

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.333GHz
Co-Processors/DSP	Signal Processing; SPE
RAM Controllers	DDR, DDR2, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (4)
SATA	-
USB	-
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8548hxauj

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- VRRP and HSRP support for seamless router fail-over
- Up to 16 exact-match MAC addresses supported
- Broadcast address (accept/reject)
- Hash table match on up to 512 multicast addresses
- Promiscuous mode
- Buffer descriptors backward compatible with MPC8260 and MPC860T 10/100 Ethernet programming models
- RMON statistics support
- 10-Kbyte internal transmit and 2-Kbyte receive FIFOs
- MII management interface for control and status
- Ability to force allocation of header information and buffer descriptors into L2 cache
- OCeaN switch fabric
 - Full crossbar packet switch
 - Reorders packets from a source based on priorities
 - Reorders packets to bypass blocked packets
 - Implements starvation avoidance algorithms
 - Supports packets with payloads of up to 256 bytes
- Integrated DMA controller
 - Four-channel controller
 - All channels accessible by both the local and remote masters
 - Extended DMA functions (advanced chaining and striding capability)
 - Support for scatter and gather transfers
 - Misaligned transfer capability
 - Interrupt on completed segment, link, list, and error
 - Supports transfers to or from any local memory or I/O port
 - Selectable hardware-enforced coherency (snoop/no snoop)
 - Ability to start and flow control each DMA channel from external 3-pin interface
 - Ability to launch DMA from single write transaction
- Two PCI/PCI-X controllers
 - PCI 2.2 and PCI-X 1.0 compatible
 - One 32-/64-bit PCI/PCI-X port with support for speeds of up to 133 MHz (maximum PCI-X frequency in synchronous mode is 110 MHz)
 - One 32-bit PCI port with support for speeds from 16 to 66 MHz (available when the other port is in 32-bit mode)
 - Host and agent mode support
 - 64-bit dual address cycle (DAC) support
 - PCI-X supports multiple split transactions
 - Supports PCI-to-memory and memory-to-PCI streaming

4.5 Platform to FIFO Restrictions

Note the following FIFO maximum speed restrictions based on platform speed.

For FIFO GMII mode:

FIFO TX/RX clock frequency \leq platform clock frequency/4.2

For example, if the platform frequency is 533 MHz, the FIFO TX/RX clock frequency must be no more than 127 MHz.

For FIFO encoded mode:

FIFO TX/RX clock frequency \leq platform clock frequency/4.2

For example, if the platform frequency is 533 MHz, the FIFO TX/RX clock frequency must be no more than 167 MHz.

4.6 Platform Frequency Requirements for PCI-Express and Serial RapidIO

The CCB clock frequency must be considered for proper operation of the high-speed PCI-Express and Serial RapidIO interfaces as described below.

For proper PCI Express operation, the CCB clock frequency must be greater than:

See *MPC8548ERM*, *Rev.* 2, *PowerQUICC III Integrated Processor Family Reference Manual*, Section 18.1.3.2, "Link Width," for PCI Express interface width details.

For proper serial RapidIO operation, the CCB clock frequency must be greater than:

 $2 \times (0.80) \times (Serial RapidIO interface frequency) \times (Serial RapidIO link width)$

64

See *MPC8548ERM*, *Rev.* 2, *PowerQUICC III Integrated Processor Family Reference Manual*, Section 17.4, "1x/4x LP-Serial Signal Descriptions," for serial RapidIO interface width and frequency details.

4.7 Other Input Clocks

For information on the input clocks of other functional blocks of the platform see the specific section of this document.

6 DDR and DDR2 SDRAM

This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the device. Note that $GV_{DD}(typ) = 2.5 \text{ V}$ for DDR SDRAM, and $GV_{DD}(typ) = 1.8 \text{ V}$ for DDR2 SDRAM.

