns 2, 5, 10

Input hold from CLK tPCIXKH 0 — ns 2, 5, 10

REQ64 to HRESET 9 setup time tPCRVRH 10  tSYS — clocks 6, 7, 11

HRESET to REQ64 hold time tPCRHRX 0 50 ns 7, 11

HRESET high to first FRAME assertion tPCRHFV 10 — clocks 8, 11

Notes:

1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for 
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tPCIVKH symbolizes PCI/PCI-X 
timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the SYSCLK clock, tSYS, reference 
(K) going to the high (H) state or setup time. Also, tPCRHFV symbolizes PCI/PCI-X timing (PC) with respect to the time hard 
reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.

2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.

3. All PCI signals are measured from OVDD/2 of the rising edge of SYSCLK or PCI_CLKn to 0.4  OVDD of the signal in question 
for 3.3-V PCI signaling levels.

4. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered 
through the component pin is less than or equal to the leakage current specification.

5. Input timings are measured at the pin.

6. The timing parameter tSYS indicates the minimum and maximum CLK cycle times for the various specified frequencies. The 
system clock period must be kept within the minimum and maximum defined ranges. For values see Section 20, “Clocking.” 

7. The setup and hold time is with respect to the rising edge of HRESET.

8. The timing parameter tPCRHFV is a minimum of 10 clocks rather than the minimum of 5 clocks in the PCI 2.2 Local Bus 
Specifications.

9. The reset assertion timing requirement for HRESET is 100 s.

10.Guaranteed by characterization.

11.Guaranteed by design.

Output Z0 = 50  LVDD/2
RL = 50 
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This table provides the PCI-X AC timing specifications at 133 MHz. Note that the maximum PCI-X 
frequency in synchronous mode is 110 MHz.

HRESET to PCI-X initialization pattern hold time tPCRHIX 0 50 ns 6, 11

Notes:

1. See the timing measurement conditions in the PCI-X 1.0a Specification.

2. Minimum times are measured at the package pin (not the test point). Maximum times are measured with the test point and 
load circuit.

3. Setup time for point-to-point signals applies to REQ and GNT only. All other signals are bused.

4. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered 
through the component pin is less than or equal to the leakage current specification.

5. Setup time applies only when the device is not driving the pin. Devices cannot drive and receive signals at the same time.

6. Maximum value is also limited by delay to the first transaction (time for HRESET high to first configuration access, tPCRHFV). 
The PCI-X initialization pattern control signals after the rising edge of HRESET must be negated no later than two clocks 
before the first FRAME and must be floated no later than one clock before FRAME is asserted.

7. A PCI-X device is permitted to have the minimum values shown for tPCKHOV and tCYC only in PCI-X mode. In conventional 
mode, the device must meet the requirements specified in PCI 2.2 for the appropriate clock frequency.

8. Device must meet this specification independent of how many outputs switch simultaneously.

9. The timing parameter tPCRHFV is a minimum of 10 clocks rather than the minimum of 5 clocks in the PCI-X 1.0a Specification.

10.Guaranteed by characterization.

11.Guaranteed by design.

Table 54. PCI-X AC Timing Specifications at 133 MHz

Parameter Symbol Min Max Unit Notes

SYSCLK to signal valid delay tPCKHOV — 3.8 ns 1, 2, 3, 7, 8

Output hold from SYSCLK tPCKHOX 0.7 — ns 1, 11

SYSCLK to output high impedance tPCKHOZ — 7 ns 1, 4, 8, 12

Input setup time to SYSCLK tPCIVKH 1.2 — ns 3, 5, 9, 11

Input hold time from SYSCLK tPCIXKH 0.5 — ns 11

REQ64 to HRESET setup time tPCRVRH 10 — clocks 12

HRESET to REQ64 hold time tPCRHRX 0 50 ns 12

HRESET high to first FRAME assertion tPCRHFV 10 — clocks 10, 12

PCI-X initialization pattern to HRESET setup time tPCIVRH 10 — clocks 12

Table 53. PCI-X AC Timing Specifications at 66 MHz (continued)

Parameter Symbol Min Max Unit Notes
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— The input amplitude of the differential clock must be between 400 and 1600 mV differential 
peak-peak (or between 200 and 800 mV differential peak). In other words, each signal wire of 
the differential pair must have a single-ended swing less than 800 mV and greater than 200 mV. 
This requirement is the same for both external DC- or AC-coupled connection.

