

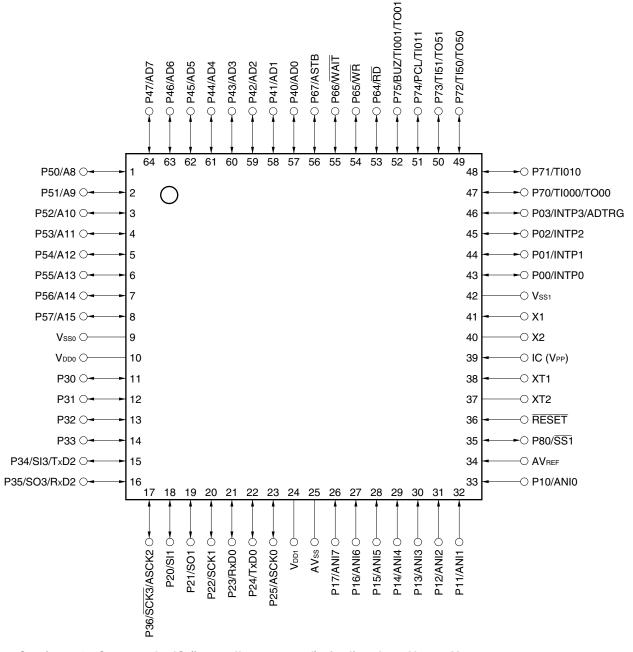
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

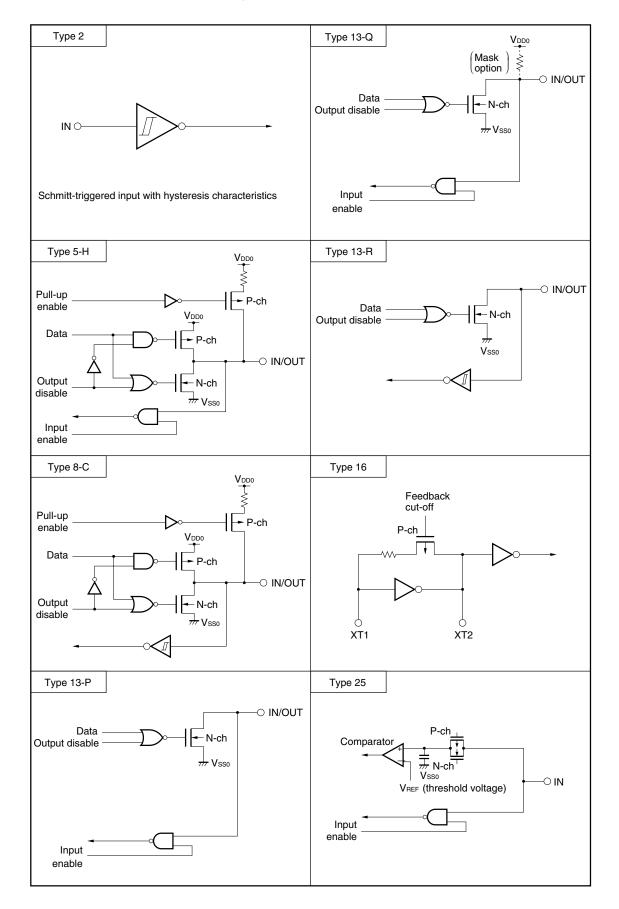
Details


Product Status	Obsolete
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	-
Program Memory Type	-
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	-
Data Converters	-
Oscillator Type	-
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f0078gc-8bs-a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.5 Pin Configuration (Top View)


- 64-pin plastic LQFP (14 × 14)
- 64-pin plastic QFP (14×14)
- 64-pin plastic TQFP (12 × 12)

Cautions 1. Connect the IC (internally connected) pin directly to V_{SS0} or V_{SS1}. 2. Connect the AV_{SS} pin to V_{SS0}.

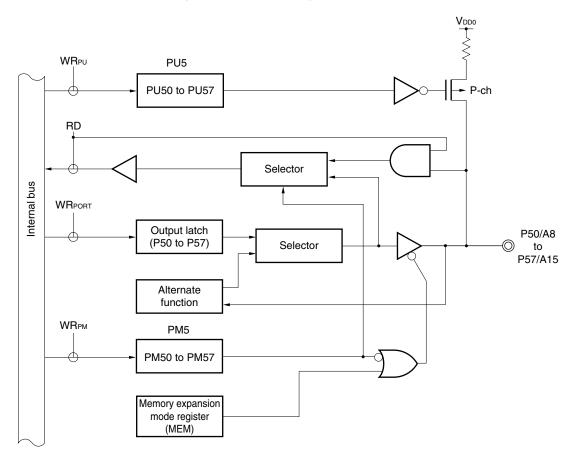
- Remarks 1. When these devices are used in applications that require the reduction of noise generated from an on-chip microcontroller, the implementation of noise measures is recommended, such as supplying VDD0 and VDD1 independently, connecting Vss0 and Vss1 independently to ground lines, and so on.
 - 2. Pin connection in parentheses is intended for the μ PD78F0078.

