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Overview

– Up to 32 simultaneous open pages for DDR2

— Contiguous or discontiguous memory mapping

— Read-modify-write support for RapidIO atomic increment, decrement, set, and clear 
transactions

— Sleep mode support for self-refresh SDRAM

— On-die termination support when using DDR2

— Supports auto refreshing

— On-the-fly power management using CKE signal

— Registered DIMM support

— Fast memory access via JTAG port

— 2.5-V SSTL_2 compatible I/O (1.8-V SSTL_1.8 for DDR2)

— Support for battery-backed main memory

• Programmable interrupt controller (PIC)

— Programming model is compliant with the OpenPIC architecture.

— Supports 16 programmable interrupt and processor task priority levels

— Supports 12 discrete external interrupts

— Supports 4 message interrupts with 32-bit messages

— Supports connection of an external interrupt controller such as the 8259 programmable 
interrupt controller

— Four global high-resolution timers/counters that can generate interrupts

— Supports a variety of other internal interrupt sources

— Supports fully nested interrupt delivery

— Interrupts can be routed to external pin for external processing.

— Interrupts can be routed to the e500 core’s standard or critical interrupt inputs.

— Interrupt summary registers allow fast identification of interrupt source.

• Integrated security engine (SEC) optimized to process all the algorithms associated with IPSec, 
IKE, WTLS/WAP, SSL/TLS, and 3GPP

— Four crypto-channels, each supporting multi-command descriptor chains

–  Dynamic assignment of crypto-execution units via an integrated controller

–  Buffer size of 256 bytes for each execution unit, with flow control for large data sizes

— PKEU—public key execution unit

– RSA and Diffie-Hellman; programmable field size up to 2048 bits

– Elliptic curve cryptography with F2m and F(p) modes and programmable field size up to 
511 bits

— DEU—Data Encryption Standard execution unit

– DES, 3DES 

– Two key (K1, K2) or three key (K1, K2, K3)

– ECB and CBC modes for both DES and 3DES
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Electrical Characteristics

2 Electrical Characteristics
This section provides the AC and DC electrical specifications and thermal characteristics for the device. 
This device is currently targeted to these specifications. Some of these specifications are independent of 
the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design 
specifications.

2.1 Overall DC Electrical Characteristics

This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings

The following table provides the absolute maximum ratings.

Table 1. Absolute Maximum Ratings 1

Characteristic Symbol Max Value Unit Notes

Core supply voltage VDD –0.3 to 1.21 V —

PLL supply voltage AVDD –0.3 to 1.21 V —

Core power supply for SerDes transceivers SVDD –0.3 to 1.21 V —

Pad power supply for SerDes transceivers XVDD –0.3 to 1.21 V —

DDR and DDR2 DRAM I/O voltage GVDD –0.3 to 2.75
–0.3 to 1.98

V 2

Three-speed Ethernet I/O voltage LVDD (for eTSEC1 
and eTSEC2)

–0.3 to 3.63
–0.3 to 2.75

V

TVDD (for eTSEC3 
and eTSEC4)

–0.3 to 3.63
–0.3 to 2.75

3

PCI/PCI-X, DUART, system control and power management, 
I2C, Ethernet MII management, and JTAG I/O voltage

OVDD –0.3 to 3.63 V —

Local bus I/O voltage BVDD –0.3 to 3.63
–0.3 to 2.75

V —

Input voltage DDR/DDR2 DRAM signals MVIN –0.3 to (GVDD + 0.3) V 4

DDR/DDR2 DRAM reference MVREF –0.3 to 
(GVDD/2 + 0.3)

V —

Three-speed Ethernet I/O signals LVIN
TVIN

–0.3 to (LVDD + 0.3)
–0.3 to (TVDD + 0.3)

V 4

Local bus signals BVIN –0.3 to (BVDD + 0.3) — —

DUART, SYSCLK, system control and power 
management, I2C, Ethernet MII management, 
and JTAG signals

OVIN –0.3 to (OVDD + 0.3) V 4

PCI/PCI-X OVIN –0.3 to (OVDD + 0.3) V 4



MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 9

20 Freescale Semiconductor
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6 DDR and DDR2 SDRAM
This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the 
device. Note that GVDD(typ) = 2.5 V for DDR SDRAM, and GVDD(typ) = 1.8 V for DDR2 SDRAM.

6.1 DDR SDRAM DC Electrical Characteristics

The following table provides the recommended operating conditions for the DDR2 SDRAM controller of 
the device when GVDD(typ) = 1.8 V.

This table provides the DDR2 I/O capacitance when GVDD(typ) = 1.8 V.