— For external DC-coupled connection, as described in Section 16.2.1, “SerDes Reference Clock 
Receiver Characteristics,” the maximum average current requirements sets the requirement for 
average voltage (common mode voltage) to be between 100 and 400 mV. Figure 40 shows the 
SerDes reference clock input requirement for DC-coupled connection scheme.

— For external AC-coupled connection, there is no common mode voltage requirement for the 
clock driver. Since the external AC-coupling capacitor blocks the DC level, the clock driver 
and the SerDes reference clock receiver operate in different command mode voltages. The 
SerDes reference clock receiver in this connection scheme has its common mode voltage set to 
SGND_SRDSn. Each signal wire of the differential inputs is allowed to swing below and above 
the command mode voltage (SGND_SRDSn). Figure 41 shows the SerDes reference clock 
input requirement for AC-coupled connection scheme.

• Single-ended mode

— The reference clock can also be single-ended. The SD_REF_CLK input amplitude 
(single-ended swing) must be between 400 and 800 mV peak-to-peak (from Vmin to Vmax) with 
SD_REF_CLK either left unconnected or tied to ground. 

— The SD_REF_CLK input average voltage must be between 200 and 400 mV. Figure 42 shows 
the SerDes reference clock input requirement for single-ended signaling mode.

— To meet the input amplitude requirement, the reference clock inputs might need to be DC- or 
AC-coupled externally. For the best noise performance, the reference of the clock could be DC- 
or AC-coupled into the unused phase (SD_REF_CLK) through the same source impedance as 
the clock input (SD_REF_CLK) in use.

Figure 40. Differential Reference Clock Input DC Requirements (External DC-Coupled)

SD_REF_CLK

SD_REF_CLK

Vmax < 800 mV

Vmin > 0 V

100 mV < Vcm < 400 mV

200 mV < Input Amplitude or Differential Peak < 800 mV
SD_REF_CLK
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VRX-CM-ACp AC peak 
common mode 
input voltage

— — 150 mV VRX-CM-ACp = |VRXD+ – VRXD-|/2 + VRX-CM-DC

VRX-CM-DC = DC(avg) of |VRX-D+ + VRX-D–| 2. 

See Note 2.

RLRX-DIFF Differential 
return loss

15 — — dB Measured over 50 MHz to 1.25 GHz with the D+ 
and D– lines biased at +300 mV and –300 mV, 
respectively. See Note 4.

RLRX-CM Common mode 
return loss

6 — — dB Measured over 50 MHz to 1.25 GHz with the D+ 
and D– lines biased at 0 V. See Note 4.

ZRX-DIFF-DC DC differential 
input impedance

80 100 120  RX DC differential mode impedance. See Note 5.

ZRX-DC DC input 
impedance

40 50 60  Required RX D+ as well as D– DC impedance 
(50 ± 20% tolerance). See Notes 2 and 5.

ZRX-HIGH-IMP-DC Powered down 
DC input 

impedance

200 k — —  Required RX D+ as well as D– DC impedance 
when the receiver terminations do not have 
power. See Note 6.

VRX-IDLE-DET-DIFFp-p Electrical idle 
detect threshold

65 — 175 mV VRX-IDLE-DET-DIFFp-p = 2 × |VRX-D+ –VRX-D–|. 

Measured at the package pins of the receiver 

TRX-IDLE-DET-DIFF-

ENTERTIME

Unexpected 
electrical idle 
enter detect 

threshold 
integration time

— — 10 ms An unexpected electrical idle (VRX-DIFFp-p < 
VRX-IDLE-DET-DIFFp-p) must be recognized no 
longer than TRX-IDLE-DET-DIFF-ENTERING to signal 
an unexpected idle condition.

Table 57. Differential Receiver (RX) Input Specifications (continued)

Symbol Parameter Min Nom Max Unit Comments
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17.5 Receiver Compliance Eye Diagrams

The RX eye diagram in Figure 49 is specified using the passive compliance/test measurement load (see 
Figure 50) in place of any real PCI Express RX component.