6.1 DDR SDRAM DC Electrical Characteristics

The following table provides the recommended operating conditions for the DDR2 SDRAM controller of the device when $GV_{DD}(typ) = 1.8 \text{ V}.$

Parameter/Condition	Symbol	Min	Max	Unit	Notes
I/O supply voltage	GV _{DD}	1.71	1.89	V	1
I/O reference voltage	MV _{REF}	$0.49 \times GV_{DD}$	$0.51 \times GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.125	GV _{DD} + 0.3	V	—
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.125	V	—
Output leakage current	I _{OZ}	-50	50	μΑ	4
Output high current (V _{OUT} = 1.420 V)	I _{ОН}	-13.4	—	mA	—
Output low current (V _{OUT} = 0.280 V)	I _{OL}	13.4	—	mA	—

Table 11. DDR2 SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 1.8 V

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM V_{DD} at all times.

2. MV_{REF} is expected to be equal to 0.5 × GV_{DD} , and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail must track variations in the DC level of MV_{REF}.

4. Output leakage is measured with all outputs disabled, $0 V \le V_{OUT} \le GV_{DD}$.

This table provides the DDR2 I/O capacitance when $GV_{DD}(typ) = 1.8$ V.

Table 12. DDR2 SDRAM Capacitance for GV_{DD}(typ)=1.8 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS, DQS	C _{DIO}	—	0.5	pF	1

Note:

1. This parameter is sampled. $GV_{DD} = 1.8 \text{ V} \pm 0.090 \text{ V}$, f = 1 MHz, T_A = 25°C, $V_{OUT} = GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

Table 34. RMII Transmit A	C Timing	Specifications	(continued)
---------------------------	----------	----------------	-------------

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
TSEC <i>n_</i> TX_CLK to RMII data TXD[1:0], TX_EN delay	t _{RMTDX}	1.0		10.0	ns

Note:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub></sub>

Figure 18 shows the RMII transmit AC timing diagram.

Figure 18. RMII Transmit AC Timing Diagram

8.2.7.2 RMII Receive AC Timing Specifications

Table 35. RMII Receive AC Timing Specifications

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
TSEC <i>n</i> _TX_CLK clock period	t _{RMR}	15.0	20.0	25.0	ns
TSEC <i>n</i> _TX_CLK duty cycle	t _{RMRH}	35	50	65	%
TSEC <i>n</i> _TX_CLK peak-to-peak jitter	t _{RMRJ}	—	_	250	ps
Rise time TSEC <i>n</i> _TX_CLK(20%–80%)	t _{RMRR}	1.0	_	2.0	ns
Fall time TSEC <i>n</i> _TX_CLK (80%–20%)	t _{RMRF}	1.0	_	2.0	ns
RXD[1:0], CRS_DV, RX_ER setup time to REF_CLK rising edge	t _{RMRDV}	4.0	_	—	ns
RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK rising edge	t _{RMRDX}	2.0	_	—	ns

Note:

1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}}

Enhanced Three-Speed Ethernet (eTSEC)

Figure 19 provides the AC test load for eTSEC.

Figure 19. eTSEC AC Test Load

Figure 20 shows the RMII receive AC timing diagram.

Figure 20. RMII Receive AC Timing Diagram

9 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO (management data input/output) and MDC (management data clock). The electrical characteristics for GMII, RGMII, RMII, TBI, and RTBI are specified in "Section 8, "Enhanced Three-Speed Ethernet (eTSEC)."

9.1 MII Management DC Electrical Characteristics

The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in this table.

Parameter	Symbol	Min	Мах	Unit
Supply voltage (3.3 V)	OV _{DD}	3.13	3.47	V
Output high voltage ($OV_{DD} = Min, I_{OH} = -1.0 mA$)	V _{OH}	2.10	OV _{DD} + 0.3	V
Output low voltage (OV _{DD} =Min, I _{OL} = 1.0 mA)	V _{OL}	GND	0.50	V
Input high voltage	V _{IH}	2.0	—	V
Input low voltage	V _{IL}	—	0.90	V
Input high current ($OV_{DD} = Max, V_{IN}^{1} = 2.1 V$)	I _{IH}	—	40	μA
Input low current ($OV_{DD} = Max, V_{IN} = 0.5 V$)	I _{IL}	-600	—	μΑ

Table 36. MII Management DC Electrical Characteristics

Note:

1. Note that the symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

9.2 MII Management AC Electrical Specifications

This table provides the MII management AC timing specifications.

Table 37. MII Management AC Timing Specifications

At recommended operating conditions with OV_{DD} is 3.3 V ± 5%.