Table 11. DDR2 SDRAM DC Electrical Characteristics for GVDD(typ) = 1.8 V

Parameter/Condition Symbol Min Max Unit Notes

I/O supply voltage GVDD 1.71 1.89 V 1

I/O reference voltage MVREF 0.49  GVDD 0.51  GVDD V 2

I/O termination voltage VTT MVREF – 0.04 MVREF + 0.04 V 3

Input high voltage VIH MVREF + 0.125 GVDD + 0.3 V —

Input low voltage VIL –0.3 MVREF – 0.125 V —

Output leakage current IOZ –50 50 A 4

Output high current (VOUT = 1.420 V) IOH –13.4 — mA —

Output low current (VOUT = 0.280 V) IOL 13.4 — mA —

Notes:
1. GVDD is expected to be within 50 mV of the DRAM VDD at all times.
2. MVREF is expected to be equal to 0.5  GVDD, and to track GVDD DC variations as measured at the receiver. Peak-to-peak 

noise on MVREF may not exceed ±2% of the DC value.
3. VTT is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be 

equal to MVREF. This rail must track variations in the DC level of MVREF.
4. Output leakage is measured with all outputs disabled, 0 V  VOUT GVDD.

Table 12. DDR2 SDRAM Capacitance for GVDD(typ)=1.8 V

Parameter/Condition Symbol Min Max Unit Notes

Input/output capacitance: DQ, DQS, DQS CIO 6 8 pF 1

Delta input/output capacitance: DQ, DQS, DQS CDIO — 0.5 pF 1

Note:
1. This parameter is sampled. GVDD = 1.8 V ± 0.090 V, f = 1 MHz, TA = 25°C, VOUT = GVDD/2, VOUT (peak-to-peak) = 0.2 V.
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A summary of the FIFO AC specifications appears in Table 24 and Table 25.

Timing diagrams for FIFO appear in Figure 6 and Figure 7.

Figure 6. FIFO Transmit AC Timing Diagram

Table 24. FIFO Mode Transmit AC Timing Specification

Parameter/Condition Symbol Min Typ Max Unit

TX_CLK, GTX_CLK clock period tFIT 5.3 8.0 100 ns

TX_CLK, GTX_CLK duty cycle tFITH/tFIT 45 50 55 %

TX_CLK, GTX_CLK peak-to-peak jitter tFITJ — — 250 ps

Rise time TX_CLK (20%–80%) tFITR — — 0.75 ns

Fall time TX_CLK (80%–20%) tFITF — — 0.75 ns

FIFO data TXD[7:0], TX_ER, TX_EN setup time to GTX_CLK tFITDV 2.0 — — ns

GTX_CLK to FIFO data TXD[7:0], TX_ER, TX_EN hold time tFITDX 0.5 — 3.0 ns

Table 25. FIFO Mode Receive AC Timing Specification

Parameter/Condition Symbol Min Typ Max Unit

RX_CLK clock period tFIR 5.3 8.0 100 ns

RX_CLK duty cycle tFIRH/tFIR 45 50 55 %

RX_CLK peak-to-peak jitter tFIRJ — — 250 ps

Rise time RX_CLK (20%–80%) tFIRR — — 0.75 ns

Fall time RX_CLK (80%–20%) tFIRF — — 0.75 ns

RXD[7:0], RX_DV, RX_ER setup time to RX_CLK tFIRDV 1.5 — — ns

RXD[7:0], RX_DV, RX_ER hold time to RX_CLK tFIRDX 0.5 — — ns

Note:  
1. The minimum cycle period of the TX_CLK and RX_CLK is dependent on the maximum platform frequency of t he speed bins 

the part belongs to as well as the FIFO mode under operation. See Section 4.5, “Platform to FIFO Restrictions.”

tFIT

tFITH

tFITF

TXD[7:0]
TX_EN

GTX_CLK

TX_ER

tFITR

tFITDV tFITDX
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Figure 11 shows the MII transmit AC timing diagram.

Figure 11. MII Transmit AC Timing Diagram

8.2.3.2 MII Receive AC Timing Specifications

This table provides the MII receive AC timing specifications.
 

Figure 12 provides the AC test load for eTSEC.

Figure 12. eTSEC AC Test Load

Table 29. MII Receive AC Timing Specifications

Parameter/Condition Symbol1 Min Typ Max Unit

RX_CLK clock period 10 Mbps tMRX
2 — 400 — ns

RX_CLK clock period 100 Mbps tMRX — 40 — ns

RX_CLK duty cycle tMRXH/tMRX 35 — 65 %

RXD[3:0], RX_DV, RX_ER setup time to RX_CLK tMRDVKH 10.0 — — ns

RXD[3:0], RX_DV, RX_ER hold time to RX_CLK tMRDXKH 10.0 — — ns

RX_CLK clock rise (20%–80%) tMRXR
2 1.0 — 4.0 ns

RX_CLK clock fall time (80%–20%) tMRXF
2 1.0 — 4.0 ns

Notes:

1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for 
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMRDVKH symbolizes MII receive 
timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the tMRX clock reference (K) 
going to the high (H) state or setup time. Also, tMRDXKL symbolizes MII receive timing (GR) with respect to the time data input 
signals (D) went invalid (X) relative to the tMRX clock reference (K) going to the low (L) state or hold time. Note that, in general, 
the clock reference symbol representation is based on three letters representing the clock of a particular functional. For 
example, the subscript of tMRX represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used 
with the appropriate letter: R (rise) or F (fall).

2. Guaranteed by design.

TX_CLK

TXD[3:0]

tMTKHDX

tMTX

tMTXH

tMTXR

tMTXF

TX_EN
TX_ER

Output Z0 = 50  LVDD/2
RL = 50 
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Figure 15 shows the TBI receive AC timing diagram.