Note: In general, the minimum receiver eye diagram measured with the compliance/test measurement load 
(see Figure 50) is larger than the minimum receiver eye diagram measured over a range of systems at the 
input receiver of any real PCI Express component. The degraded eye diagram at the input receiver is due 
to traces internal to the package as well as silicon parasitic characteristics which cause the real PCI Express 
component to vary in impedance from the compliance/test measurement load. The input receiver eye 
diagram is implementation specific and is not specified. RX component designer must provide additional 
margin to adequately compensate for the degraded minimum receiver eye diagram (shown in Figure 49) 
expected at the input receiver based on some adequate combination of system simulations and the return 
loss measured looking into the RX package and silicon. The RX eye diagram must be aligned in time using 
the jitter median to locate the center of the eye diagram. 

LTX-SKEW Total Skew — — 20 ns Skew across all lanes on a Link. This includes 
variation in the length of SKP ordered set (for 
example, COM and one to five symbols) at the RX 
as well as any delay differences arising from the 
interconnect itself.

Notes:

1. No test load is necessarily associated with this value.

2. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 50 must be used 
as the RX device when taking measurements (also see the receiver compliance eye diagram shown in Figure 49). If the 
clocks to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must 
be used as a reference for the eye diagram.

3. A TRX-EYE = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the transmitter and 
interconnect collected any 250 consecutive UIs. The TRX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter distribution 
in which the median and the maximum deviation from the median is less than half of the total. UI jitter budget collected over 
any 250 consecutive TX UIs. Note that the median is not the same as the mean. The jitter median describes the point in time 
where the number of jitter points on either side is approximately equal as opposed to the averaged time value. If the clocks 
to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must be 
used as the reference for the eye diagram. 

4. The receiver input impedance shall result in a differential return loss greater than or equal to 15 dB with the D+ line biased 
to 300 mV and the D– line biased to –{300 mV and a common mode return loss greater than or equal to 6 dB (no bias 
required) over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. 
The reference impedance for return loss measurements for is 50  to ground for both the D+ and D– line (that is, as 
measured by a vector network analyzer with 50- probes—see Figure 50). Note: that the series capacitors CTX is optional 
for the return loss measurement.

5. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM) 
there is a 5 ms transition time before receiver termination values must be met on all unconfigured lanes of a port.

6. The RX DC common mode Impedance that exists when no power is present or fundamental reset is asserted. This helps 
ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be 
measured at 300 mV above the RX ground.

7. It is recommended that the recovered TX UI is calculated using all edges in the 3500 consecutive UI interval with a fit 
algorithm using a minimization merit function. Least squares and median deviation fits have worked well with experimental 
and simulated data.

Table 57. Differential Receiver (RX) Input Specifications (continued)

Symbol Parameter Min Nom Max Unit Comments
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The eye diagram must be valid for any 250 consecutive UIs.

A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is 
created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the 
TX UI.

NOTE

The reference impedance for return loss measurements is 50. to ground for 
both the D+ and D– line (that is, as measured by a vector network analyzer 
with 50- probes—see Figure 50). Note that the series capacitors, CTX, are 
optional for the return loss measurement.

Figure 49. Minimum Receiver Eye Timing and Voltage Compliance Specification

17.5.1 Compliance Test and Measurement Load

The AC timing and voltage parameters must be verified at the measurement point, as specified within 
0.2 inches of the package pins, into a test/measurement load shown in Figure 50.

NOTE

The allowance of the measurement point to be within 0.2 inches of the 
package pins is meant to acknowledge that package/board routing may 
benefit from D+ and D– not being exactly matched in length at the package 
pin boundary. 

Figure 50. Compliance Test/Measurement Load

VRX-DIFF = 0 mV
(D+ D– Crossing Point)

VRX-DIFF = 0 mV
(D+ D– Crossing Point)

VRX-DIFFp-p-MIN > 175 mV

0.4 UI = TRX-EYE-MIN

TX
Silicon

+ Package

C = CTX

C = CTX

R = 50  R = 50 

D+ Package
Pin

D– Package
Pin

D+ Package
Pin



MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 9

Freescale Semiconductor 87
 

Serial RapidIO

components are included in this requirement. The reference impedance for return loss measurements is 
100- resistive for differential return loss and 25- resistive for common mode.

Table 66. Receiver AC Timing Specifications—1.25 GBaud

Characteristic Symbol
Range

Unit Notes
Min Max

Differential input voltage VIN 200 1600 mVp-p Measured at receiver

Deterministic jitter tolerance JD 0.37 — UI p-p Measured at receiver

Combined deterministic and random 
jitter tolerance

JDR 0.55 — UI p-p Measured at receiver

Total jitter tolerance1 JT 0.65 — UI p-p Measured at receiver

Multiple input skew SMI — 24 ns Skew at the receiver input between lanes 
of a multilane link

Bit error rate BER — 10–12 — —

Unit interval UI 800 800 ps ±100 ppm

Note:  
1. Total jitter is composed of three components, deterministic jitter, random jitter, and single frequency sinusoidal jitter. The 

sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 53. The sinusoidal jitter component 
is included to ensure margin for low frequency jitter, wander, noise, crosstalk, and other variable system effects.