Parameter	Symbol ¹	Min	Тур	Мах	Unit	Notes
MDC frequency	f _{MDC}	0.72	2.5	8.3	MHz	2, 3, 4
MDC period	t _{MDC}	120.5		1389	ns	—
MDC clock pulse width high	t _{MDCH}	32		—	ns	—
MDC to MDIO valid	t _{MDKHDV}	$16 \times t_{CCB}$		—	ns	5
MDC to MDIO delay	t _{MDKHDX}	(16 × t _{CCB} × 8) – 3		$(16 \times t_{\rm CCB} \times 8) + 3$	ns	5
MDIO to MDC setup time	t _{MDDVKH}	5		—	ns	—
MDIO to MDC hold time	t _{MDDXKH}	0		—	ns	—
MDC rise time	t _{MDCR}	_	_	10	ns	4

Figure 25. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (PLL Enabled)

Local Bus

Figure 28. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 8 or 16 (PLL Bypass Mode)

JTAG

Figure 31 provides the $\overline{\text{TRST}}$ timing diagram.

Figure 32. Boundary-Scan Timing Diagram

14 GP_{OUT}/GP_{IN}

This section describes the DC and AC electrical specifications for the GP_{OUT}/GP_{IN} bus of the device.

14.1 GP_{OUT}/GP_{IN} Electrical Characteristics

Table 47 and Table 48 provide the DC electrical characteristics for the GP_{OUT} interface.

Parameter	Symbol	Min	Мах	Unit
Supply voltage 3.3 V	BV _{DD}	3.13	3.47	V
High-level output voltage ($BV_{DD} = min, I_{OH} = -2 mA$)	V _{OH}	BV _{DD} – 0.2	_	V
Low-level output voltage (BV _{DD} = min, I _{OL} = 2 mA)	V _{OL}	_	0.2	V

 Table 47. GP_{OUT} DC Electrical Characteristics (3.3 V DC)

 Table 48. GP_{OUT} DC Electrical Characteristics (2.5 V DC)

Parameter	Symbol	Min	Мах	Unit
Supply voltage 2.5 V	BV _{DD}	2.37	2.63	V
High-level output voltage (BV _{DD} = min, I _{OH} = −1 mA)	V _{OH}	2.0	BV _{DD} + 0.3	V
Low-level output voltage (BV _{DD} min, I _{OL} = 1 mA)	V _{OL}	GND – 0.3	0.4	V

Table 49 and Table 50 provide the DC electrical characteristics for the GP_{IN} interface.

Table 49. GP_{IN} DC Electrical Characteristics (3.3 V DC)

Parameter	Symbol	Min	Мах	Unit
Supply voltage 3.3 V	BV _{DD}	3.13	3.47	V
High-level input voltage	V _{IH}	2	BV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current ($BV_{IN}^{1} = 0 V \text{ or } BV_{IN} = BV_{DD}$)	I _{IN}	—	±5	μΑ

Note:

1. The symbol $\mathsf{BV}_{\mathsf{IN}}$, in this case, represents the $\mathsf{BV}_{\mathsf{IN}}$ symbol referenced in Table 1.

This table provides the PCI AC timing specifications at 66 MHz.

Table 52.	. PCI AC	Timing	Specifications at	66 MH
-----------	----------	--------	-------------------	-------

Parameter	Symbol ¹	Min	Мах	Unit	Notes
CLK to output valid	t _{PCKHOV}	—	6.0	ns	2, 3
Output hold from CLK	t _{PCKHOX}	2.0	_	ns	2, 10
CLK to output high impedance	t _{PCKHOZ}	_	14	ns	2, 4, 11
Input setup to CLK	^t PCIVKH	3.0	_	ns	2, 5, 10
Input hold from CLK	t _{PCIXKH}	0	_	ns	2, 5, 10
REQ64 to HRESET ⁹ setup time	t _{PCRVRH}	$10 imes t_{SYS}$	_	clocks	6, 7, 11
HRESET to REQ64 hold time	t _{PCRHRX}	0	50	ns	7, 11
HRESET high to first FRAME assertion	t _{PCRHFV}	10	_	clocks	8, 11