Figure 15. TBI Receive AC Timing Diagram

8.2.5 TBI Single-Clock Mode AC Specifications

When the eTSEC is configured for TBI modes, all clocks are supplied from external sources to the relevant 
eTSEC interface. In single-clock TBI mode, when TBICON[CLKSEL] = 1, a 125-MHz TBI receive clock 
is supplied on the TSECn_RX_CLK pin (no receive clock is used on TSECn_TX_CLK in this mode, 
whereas for the dual-clock mode this is the PMA1 receive clock). The 125-MHz transmit clock is applied 
on the TSEC_GTX_CLK125 pin in all TBI modes.

A summary of the single-clock TBI mode AC specifications for receive appears in Table 32.

Table 32. TBI single-clock Mode Receive AC Timing Specification

Parameter/Condition Symbol Min Typ Max Unit

RX_CLK clock period tTRRX 7.5 8.0 8.5 ns

RX_CLK duty cycle tTRRH/TRRX 40 50 60 %

RX_CLK peak-to-peak jitter tTRRJ — — 250 ps

Rise time RX_CLK (20%–80%) tTRRR — — 1.0 ns

Fall time RX_CLK (80%–20%) tTRRF — — 1.0 ns

RCG[9:0] setup time to RX_CLK rising edge tTRRDVKH 2.0 — — ns

RCG[9:0] hold time to RX_CLK rising edge tTRRDXKH 1.0 — — ns

TSECn_RX_CLK1

RCG[9:0]

tTRX

tTRXH

tTRXR

tTRXF

tTRDVKH

TSECn_RX_CLK0

tTRDXKH

tTRDVKH

tTRDXKH

tSKTRX

tTRXH

Valid Data Valid Data
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A timing diagram for TBI receive appears in Figure 16.
.

Figure 16. TBI Single-Clock Mode Receive AC Timing Diagram

8.2.6 RGMII and RTBI AC Timing Specifications

This table presents the RGMII and RTBI AC timing specifications.

Table 33. RGMII and RTBI AC Timing Specifications

Parameter/Condition Symbol1 Min Typ Max Unit

Data to clock output skew (at transmitter) tSKRGT
5 –5006 0 5006 ps

Data to clock input skew (at receiver) 2 tSKRGT 1.0 — 2.8 ns

Clock period 3 tRGT
5 7.2 8.0 8.8 ns

Duty cycle for 10BASE-T and 100BASE-TX3, 4 tRGTH/tRGT
5 45 50 55 %

Rise time (20%–80%) tRGTR
5 — — 0.75 ns

Fall time (20%–80%) tRGTF
5 — — 0.75 ns

Notes:

1. In general, the clock reference symbol representation for this section is based on the symbols RGT to represent RGMII and 
RTBI timing. For example, the subscript of tRGT represents the TBI (T) receive (RX) clock. Note also that the notation for rise 
(R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews, the subscript is 
skew (SK) followed by the clock that is being skewed (RGT).

2. This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns is 
added to the associated clock signal.

3. For 10 and 100 Mbps, tRGT scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.

4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long 
as the minimum duty cycle is not violated and stretching occurs for no more than three tRGT of the lowest speed transitioned 
between.

5. Guaranteed by characterization.

6.  In rev 1.0 silicon, due to errata, tSKRGT is -650 ps (min) and 650 ps (max). See “eTSEC 10” in the device errata document.

tTRRX

tTRRH tTRRF

tTRRR

RX_CLK

RCG[9:0] Valid Data

tTRRDXKHtTRRDVKH
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Figure 21 shows the MII management AC timing diagram.

Figure 21. MII Management Interface Timing Diagram

MDC fall time tMDHF — 10 ns 4

Notes:

1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for 
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMDKHDX symbolizes management 
data timing (MD) for the time tMDC from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. 
Also, tMDDVKH symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state 
(V) relative to the tMDC clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention 
is used with the appropriate letter: R (rise) or F (fall).

2. This parameter is dependent on the eTSEC system clock speed, which is half of the Platform Frequency (fCCB). The actual 
ECn_MDC output clock frequency for a specific eTSEC port can be programmed by configuring the MgmtClk bit field of 
device’s MIIMCFG register, based on the platform (CCB) clock running for the device. The formula is: Platform Frequency 
(CCB)  (2 × Frequency Divider determined by MIICFG[MgmtClk] encoding selection). For example, if 
MIICFG[MgmtClk] = 000 and the platform (CCB) is currently running at 533 MHz, fMDC = 533)  (2 × 4 × 8) = 533)  64 = 
8.3 MHz. That is, for a system running at a particular platform frequency (fCCB), the ECn_MDC output clock frequency can be 
programmed between maximum fMDC = fCCB  64 and minimum fMDC = fCCB  448. See 14.5.3.6.6, “MII Management 
Configuration Register (MIIMCFG),” in the MPC8548E PowerQUICC™ III Integrated Processor Family Reference Manual for 
more detail.

3.The maximum ECn_MDC output clock frequency is defined based on the maximum platform frequency for device (533 MHz) 
divided by 64, while the minimum ECn_MDC output clock frequency is defined based on the minimum platform frequency for 
device (333 MHz) divided by 448, following the formula described in Note 2 above. 