Table 67. Receiver AC Timing Specifications—2.5 GBaud

Characteristic Symbol
Range

Unit Notes
Min Max

Differential input voltage VIN 200 1600 mVp-p Measured at receiver

Deterministic jitter tolerance JD 0.37 — UI p-p Measured at receiver

Combined deterministic and random 
jitter tolerance

JDR 0.55 — UI p-p Measured at receiver

Total jitter tolerance1 JT 0.65 — UI p-p Measured at receiver

Multiple input skew SMI — 24 ns Skew at the receiver input between lanes 
of a multilane link

Bit error rate BER — 10–12 —

Unit interval UI 400 400 ps ±100 ppm

Note:  
1. Total jitter is composed of three components, deterministic jitter, random jitter, and single frequency sinusoidal jitter. The 

sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 53. The sinusoidal jitter component 
is included to ensure margin for low frequency jitter, wander, noise, crosstalk, and other variable system effects.



MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 9

90 Freescale Semiconductor
 

Serial RapidIO

802.3ae-2002 is specified as the test pattern for use in eye pattern and jitter measurements. Annex 48B of 
IEEE Std. 802.3ae-2002 is recommended as a reference for additional information on jitter test methods.

18.9.1 Eye Template Measurements

For the purpose of eye template measurements, the effects of a single-pole high pass filter with a 3 dB point 
at (baud frequency)/1667 is applied to the jitter. The data pattern for template measurements is the 
continuous jitter test pattern (CJPAT) defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-serial 
link shall be active in both the transmit and receive directions, and opposite ends of the links shall use 
asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane 
implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. The 
amount of data represented in the eye shall be adequate to ensure that the bit error ratio is less than 10–12. 
The eye pattern shall be measured with AC coupling and the compliance template centered at 0 V 
differential. The left and right edges of the template shall be aligned with the mean zero crossing points of 
the measured data eye. The load for this test shall be 100- resistive ± 5% differential to 2.5 GHz. 

18.9.2 Jitter Test Measurements

For the purpose of jitter measurement, the effects of a single-pole high pass filter with a 3 dB point at (baud 
frequency)/1667 is applied to the jitter. The data pattern for jitter measurements is the Continuous Jitter test 
pattern (CJPAT) pattern defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-serial link shall be 
active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous 
clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations 
shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. Jitter shall be measured 
with AC coupling and at 0 V differential. Jitter measurement for the transmitter (or for calibration of a jitter 
tolerance setup) shall be performed with a test procedure resulting in a BER curve such as that described 
in Annex 48B of IEEE 802.3ae.

18.9.3 Transmit Jitter

Transmit jitter is measured at the driver output when terminated into a load of 100  resistive ± 5% 
differential to 2.5 GHz. 

18.9.4 Jitter Tolerance

Jitter tolerance is measured at the receiver using a jitter tolerance test signal. This signal is obtained by first 
producing the sum of deterministic and random jitter defined in Section 18.7, “Receiver Specifications,” 
and then adjusting the signal amplitude until the data eye contacts the 6 points of the minimum eye opening 
of the receive template shown in Figure 54 and Table 69. Note that for this to occur, the test signal must 
have vertical waveform symmetry about the average value and have horizontal symmetry (including jitter) 
about the mean zero crossing. Eye template measurement requirements are as defined above. Random 
jitter is calibrated using a high pass filter with a low frequency corner at 20 MHz and a 20 dB/decade 
roll-off below this. The required sinusoidal jitter specified in Section 18.7, “Receiver Specifications,” is 
then added to the signal and the test load is replaced by the receiver being tested. 
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Clock