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{PCIVKH} symbolizes PCI/PCI-X timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the SYSCLK clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI/PCI-X timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
</sub>

- 2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.
- 3. All PCI signals are measured from $OV_{DD}/2$ of the rising edge of SYSCLK or PCI_CLK*n* to $0.4 \times OV_{DD}$ of the signal in question for 3.3-V PCI signaling levels.
- 4. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 5. Input timings are measured at the pin.
- 6. The timing parameter t_{SYS} indicates the minimum and maximum CLK cycle times for the various specified frequencies. The system clock period must be kept within the minimum and maximum defined ranges. For values see Section 20, "Clocking."
- 7. The setup and hold time is with respect to the rising edge of HRESET.
- 8. The timing parameter t_{PCRHFV} is a minimum of 10 clocks rather than the minimum of 5 clocks in the *PCI 2.2 Local Bus Specifications*.
- 9. The reset assertion timing requirement for $\overline{\text{HRESET}}$ is 100 µs.
- 10. Guaranteed by characterization.
- 11.Guaranteed by design.

Figure 35 provides the AC test load for PCI and PCI-X.

- The SD_REF_CLK and SD_REF_CLK are internally AC-coupled differential inputs as shown in Figure 39. Each differential clock input (SD_REF_CLK or SD_REF_CLK) has a 50-Ω termination to SGND_SRDSn (xcorevss) followed by on-chip AC-coupling.
- The external reference clock driver must be able to drive this termination.
- The SerDes reference clock input can be either differential or single-ended. See the differential mode and single-ended mode description below for further detailed requirements.
- The maximum average current requirement that also determines the common mode voltage range:
 - When the SerDes reference clock differential inputs are DC coupled externally with the clock driver chip, the maximum average current allowed for each input pin is 8 mA. In this case, the exact common mode input voltage is not critical as long as it is within the range allowed by the maximum average current of 8 mA (see the following bullet for more detail), since the input is AC-coupled on-chip.
 - This current limitation sets the maximum common mode input voltage to be less than 0.4 V (0.4 V/50 = 8 mA) while the minimum common mode input level is 0.1 V above SGND_SRDS*n* (xcorevss). For example, a clock with a 50/50 duty cycle can be produced by a clock driver with output driven by its current source from 0 to 16 mA (0–0.8 V), such that each phase of the differential input has a single-ended swing from 0 V to 800 mV with the common mode voltage at 400 mV.
 - If the device driving the SD_REF_CLK and $\overline{\text{SD}_{\text{REF}_{\text{CLK}}}}$ inputs cannot drive 50 Ω to SGND_SRDS*n* (xcorevss) DC, or it exceeds the maximum input current limitations, then it must be AC-coupled off-chip.
- The input amplitude requirement:
 - This requirement is described in detail in the following sections.

Figure 39. Receiver of SerDes Reference Clocks

16.2.2 DC Level Requirement for SerDes Reference Clocks

The DC level requirement for the SerDes reference clock inputs is different depending on the signaling mode used to connect the clock driver chip and SerDes reference clock inputs as described below:

• Differential mode

PCI Express

Figure 48. Minimum Transmitter Timing and Voltage Output Compliance Specifications

17.4.3 Differential Receiver (RX) Input Specifications

Table 57 defines the specifications for the differential input at all receivers (RXs). The parameters are specified at the component pins.

Symbol	Parameter	Min	Nom	Max	Unit	Comments
UI	Unit interval	399.88	400	400.12	ps	Each UI is 400 ps \pm 300 ppm. UI does not account for spread spectrum clock dictated variations. See Note 1.
V _{RX-DIFFp-p}	Differential peak-to-peak input voltage	0.175	_	1.200	V	$V_{RX-DIFFp-p} = 2 \times V_{RX-D+} - V_{RX-D-} $. See Note 2.
T _{RX-EYE}	Minimum receiver eye width	0.4	_	_	UI	The maximum interconnect media and transmitter jitter that can be tolerated by the receiver can be derived as $T_{RX-MAX-JITTER} = 1 - T_{RX-EYE} = 0.6$ UI. See Notes 2 and 3.
T _{RX-EYE-MEDIAN-to-} MAX-JITTER	Maximum time between the jitter median and maximum deviation from the median	_	_	0.3	UI	Jitter is defined as the measurement variation of the crossing points ($V_{RX-DIFFp-p} = 0$ V) in relation to a recovered TX UI. A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI. See Notes 2, 3, and 7.