4. Guaranteed by design.

5. tCCB is the platform (CCB) clock period.

Table 37. MII Management AC Timing Specifications (continued)
At recommended operating conditions with OVDD is 3.3 V ± 5%.

Parameter Symbol1 Min Typ Max Unit Notes

MDC

tMDDXKH

tMDC

tMDCH

tMDCR

tMDCF

tMDDVKH

tMDKHDX

MDIO

MDIO

(Input)

(Output)
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11 Programmable Interrupt Controller
In IRQ edge trigger mode, when an external interrupt signal is asserted (according to the programmed 
polarity), it must remain the assertion for at least 3 system clocks (SYSCLK periods).

12 JTAG
This section describes the DC and AC electrical specifications for the IEEE 1149.1 (JTAG) interface of 
the device.

12.1 JTAG DC Electrical Characteristics

This table provides the DC electrical characteristics for the JTAG interface.

12.2 JTAG AC Electrical Specifications

This table provides the JTAG AC timing specifications as defined in Figure 30 through Figure 32.

Table 43. JTAG DC Electrical Characteristics

Parameter Symbol1 Min Max Unit

High-level input voltage VIH 2 OVDD + 0.3 V

Low-level input voltage VIL –0.3 0.8 V

Input current (VIN
1 = 0 V or VIN = VDD) IIN — ±5 A

High-level output voltage (OVDD = min, IOH = –2 mA) VOH 2.4 — V

Low-level output voltage (OVDD = min, IOL = 2 mA) VOL — 0.4 V

Note:
1. Note that the symbol VIN, in this case, represents the OVIN.

Table 44. JTAG AC Timing Specifications (Independent of SYSCLK)1

Parameter Symbol2 Min Max Unit Notes

JTAG external clock frequency of operation fJTG 0 33.3 MHz —

JTAG external clock cycle time t JTG 30 — ns —

JTAG external clock pulse width measured at 1.4 V tJTKHKL 15 — ns —

JTAG external clock rise and fall times tJTGR & tJTGF 0 2 ns 6

TRST assert time tTRST 25 — ns 3

Input setup times:

Boundary-scan data
TMS, TDI

tJTDVKH
tJTIVKH

4
0

—
—

ns
4

Input hold times:

Boundary-scan data
TMS, TDI

tJTDXKH
tJTIXKH

20
25

—
—

ns
4
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14 GPOUT/GPIN
This section describes the DC and AC electrical specifications for the GPOUT/GPIN bus of the device.

14.1 GPOUT/GPIN Electrical Characteristics

Table 47 and Table 48 provide the DC electrical characteristics for the GPOUT interface.

Table 49 and Table 50 provide the DC electrical characteristics for the GPIN interface.

Table 47. GPOUT DC Electrical Characteristics (3.3 V DC)

Parameter Symbol Min Max Unit

Supply voltage 3.3 V BVDD 3.13 3.47 V

High-level output voltage 

(BVDD = min, IOH = –2 mA)

VOH BVDD – 0.2 — V

Low-level output voltage 

(BVDD = min, IOL = 2mA)

VOL — 0.2 V

Table 48. GPOUT DC Electrical Characteristics (2.5 V DC)

Parameter Symbol Min Max Unit

Supply voltage 2.5 V BVDD 2.37 2.63 V

High-level output voltage 

(BVDD = min, IOH = –1 mA)

VOH 2.0 BVDD + 0.3 V

Low-level output voltage 

(BVDD  min, IOL = 1 mA)

VOL GND – 0.3 0.4 V

Table 49. GPIN DC Electrical Characteristics (3.3 V DC)

Parameter Symbol Min Max Unit

Supply voltage 3.3 V BVDD 3.13 3.47 V

High-level input voltage VIH 2 BVDD + 0.3 V

Low-level input voltage VIL –0.3 0.8 V

Input current 

(BVIN 
1 = 0 V or BVIN = BVDD)

IIN — ±5 A

Note:

1. The symbol BVIN, in this case, represents the BVIN symbol referenced in Table 1.
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16 High-Speed Serial Interfaces (HSSI)
The device features one Serializer/Deserializer (SerDes) interface to be used for high-speed serial 
interconnect applications. The SerDes interface can be used for PCI Express and/or serial RapidIO data 
transfers. 

This section describes the common portion of SerDes DC electrical specifications, which is the DC 
requirement for SerDes reference clocks. The SerDes data lane’s transmitter and receiver reference circuits 
are also shown.

16.1 Signal Terms Definition

The SerDes utilizes differential signaling to transfer data across the serial link. This section defines terms 
used in the description and specification of differential signals. 

Figure 38 shows how the signals are defined. For illustration purpose, only one SerDes lane is used for the 
description. The figure shows a waveform for either a transmitter output (SD_TX and SD_TX) or a 
receiver input (SD_RX and SD_RX). Each signal swings between A volts and B volts where A > B.

Using this waveform, the definitions are as follows. To simplify the illustration, the following definitions 
assume that the SerDes transmitter and receiver operate in a fully symmetrical differential signaling 
environment.