RTC AF16 I OVDD —

SYSCLK AH17 I OVDD —

JTAG

TCK AG28 I OVDD —

TDI AH28 I OVDD 12

TDO AF28 O OVDD —

TMS AH27 I OVDD 12

TRST AH23 I OVDD 12

DFT

L1_TSTCLK AC25 I OVDD 25

L2_TSTCLK AE22 I OVDD 25

LSSD_MODE AH20 I OVDD 25

TEST_SEL AH14 I OVDD 25

Thermal Management

THERM0 AG1 — — 14

THERM1 AH1 — — 14

Power Management

ASLEEP AH18 O OVDD 9, 19, 
29

Power and Ground Signals

GND A11, B7, B24, C1, C3, C5, C12, C15, C26, D8, 
D11, D16, D20, D22, E1, E5, E9, E12, E15, E17, 
F4, F26, G12, G15, G18, G21, G24, H2, H6, H8, 
H28, J4, J12, J15, J17, J27, K7, K9, K11, K27, 
L3, L5, L12, L16, N11, N13, N15, N17, N19, P4, 
P9, P12, P14, P16, P18, R11, R13, R15, R17, 
R19, T4, T12, T14, T16, T18, U8, U11, U13, 

U15, U17, U19, V4, V12, V18, W6, W19, Y4, Y9, 
Y11, Y19, AA6, AA14, AA17, AA22, AA23, AB4, 

AC2, AC11, AC19, AC26, AD5, AD9, AD22, 
AE3, AE14, AF6, AF10, AF13, AG8, AG27, 

K28, L24, L26, N24, N27, P25, R28, T24, T26, 
U24, V25, W28, Y24, Y26, AA24, AA27, AB25, 
AC28, L21, L23, N22, P20, R23, T21, U22, V20, 

W23, Y21, U27

— — —

OVDD V16, W11, W14, Y18, AA13, AA21, AB11, 
AB17, AB24, AC4, AC9, AC21, AD6, AD13, 
AD17, AD19, AE10, AE8, AE24, AF4, AF12, 

AF22, AF27, AG26

Power for PCI 
and other 
standards 

(3.3 V)

OVDD —

Table 71. MPC8548E Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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MWE E7 O GVDD —

MCAS H7 O GVDD —

MRAS L8 O GVDD —

MCKE[0:3] F10, C10, J11, H11 O GVDD 11

MCS[0:3] K8, J8, G8, F8 O GVDD —

MCK[0:5] H9, B15, G2, M9, A14, F1 O GVDD —

MCK[0:5] J9, A15, G1, L9, B14, F2 O GVDD —

MODT[0:3] E6, K6, L7, M7 O GVDD —

MDIC[0:1] A19, B19 I/O GVDD 36

Local Bus Controller Interface

LAD[0:31] E27, B20, H19, F25, A20, C19, E28, J23, A25, 
K22, B28, D27, D19, J22, K20, D28, D25, B25, 
E22, F22, F21, C25, C22, B23, F20, A23, A22, 

E19, A21, D21, F19, B21

I/O BVDD —

LDP[0:3] K21, C28, B26, B22 I/O BVDD —

LA[27] H21 O BVDD 5, 9

LA[28:31] H20, A27, D26, A28 O BVDD 5, 7, 9

LCS[0:4] J25, C20, J24, G26, A26 O BVDD —

LCS5/DMA_DREQ2 D23 I/O BVDD 1

LCS6/DMA_DACK2 G20 O BVDD 1

LCS7/DMA_DDONE2 E21 O BVDD 1

LWE0/LBS0/LSDDQM[0] G25 O BVDD 5, 9

LWE1/LBS1/LSDDQM[1] C23 O BVDD 5, 9

LWE2/LBS2/LSDDQM[2] J21 O BVDD 5, 9

LWE3/LBS3/LSDDQM[3] A24 O BVDD 5, 9

LALE H24 O BVDD 5, 8, 9

LBCTL G27 O BVDD 5, 8, 9

LGPL0/LSDA10 F23 O BVDD 5, 9

LGPL1/LSDWE G22 O BVDD 5, 9

LGPL2/LOE/LSDRAS B27 O BVDD 5, 8, 9

LGPL3/LSDCAS F24 O BVDD 5, 9

LGPL4/LGTA/LUPWAIT/LPBSE H23 I/O BVDD —

LGPL5 E26 O BVDD 5, 9

LCKE E24 O BVDD —

LCLK[0:2] E23, D24, H22 O BVDD —

Table 74. MPC8543E Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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JTAG