Table 57. Differential Receiver (RX) Input Specifications

Table 71. MPC8548E Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MWE	E7	0	GV _{DD}	—
MCAS	H7	0	GV _{DD}	_
MRAS	L8	0	GV _{DD}	_
MCKE[0:3]	F10, C10, J11, H11	0	GV _{DD}	11
MCS[0:3]	K8, J8, G8, F8	0	GV _{DD}	_
MCK[0:5]	H9, B15, G2, M9, A14, F1	0	GV _{DD}	—
MCK[0:5]	J9, A15, G1, L9, B14, F2	0	GV _{DD}	—
MODT[0:3]	E6, K6, L7, M7	0	GV _{DD}	—
MDIC[0:1]	A19, B19	I/O	GV _{DD}	36
	Local Bus Controller Interface			•
LAD[0:31]	E27, B20, H19, F25, A20, C19, E28, J23, A25, K22, B28, D27, D19, J22, K20, D28, D25, B25, E22, F22, F21, C25, C22, B23, F20, A23, A22, E19, A21, D21, F19, B21	I/O	BV _{DD}	_
LDP[0:3]	K21, C28, B26, B22	I/O	BV _{DD}	—
LA[27]	H21	0	BV _{DD}	5, 9
LA[28:31]	H20, A27, D26, A28	0	BV _{DD}	5, 7, 9
LCS[0:4]	J25, C20, J24, G26, A26	0	ΒV _{DD}	
LCS5/DMA_DREQ2	D23	I/O	BV _{DD}	1
LCS6/DMA_DACK2	G20	0	BV _{DD}	1
LCS7/DMA_DDONE2	E21	0	BV _{DD}	1
LWE0/LBS0/LSDDQM[0]	G25	0	BV _{DD}	5, 9
LWE1/LBS1/LSDDQM[1]	C23	0	BV _{DD}	5, 9
LWE2/LBS2/LSDDQM[2]	J21	0	BV _{DD}	5, 9
LWE3/LBS3/LSDDQM[3]	A24	0	BV _{DD}	5, 9
LALE	H24	0	BV _{DD}	5, 8, 9
LBCTL	G27	0	BV _{DD}	5, 8, 9
LGPL0/LSDA10	F23	0	BV _{DD}	5, 9
LGPL1/LSDWE	G22	0	BV _{DD}	5, 9
LGPL2/LOE/LSDRAS	B27	0	BV _{DD}	5, 8, 9
LGPL3/LSDCAS	F24	0	BV _{DD}	5, 9
LGPL4/LGTA/LUPWAIT/LPBSE	H23	I/O	BV _{DD}	_
LGPL5	E26	0	BV _{DD}	5, 9
LCKE	E24	0	BV _{DD}	_
LCLK[0:2]	E23, D24, H22	0	BV _{DD}	—

Package Description

Table 72	. MPC8547E	Pinout	Listing ((continued)
----------	------------	---------------	-----------	-------------