• Single-ended swing
The transmitter output signals and the receiver input signals SD_TX, SD_TX, SD_RX and SD_RX 
each have a peak-to-peak swing of A – B volts. This is also referred as each signal wire’s 
single-ended swing.

• Differential output voltage, VOD (or differential output swing):
The differential output voltage (or swing) of the transmitter, VOD, is defined as the difference of 
the two complimentary output voltages: VSD_TX – VSD_TX. The VOD value can be either positive 
or negative.

• Differential input voltage, VID (or differential input swing):
The differential input voltage (or swing) of the receiver, VID, is defined as the difference of the two 
complimentary input voltages: VSD_RX – VSD_RX. The VID value can be either positive or 
negative.

• Differential peak voltage, VDIFFp
The peak value of the differential transmitter output signal or the differential receiver input signal 
is defined as differential peak voltage, VDIFFp = |A – B| volts.

• Differential peak-to-peak, VDIFFp-p
Because the differential output signal of the transmitter and the differential input signal of the 
receiver each range from A – B to –(A – B) volts, the peak-to-peak value of the differential 
transmitter output signal or the differential receiver input signal is defined as differential 
peak-to-peak voltage, VDIFFp-p = 2  VDIFFp = 2  |(A – B)| volts, which is twice of differential 
swing in amplitude, or twice of the differential peak. For example, the output differential 
peak-to-peak voltage can also be calculated as VTX-DIFFp-p = 2 |VOD|.

• Common mode voltage, Vcm
The common mode voltage is equal to one half of the sum of the voltages between each conductor 
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Table 56. Differential Transmitter (TX) Output Specifications

Symbol Parameter Min Nom Max Unit Comments

UI Unit interval 399.88 400 400.12 ps Each UI is 400 ps ± 300 ppm. UI does not account 
for spread spectrum clock dictated variations. 
See Note 1.

VTX-DIFFp-p Differential 
peak-to-peak 
output voltage

0.8 — 1.2 V VTX-DIFFp-p = 2 × |VTX-D+ – VTX-D–|. See Note 2.

VTX-DE-RATIO De- emphasized 
differential 

output voltage 
(ratio)

–3.0 –3.5 –4.0 dB Ratio of the VTX-DIFFp-p of the second and 
following bits after a transition divided by the 
VTX-DIFFp-p of the first bit after a transition. 
See Note 2.

TTX-EYE Minimum TX 
eye width

0.70 — — UI The maximum transmitter jitter can be derived as 
TTX-MAX-JITTER = 1 – TTX-EYE = 0.3 UI.

See Notes 2 and 3.

TTX-EYE-MEDIAN-to-

MAX-JITTER

Maximum time 
between the 

jitter median and 
maximum 

deviation from 
the median.

— — 0.15 UI Jitter is defined as the measurement variation of 
the crossing points (VTX-DIFFp-p = 0 V) in relation 
to a recovered TX UI. A recovered TX UI is 
calculated over 3500 consecutive unit intervals of 
sample data. Jitter is measured using all edges of 
the 250 consecutive UI in the center of the 3500 
UI used for calculating the TX UI. 
See Notes 2 and 3.

TTX-RISE, TTX-FALL D+/D– TX output 
rise/fall time

0.125 — — UI See Notes 2 and 5.

VTX-CM-ACp RMS AC peak 
common mode 
output voltage

— — 20 mV VTX-CM-ACp = RMS(|VTXD+ + VTXD–|/2 – 
VTX-CM-DC)

VTX-CM-DC = DC(avg) of |VTX-D+ + VTX-D–|/2. 

See Note 2.

VTX-CM-DC-ACTIVE-

IDLE-DELTA

Absolute delta of 
dc common 

mode voltage 
during L0 and 
electrical idle

0 — 100 mV |VTX-CM-DC (during L0) + VTX-CM-Idle-DC (during 

electrical idle)|  100 mV

VTX-CM-DC = DC(avg) of |VTX-D+ + VTX-D–|/2 [L0]

VTX-CM-Idle-DC = DC(avg) of |VTX-D+ + VTX-D–|/2 
[electrical idle] 

See Note 2.

VTX-CM-DC-LINE-DELTA Absolute delta of 
DC common 

mode between 
D+ and D–

0 — 25 mV |VTX-CM-DC-D+ – VTX-CM-DC-D–|  25 mV

VTX-CM-DC-D+ = DC(avg) of |VTX-D+|

VTX-CM-DC-D–= DC(avg) of |VTX-D–|.

See Note 2.

VTX-IDLE-DIFFp Electrical idle 
differential peak 
output voltage

0 — 20 mV VTX-IDLE-DIFFp = |VTX-IDLE-D+ – VTX-IDLE-D–| 
 20 mV.

See Note 2. 

VTX-RCV-DETECT The amount of 
voltage change 
allowed during 

receiver 
detection

— — 600 mV The total amount of voltage change that a 
transmitter can apply to sense whether a low 
impedance receiver is present. See Note 6.
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17.5 Receiver Compliance Eye Diagrams

The RX eye diagram in Figure 49 is specified using the passive compliance/test measurement load (see 
Figure 50) in place of any real PCI Express RX component.