TCK AG28 I OVDD —

TDI AH28 I OVDD 12

TDO AF28 O OVDD —

TMS AH27 I OVDD 12

TRST AH23 I OVDD 12

DFT

L1_TSTCLK AC25 I OVDD 25

L2_TSTCLK AE22 I OVDD 25

LSSD_MODE AH20 I OVDD 25

TEST_SEL AH14 I OVDD 109

Thermal Management

THERM0 AG1 — — 14

THERM1 AH1 — — 14

Power Management

ASLEEP AH18 O OVDD 9, 19, 29

Power and Ground Signals

GND A11, B7, B24, C1, C3, C5, C12, C15, C26, D8, 
D11, D16, D20, D22, E1, E5, E9, E12, E15, E17, 
F4, F26, G12, G15, G18, G21, G24, H2, H6, H8, 
H28, J4, J12, J15, J17, J27, K7, K9, K11, K27, 
L3, L5, L12, L16, N11, N13, N15, N17, N19, P4, 
P9, P12, P14, P16, P18, R11, R13, R15, R17, 
R19, T4, T12, T14, T16, T18, U8, U11, U13, 

U15, U17, U19, V4, V12, V18, W6, W19, Y4, Y9, 
Y11, Y19, AA6, AA14, AA17, AA22, AA23, AB4, 

AC2, AC11, AC19, AC26, AD5, AD9, AD22, 
AE3, AE14, AF6, AF10, AF13, AG8, AG27, 

K28, L24, L26, N24, N27, P25, R28, T24, T26, 
U24, V25, W28, Y24, Y26, AA24, AA27, AB25, 
AC28, L21, L23, N22, P20, R23, T21, U22, V20, 

W23, Y21, U27

— — —

OVDD V16, W11, W14, Y18, AA13, AA21, AB11, 
AB17, AB24, AC4, AC9, AC21, AD6, AD13, 
AD17, AD19, AE10, AE8, AE24, AF4, AF12, 

AF22, AF27, AG26

Power for 
PCI and 

other 
standards 

(3.3 V)

OVDD —

LVDD N8, R7, T9, U6 Power for 
TSEC1 and 

TSEC2
(2.5 V, 3.3 V)

LVDD —

Table 74. MPC8543E Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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The platform PLL ratio and e500 PLL ratio configuration pins are not equipped with these default pull-up 
devices.

22.9 JTAG Configuration Signals

Correct operation of the JTAG interface requires configuration of a group of system control pins as 
demonstrated in Figure 63. Care must be taken to ensure that these pins are maintained at a valid deasserted 
state under normal operating conditions as most have asynchronous behavior and spurious assertion gives 
unpredictable results.

Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the 
IEEE 1149.1 specification, but it is provided on all processors built on Power Architecture technology. The 
device requires TRST to be asserted during power-on reset flow to ensure that the JTAG boundary logic 
does not interfere with normal chip operation. While the TAP controller can be forced to the reset state 
using only the TCK and TMS signals, generally systems assert TRST during the power-on reset flow. 
Simply tying TRST to HRESET is not practical because the JTAG interface is also used for accessing the 
common on-chip processor (COP), which implements the debug interface to the chip.

The COP function of these processors allow a remote computer system (typically, a PC with dedicated 
hardware and debugging software) to access and control the internal operations of the processor. The COP 
interface connects primarily through the JTAG port of the processor, with some additional status 
monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order 
to fully control the processor. If the target system has independent reset sources, such as voltage monitors, 
watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be 
merged into these signals with logic.

The arrangement shown in Figure 63 allows the COP port to independently assert HRESET or TRST, 
while ensuring that the target can drive HRESET as well. 

The COP interface has a standard header, shown in Figure 62, for connection to the target system, and is 
based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header). The 
connector typically has pin 14 removed as a connector key.

The COP header adds many benefits such as breakpoints, watchpoints, register and memory 
examination/modification, and other standard debugger features. An inexpensive option can be to leave 
the COP header unpopulated until needed.

There is no standardized way to number the COP header; so emulator vendors have issued many different 
pin numbering schemes. Some COP headers are numbered top-to-bottom then left-to-right, while others 
use left-to-right then top-to-bottom. Still others number the pins counter-clockwise from pin 1 (as with an 
IC). Regardless of the numbering scheme, the signal placement recommended in Figure 62 is common to 
all known emulators.

22.9.1 Termination of Unused Signals

Freescale recommends the following connections, when the JTAG interface and COP header are not used:

• TRST must be tied to HRESET through a 0 k isolation resistor so that it is asserted when the 
system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during 
the power-on reset flow. Freescale recommends that the COP header be designed into the system 