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	Local Bus Controller Interface		I	
LAD[0:31]	E27, B20, H19, F25, A20, C19, E28, J23, A25, K22, B28, D27, D19, J22, K20, D28, D25, B25, E22, F22, F21, C25, C22, B23, F20, A23, A22, E19, A21, D21, F19, B21	I/O	BV _{DD}	_
LDP[0:3]	K21, C28, B26, B22	I/O	BV _{DD}	—
LA[27]	H21	0	BV _{DD}	5, 9
LA[28:31]	H20, A27, D26, A28	0	BV _{DD}	5, 7, 9
LCS[0:4]	J25, C20, J24, G26, A26	0	BV _{DD}	—
LCS5/DMA_DREQ2	D23	I/O	BV _{DD}	1
LCS6/DMA_DACK2	G20	0	BV _{DD}	1
LCS7/DMA_DDONE2	E21	0	BV _{DD}	1
LWE0/LBS0/LSDDQM[0]	G25	0	BV _{DD}	5, 9
LWE1/LBS1/LSDDQM[1]	C23	0	BV _{DD}	5, 9
LWE2/LBS2/LSDDQM[2]	J21	0	BV _{DD}	5, 9
LWE3/LBS3/LSDDQM[3]	A24	0	BV _{DD}	5, 9
LALE	H24	0	BV _{DD}	5, 8, 9
LBCTL	G27	0	BV _{DD}	5, 8, 9
LGPL0/LSDA10	F23	0	BV _{DD}	5, 9
LGPL1/LSDWE	G22	0	BV _{DD}	5, 9
LGPL2/LOE/LSDRAS	B27	0	BV _{DD}	5, 8, 9
LGPL3/LSDCAS	F24	0	BV _{DD}	5, 9
LGPL4/LGTA/LUPWAIT/LPBSE	H23	I/O	BV _{DD}	—
LGPL5	E26	0	BV _{DD}	5, 9
LCKE	E24	0	BV _{DD}	—
LCLK[0:2]	E23, D24, H22	0	BV _{DD}	—
LSYNC_IN	F27	I	BV _{DD}	—
LSYNC_OUT	F28	0	BV _{DD}	_
	DMA		l	1
DMA_DACK[0:1]	AD3, AE1	0	OV _{DD}	5, 9, 107
DMA_DREQ[0:1]	AD4, AE2	I	OV _{DD}	—
DMA_DDONE[0:1]	AD2, AD1	0	OV _{DD}	
	Programmable Interrupt Controller			
UDE	AH16	I	OV _{DD}	_
MCP	AG19	I	OV _{DD}	—

Package Description

Table 72	. MPC8547E	Pinout Listing	(continued)
----------	------------	-----------------------	-------------

Signal	Package Pin Number	Pin Type	Power Supply	Notes		
IRQ[0:7]	AG23, AF18, AE18, AF20, AG18, AF17, AH24, AE20	I	OV _{DD}	_		
IRQ[8]	AF19	I	OV _{DD}	—		
IRQ[9]/DMA_DREQ3	AF21	I	OV _{DD}	1		
IRQ[10]/DMA_DACK3	AE19	I/O	OV _{DD}	1		
IRQ[11]/DMA_DDONE3	AD20	I/O	OV _{DD}	1		
IRQ_OUT	AD18	0	OV _{DD}	2, 4		
	Ethernet Management Interface					
EC_MDC	AB9	0	OV _{DD}	5, 9		
EC_MDIO	AC8	I/O	OV _{DD}	—		
	Gigabit Reference Clock		•			
EC_GTX_CLK125	V11	I	LV _{DD}	—		
Th	ree-Speed Ethernet Controller (Gigabit Ethern	et 1)				
TSEC1_RXD[7:0]	R5, U1, R3, U2, V3, V1, T3, T2	I	LV _{DD}	—		
TSEC1_TXD[7:0]	T10, V7, U10, U5, U4, V6, T5, T8	0	LV _{DD}	5, 9		
TSEC1_COL	R4	I	LV _{DD}	—		
TSEC1_CRS	V5	I/O	LV _{DD}	20		
TSEC1_GTX_CLK	U7	0	LV _{DD}	—		
TSEC1_RX_CLK	U3	I	LV _{DD}	—		
TSEC1_RX_DV	V2	I	LV _{DD}	—		
TSEC1_RX_ER	T1	I	LV _{DD}	—		
TSEC1_TX_CLK	Т6	I	LV _{DD}	—		
TSEC1_TX_EN	U9	0	LV _{DD}	30		
TSEC1_TX_ER	Τ7	0	LV _{DD}	—		
Th	ree-Speed Ethernet Controller (Gigabit Ethern	et 2)				
TSEC2_RXD[7:0]	P2, R2, N1, N2, P3, M2, M1, N3	I	LV _{DD}	—		
TSEC2_TXD[7:0]	N9, N10, P8, N7, R9, N5, R8, N6	0	LV _{DD}	5, 9, 33		
TSEC2_COL	P1	I	LV _{DD}	—		
TSEC2_CRS	R6	I/O	LV _{DD}	20		
TSEC2_GTX_CLK	P6	0	LV _{DD}	—		
TSEC2_RX_CLK	N4	I	LV _{DD}	—		
TSEC2_RX_DV	P5	I	LV _{DD}	—		
TSEC2_RX_ER	R1	I	LV _{DD}	—		
TSEC2_TX_CLK	P10	I	LV _{DD}	—		
TSEC2_TX_EN	P7	0	LV _{DD}	30		