Note: In general, the minimum receiver eye diagram measured with the compliance/test measurement load 
(see Figure 50) is larger than the minimum receiver eye diagram measured over a range of systems at the 
input receiver of any real PCI Express component. The degraded eye diagram at the input receiver is due 
to traces internal to the package as well as silicon parasitic characteristics which cause the real PCI Express 
component to vary in impedance from the compliance/test measurement load. The input receiver eye 
diagram is implementation specific and is not specified. RX component designer must provide additional 
margin to adequately compensate for the degraded minimum receiver eye diagram (shown in Figure 49) 
expected at the input receiver based on some adequate combination of system simulations and the return 
loss measured looking into the RX package and silicon. The RX eye diagram must be aligned in time using 
the jitter median to locate the center of the eye diagram. 

LTX-SKEW Total Skew — — 20 ns Skew across all lanes on a Link. This includes 
variation in the length of SKP ordered set (for 
example, COM and one to five symbols) at the RX 
as well as any delay differences arising from the 
interconnect itself.

Notes:

1. No test load is necessarily associated with this value.

2. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 50 must be used 
as the RX device when taking measurements (also see the receiver compliance eye diagram shown in Figure 49). If the 
clocks to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must 
be used as a reference for the eye diagram.

3. A TRX-EYE = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the transmitter and 
interconnect collected any 250 consecutive UIs. The TRX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter distribution 
in which the median and the maximum deviation from the median is less than half of the total. UI jitter budget collected over 
any 250 consecutive TX UIs. Note that the median is not the same as the mean. The jitter median describes the point in time 
where the number of jitter points on either side is approximately equal as opposed to the averaged time value. If the clocks 
to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must be 
used as the reference for the eye diagram. 

4. The receiver input impedance shall result in a differential return loss greater than or equal to 15 dB with the D+ line biased 
to 300 mV and the D– line biased to –{300 mV and a common mode return loss greater than or equal to 6 dB (no bias 
required) over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. 
The reference impedance for return loss measurements for is 50  to ground for both the D+ and D– line (that is, as 
measured by a vector network analyzer with 50- probes—see Figure 50). Note: that the series capacitors CTX is optional 
for the return loss measurement.

5. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM) 
there is a 5 ms transition time before receiver termination values must be met on all unconfigured lanes of a port.

6. The RX DC common mode Impedance that exists when no power is present or fundamental reset is asserted. This helps 
ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be 
measured at 300 mV above the RX ground.

7. It is recommended that the recovered TX UI is calculated using all edges in the 3500 consecutive UI interval with a fit 
algorithm using a minimization merit function. Least squares and median deviation fits have worked well with experimental 
and simulated data.

Table 57. Differential Receiver (RX) Input Specifications (continued)

Symbol Parameter Min Nom Max Unit Comments
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18.5 Explanatory Note on Transmitter and Receiver Specifications

AC electrical specifications are given for transmitter and receiver. Long- and short-run interfaces at three 
baud rates (a total of six cases) are described.

The parameters for the AC electrical specifications are guided by the XAUI electrical interface specified 
in Clause 47 of IEEE 802.3ae-2002.

XAUI has similar application goals to Serial RapidIO, as described in Section 8.1. The goal of this 
standard is that electrical designs for Serial RapidIO can reuse electrical designs for XAUI, suitably 
modified for applications at the baud intervals and reaches described herein.

18.6 Transmitter Specifications

LP-serial transmitter electrical and timing specifications are stated in the text and tables of this section.

The differential return loss, S11, of the transmitter in each case shall be better than:

• –10 dB for (baud frequency)/10 < Freq(f) < 625 MHz, and

• –10 dB + 10log(f/625 MHz) dB for 625 MHz  Freq(f)  baud frequency

The reference impedance for the differential return loss measurements is 100- resistive. Differential 
return loss includes contributions from on-chip circuitry, chip packaging, and any off-chip components 
related to the driver. The output impedance requirement applies to all valid output levels.

It is recommended that the 20%–80% rise/fall time of the transmitter, as measured at the transmitter output, 
in each case have a minimum value 60 ps.

It is recommended that the timing skew at the output of an LP-serial transmitter between the two signals 
that comprise a differential pair not exceed 25 ps at 1.25 GB, 20 ps at 2.50 GB, and 15 ps at 3.125 GB.

 

Table 59. Short Run Transmitter AC Timing Specifications—1.25 GBaud

Characteristic Symbol
Range

Unit Notes
Min Max

Output voltage VO –0.40 2.30 V Voltage relative to COMMON of either signal 
comprising a differential pair

Differential output voltage VDIFFPP 500 1000 mV p-p —

Deterministic jitter JD — 0.17 UI p-p —

Total jitter JT — 0.35 UI p-p —

Multiple output skew SMO — 1000 ps Skew at the transmitter output between lanes of a 
multilane link

Unit Interval UI 800 800 ps  ±100 ppm
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transmitter that implements pre-emphasis (to equalize the link and reduce inter-symbol interference) need 
only comply with the transmitter output compliance mask when pre-emphasis is disabled or minimized.

Figure 52. Transmitter Output Compliance Mask

18.7 Receiver Specifications

LP-serial receiver electrical and timing specifications are stated in the text and tables of this section.