Table 72.	MPC8547E	Pinout Listing	(continued)
		i mout Listing	(continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	DFT			
L1_TSTCLK	AC25	I	OV _{DD}	25
L2_TSTCLK	AE22	I	OV _{DD}	25
LSSD_MODE	AH20	I	OV _{DD}	25
TEST_SEL	AH14	I	OV _{DD}	25
	Thermal Management			
THERMO	AG1			14
THERM1	AH1			14
	Power Management			
ASLEEP	AH18	0	OV_{DD}	9, 19, 29
	Power and Ground Signals			
GND	 A11, B7, B24, C1, C3, C5, C12, C15, C26, D8, D11, D16, D20, D22, E1, E5, E9, E12, E15, E17, F4, F26, G12, G15, G18, G21, G24, H2, H6, H8, H28, J4, J12, J15, J17, J27, K7, K9, K11, K27, L3, L5, L12, L16, N11, N13, N15, N17, N19, P4, P9, P12, P14, P16, P18, R11, R13, R15, R17, R19, T4, T12, T14, T16, T18, U8, U11, U13, U15, U17, U19, V4, V12, V18, W6, W19, Y4, Y9, Y11, Y19, AA6, AA14, AA17, AA22, AA23, AB4, AC2, AC11, AC19, AC26, AD5, AD9, AD22, AE3, AE14, AF6, AF10, AF13, AG8, AG27, K28, L24, L26, N24, N27, P25, R28, T24, T26, U24, V25, W28, Y24, Y26, AA24, AA27, AB25, AC28, L21, L23, N22, P20, R23, T21, U22, V20, W23, Y21, U27 	_	_	_
OV _{DD}	V16, W11, W14, Y18, AA13, AA21, AB11, AB17, AB24, AC4, AC9, AC21, AD6, AD13, AD17, AD19, AE10, AE8, AE24, AF4, AF12, AF22, AF27, AG26	Power for PCI and other standards (3.3 V)	OV _{DD}	
LV _{DD}	N8, R7, T9, U6	Power for TSEC1 and TSEC2 (2.5 V, 3.3 V)	LV _{DD}	—
TV _{DD}	W9, Y6	Power for TSEC3 and TSEC4 (2,5 V, 3.3 V)	TV _{DD}	_
GV _{DD}	B3, B11, C7, C9, C14, C17, D4, D6, D10, D15, E2, E8, E11, E18, F5, F12, F16, G3, G7, G9, G11, H5, H12, H15, H17, J10, K3, K12, K16, K18, L6, M4, M8, M13	Power for DDR1 and DDR2 DRAM I/O voltage (1.8 V, 2.5 V)	GV _{DD}	

Table 74. MPC8543E Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MWE	E7	0	GV _{DD}	_
MCAS	H7	0	GV _{DD}	_
MRAS	L8	0	GV _{DD}	
MCKE[0:3]	F10, C10, J11, H11	0	GV _{DD}	11
MCS[0:3]	K8, J8, G8, F8	0	GV _{DD}	
MCK[0:5]	H9, B15, G2, M9, A14, F1	0	GV _{DD}	_
MCK[0:5]	J9, A15, G1, L9, B14, F2	0	GV _{DD}	
MODT[0:3]	E6, K6, L7, M7	0	GV _{DD}	_
MDIC[0:1]	A19, B19	I/O	GV _{DD}	36
	Local Bus Controller Interface			
LAD[0:31]	E27, B20, H19, F25, A20, C19, E28, J23, A25, K22, B28, D27, D19, J22, K20, D28, D25, B25, E22, F22, F21, C25, C22, B23, F20, A23, A22, E19, A21, D21, F19, B21	I/O	BV _{DD}	
LDP[0:3]	K21, C28, B26, B22	I/O	BV _{DD}	
LA[27]	H21	0	BV _{DD}	5, 9
LA[28:31]	H20, A27, D26, A28	0	BV _{DD}	5, 7, 9
LCS[0:4]	J25, C20, J24, G26, A26	0	BV _{DD}	_
LCS5/DMA_DREQ2	D23	I/O	BV _{DD}	1
LCS6/DMA_DACK2	G20	0	BV _{DD}	1
LCS7/DMA_DDONE2	E21	0	BV _{DD}	1
LWE0/LBS0/LSDDQM[0]	G25	0	BV _{DD}	5, 9
LWE1/LBS1/LSDDQM[1]	C23	0	BV _{DD}	5, 9
LWE2/LBS2/LSDDQM[2]	J21	0	BV _{DD}	5, 9
LWE3/LBS3/LSDDQM[3]	A24	0	BV _{DD}	5, 9
LALE	H24	0	BV _{DD}	5, 8, 9
LBCTL	G27	0	BV _{DD}	5, 8, 9
LGPL0/LSDA10	F23	0	BV _{DD}	5, 9
LGPL1/LSDWE	G22	0	BV _{DD}	5, 9
LGPL2/LOE/LSDRAS	B27	0	BV _{DD}	5, 8, 9
LGPL3/LSDCAS	F24	0	BV _{DD}	5, 9
LGPL4/LGTA/LUPWAIT/LPBSE	H23	I/O	BV _{DD}	
LGPL5	E26	0	BV _{DD}	5, 9
LCKE	E24	0	BV _{DD}	
LCLK[0:2]	E23, D24, H22	0	BV _{DD}	_

Package Description

Signal	Package Pin Number	Pin Type	Power Supply	Notes
SENSEVSS	M16	—	—	13
	Analog Signals			
MVREF	A18	l Reference voltage signal for DDR	MVREF	
SD_IMP_CAL_RX	L28	I	200 Ω (±1%) to GND	_
SD_IMP_CAL_TX	AB26	I	100 Ω (±1%) to GND	—
SD_PLL_TPA	U26	0	AVDD_SRDS	24

Table 74. MPC8543E Pinout Listing (continued)

Note: All note references in this table use the same numbers as those for Table 71. See Table 71 for the meanings of these notes.

System Design Information

Figure 61. Driver Impedance Measurement

This table summarizes the signal impedance targets. The driver impedances are targeted at minimum V_{DD} , nominal OV_{DD} , 105°C.

Table 86. Impedance Characteristics

Impedance	Local Bus, Ethernet, DUART, Control, Configuration, Power Management	PCI	DDR DRAM	Symbol	Unit
R _N	43 Target	25 Target	20 Target	Z ₀	W
R _P	43 Target	25 Target	20 Target	Z ₀	W

Note: Nominal supply voltages. See Table 1, $T_i = 105^{\circ}C$.

22.8 Configuration Pin Muxing

The device provides the user with power-on configuration options which can be set through the use of external pull-up or pull-down resistors of $4.7 \text{ k}\Omega$ on certain output pins (see customer visible configuration pins). These pins are generally used as output only pins in normal operation.

While $\overline{\text{HRESET}}$ is asserted however, these pins are treated as inputs. The value presented on these pins while $\overline{\text{HRESET}}$ is asserted, is latched when $\overline{\text{HRESET}}$ deasserts, at which time the input receiver is disabled and the I/O circuit takes on its normal function. Most of these sampled configuration pins are equipped with an on-chip gated resistor of approximately 20 k Ω . This value must permit the 4.7-k Ω resistor to pull the configuration pin to a valid logic low level. The pull-up resistor is enabled only during $\overline{\text{HRESET}}$ (and for platform/system clocks after $\overline{\text{HRESET}}$ deassertion to ensure capture of the reset value). When the input receiver is disabled the pull-up is also, thus allowing functional operation of the pin as an output with minimal signal quality or delay disruption. The default value for all configuration bits treated this way has been encoded such that a high voltage level puts the device into the default state and external resistors are needed only when non-default settings are required by the user.

Careful board layout with stubless connections to these pull-down resistors coupled with the large value of the pull-down resistor minimizes the disruption of signal quality or speed for output pins thus configured.