Receiver input impedance shall result in a differential return loss better that 10 dB and a common mode 
return loss better than 6 dB from 100 MHz to (0.8) (baud frequency). This includes contributions from 
on-chip circuitry, the chip package, and any off-chip components related to the receiver. AC coupling 

Table 65. Transmitter Differential Output Eye Diagram Parameters

Transmitter Type VDIFFmin (mV) VDIFFmax (mV) A (UI) B (UI)

1.25 GBaud short range 250 500 0.175 0.39

1.25 GBaud long range 400 800 0.175 0.39

2.5 GBaud short range 250 500 0.175 0.39

2.5 GBaud long range 400 800 0.175 0.39

3.125 GBaud short range 250 500 0.175 0.39

3.125 GBaud long range 400 800 0.175 0.39
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Package Description

LSYNC_IN F27 I BVDD —

LSYNC_OUT F28 O BVDD —

DMA

DMA_DACK[0:1] AD3, AE1 O OVDD 5, 9, 
102

DMA_DREQ[0:1] AD4, AE2 I OVDD —

DMA_DDONE[0:1] AD2, AD1 O OVDD —

Programmable Interrupt Controller

UDE AH16 I OVDD —

MCP AG19 I OVDD —

IRQ[0:7] AG23, AF18, AE18, AF20, AG18, AF17, AH24, 
AE20

I OVDD —

IRQ[8] AF19 I OVDD —

IRQ[9]/DMA_DREQ3 AF21 I OVDD 1

IRQ[10]/DMA_DACK3 AE19 I/O OVDD 1

IRQ[11]/DMA_DDONE3 AD20 I/O OVDD 1

IRQ_OUT AD18 O OVDD 2, 4

Ethernet Management Interface

EC_MDC AB9 O OVDD 5, 9

EC_MDIO AC8 I/O OVDD —

Gigabit Reference Clock

EC_GTX_CLK125 V11 I LVDD —

Three-Speed Ethernet Controller (Gigabit Ethernet 1)

TSEC1_RXD[7:0] R5, U1, R3, U2, V3, V1, T3, T2 I LVDD —

TSEC1_TXD[7:0] T10, V7, U10, U5, U4, V6, T5, T8 O LVDD 5, 9

TSEC1_COL R4 I LVDD —

TSEC1_CRS V5 I/O LVDD 20

TSEC1_GTX_CLK U7 O LVDD —

TSEC1_RX_CLK U3 I LVDD —

TSEC1_RX_DV V2 I LVDD —

TSEC1_RX_ER T1 I LVDD —

TSEC1_TX_CLK T6 I LVDD —

TSEC1_TX_EN U9 O LVDD 30

TSEC1_TX_ER T7 O LVDD —

Table 71. MPC8548E Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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Reserved U20, V22, W20, Y22 — — 15

Reserved U21, V23, W21, Y23 — — 15

SD_PLL_TPD U28 O XVDD 24

SD_REF_CLK T28 I XVDD —

SD_REF_CLK T27 I XVDD —

Reserved AC1, AC3 — — 2

Reserved M26, V28 — — 32

Reserved M25, V27 — — 34

Reserved M20, M21, T22, T23 — — 38

General-Purpose Output

GPOUT[24:31] K26, K25, H27, G28, H25, J26, K24, K23 O BVDD —

System Control

HRESET AG17 I OVDD —

HRESET_REQ AG16 O OVDD 29

SRESET AG20 I OVDD —

CKSTP_IN AA9 I OVDD —

CKSTP_OUT AA8 O OVDD 2, 4

Debug

TRIG_IN AB2 I OVDD —

TRIG_OUT/READY/QUIESCE AB1 O OVDD 6, 9, 
19, 29

MSRCID[0:1] AE4, AG2 O OVDD 5, 6, 9

MSRCID[2:4] AF3, AF1, AF2 O OVDD 6, 19, 
29

MDVAL AE5 O OVDD 6

CLK_OUT AE21 O OVDD 11

Clock

RTC AF16 I OVDD —

SYSCLK AH17 I OVDD —

JTAG

TCK AG28 I OVDD —

TDI AH28 I OVDD 12

TDO AF28 O OVDD —

TMS AH27 I OVDD 12

TRST AH23 I OVDD 12

Table 72. MPC8547E Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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MDIC[0:1] A19, B19 I/O GVDD 36

Local Bus Controller Interface

LAD[0:31] E27, B20, H19, F25, A20, C19, E28, J23, A25, 
K22, B28, D27, D19, J22, K20, D28, D25, B25, 
E22, F22, F21, C25, C22, B23, F20, A23, A22, 

E19, A21, D21, F19, B21

I/O BVDD —

LDP[0:3] K21, C28, B26, B22 I/O BVDD —

LA[27] H21 O BVDD 5, 9

LA[28:31] H20, A27, D26, A28 O BVDD 5, 7, 9

LCS[0:4] J25, C20, J24, G26, A26 O BVDD —

LCS5/DMA_DREQ2 D23 I/O BVDD 1

LCS6/DMA_DACK2 G20 O BVDD 1

LCS7/DMA_DDONE2 E21 O BVDD 1

LWE0/LBS0/LSDDQM[0] G25 O BVDD 5, 9

LWE1/LBS1/LSDDQM[1] C23 O BVDD 5, 9

LWE2/LBS2/LSDDQM[2] J21 O BVDD 5, 9

LWE3/LBS3/LSDDQM[3] A24 O BVDD 5, 9

LALE H24 O BVDD 5, 8, 9

LBCTL G27 O BVDD 5, 8, 9

LGPL0/LSDA10 F23 O BVDD 5, 9

LGPL1/LSDWE G22 O BVDD 5, 9

LGPL2/LOE/LSDRAS B27 O BVDD 5, 8, 9

LGPL3/LSDCAS F24 O BVDD 5, 9

LGPL4/LGTA/LUPWAIT/LPBSE H23 I/O BVDD —

LGPL5 E26 O BVDD 5, 9

LCKE E24 O BVDD —

LCLK[0:2] E23, D24, H22 O BVDD —

LSYNC_IN F27 I BVDD —

LSYNC_OUT F28 O BVDD —

DMA

DMA_DACK[0:1] AD3, AE1 O OVDD 5, 9, 
106

DMA_DREQ[0:1] AD4, AE2 I OVDD —

DMA_DDONE[0:1] AD2, AD1 O OVDD —

Programmable Interrupt Controller

Table 73. MPC8545E Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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20.2 CCB/SYSCLK PLL Ratio 

The CCB clock is the clock that drives the e500 core complex bus (CCB), and is also called the platform 
clock. The frequency of the CCB is set using the following reset signals, as shown in Table 81:

• SYSCLK input signal

• Binary value on LA[28:31] at power up

Note that there is no default for this PLL ratio; these signals must be pulled to the desired values. Also note 
that the DDR data rate is the determining factor in selecting the CCB bus frequency, since the CCB 
frequency must equal the DDR data rate.

For specifications on the PCI_CLK, see the PCI 2.2 Specification.

Table 80. Memory Bus Clocking Specifications (MPC8543E)

Characteristic

Maximum Processor Core Frequency

Unit Notes800, 1000 MHz

Min Max

Memory bus clock speed 166 200 MHz 1, 2

Notes:

1. Caution: The CCB clock to SYSCLK ratio and e500 core to CCB clock ratio settings must be chosen such that the resulting 
SYSCLK frequency, e500 (core) frequency, and CCB clock frequency do not exceed their respective maximum or minimum 
operating frequencies. See Section 20.2, “CCB/SYSCLK PLL Ratio,” and Section 20.3, “e500 Core PLL Ratio,” for ratio 
settings.

2. The memory bus speed is half of the DDR/DDR2 data rate, hence, half of the platform clock frequency.

Table 81. CCB Clock Ratio

Binary Value of LA[28:31] Signals CCB:SYSCLK Ratio Binary Value of LA[28:31] Signals CCB:SYSCLK Ratio

0000 16:1 1000 8:1

0001 Reserved 1001 9:1

0010 2:1 1010 10:1

0011 3:1 1011 Reserved

0100 4:1 1100 12:1

0101 5:1 1101 20:1

0110 6:1 1110 Reserved

0111 Reserved 1111 Reserved



MPC8548E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 9

136 Freescale Semiconductor
 

System Design Information

level must always be equivalent to VDD, and preferably these voltages are derived directly from VDD 
through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to 
provide independent filter circuits per PLL power supply as illustrated in Figure 57, one to each of the 
AVDD pins. By providing independent filters to each PLL the opportunity to cause noise injection from 
one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz 
range. It must be built with surface mount capacitors with minimum Effective Series Inductance (ESL). 
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook 
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a 
single large value capacitor.

Each circuit must be placed as close as possible to the specific AVDD pin being supplied to minimize noise 
coupled from nearby circuits. It must be routed directly from the capacitors to the AVDD pin, which is on 
the periphery of the footprint, without the inductance of vias.

Figure 57 through Figure 59 shows the PLL power supply filter circuits.

Figure 57. PLL Power Supply Filter Circuit with PLAT Pins

Figure 58. PLL Power Supply Filter Circuit with CORE Pins

Figure 59. PLL Power Supply Filter Circuit with PCI/LBIU Pins

The AVDD_SRDS signal provides power for the analog portions of the SerDes PLL. To ensure stability of 
the internal clock, the power supplied to the PLL is filtered using a circuit similar to the one shown in 
following figure. For maximum effectiveness, the filter circuit is placed as closely as possible to the 
AVDD_SRDS ball to ensure it filters out as much noise as possible. The ground connection must be near 
the AVDD_SRDS ball. The 0.003-µF capacitor is closest to the ball, followed by the two 2.2 µF capacitors, 
and finally the 1  resistor to the board supply plane. The capacitors are connected from AVDD_SRDS to 

 VDD AVDD_PLAT

 2.2 µF  2.2 µF

 GND
Low ESL Surface Mount Capacitors

150

 VDD AVDD_CORE

 2.2 µF  2.2 µF

 GND
Low ESL Surface Mount Capacitors

180

 VDD AVDD_PCI/AVDD_LBIU

 2.2 µF  2.2 µF

 GND
Low ESL Surface Mount Capacitors

10