Figure 4-1. Pin I/O Circuits

6.2.7 Port 5

Port 5 is an 8-bit I/O port with an output latch. Port 5 can be set to the input or output mode in 1-bit units using port mode register 5 (PM5). An on-chip pull-up resistor can be connected to P50 to P57 in 1-bit units using pull-up resistor option register 5 (PU5).

Port 5 can drive LEDs directly.


This port can also be used as an address bus in external memory expansion mode.

RESET input sets port 5 to input mode.

Figure 6-16 shows a block diagram of port 5.

Caution An on-chip pull-up resistor is not disconnected even if the external memory expansion mode is set when PU5n = 1 (n = 0 to 7).

Figure 6-16. Block Diagram of P50 to P57

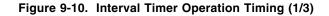
- PU5: Pull-up resistor option register 5
- PM5: Port mode register 5
- RD: Read signal
- WR×x: Write signal

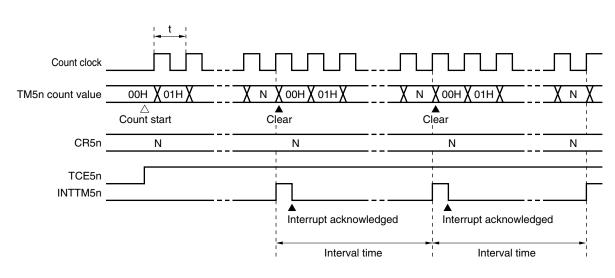
9.4 Operation of 8-Bit Timer/Event Counters 50, 51

9.4.1 8-bit interval timer operation

The 8-bit timer/event counters operate as interval timers that generate interrupt requests repeatedly at intervals of the count value preset to 8-bit timer compare register 5n (CR5n).

When the count value of 8-bit timer counter 5n (TM5n) matches the value set to CR5n, counting continues with the TM5n value cleared to 0 and an interrupt request signal (INTTM5n) is generated.


The count clock of TM5n can be selected with bits 0 to 2 (TCL5n0 to TCL5n2) of timer clock select register 5n (TCL5n).


Setting

<1> Set each register.

- TCL5n: Select count clock.
- CR5n: Compare value
- TMC5n: Count operation stop, clear & start mode on match between TM5n and CR5n. (TMC5n = 0000×××0B × = don't care)
- <2> After TCE5n = 1 is set, count operation starts.
- <3> If the values of TM5n and CR5n match, INTTM5n is generated (TM5n is cleared to 00H).
- <4> INTTM5n is generated repeatedly at the same interval. Set TCE5n to 0 to stop the count operation.

Remark n = 0, 1

(a) Basic operation

Remarks 1. Interval time = $(N + 1) \times t$ N = 00H to FFH

2. n = 0, 1

2. n = 0, 1

STT0	Start condition trigger						
0	Do not generate a start condition.						
1	When bus is released (during STOP mode): Generate a start condition (for starting as master). The SDA0 line is changed from high level to low level and then the start condition is generated. Next, after the rated amount of time has elapsed, SCL0 is changed to low level. When bus is not used: This trigger functions as a start condition reservation flag. When set, it releases the bus and then automatically generates a start condition. Wait status (during master mode): Generate a restart condition after wait is released.						
For mastFor mast	 Generate a restart condition after wait is released. Cautions concerning set timing For master reception: Cannot be set during transfer. Can be set only in the waiting period when ACKEC has been set to 0 and slave has been notified of final reception. For master transmission: A start condition may not be generated normally during the acknowledgment period Therefore, set it during the waiting period. Cannot be set at the same time as SPT0. 						
Condition f	or clearing (STT0 = 0)	Condition for setting (STT0 = 1)					
 Cleared by loss in arbitration Cleared after start condition is generated by master device Cleared by LREL0 = 1 (exit from communications) When IICE0 = 0 (operation stop) When RESET is input 		Set by instruction					

Figure 18-5. Format of IIC Control Register 0 (IICC0) (3/4)

Remark Bit 1 (STT0) is 0 when read after data has been set.

18.5.7 Interrupt request (INTIIC0) generation timing and wait control

The setting of bit 3 (WTIM0) of IIC control register 0 (IICC0) determines the timing by which INTIIC0 is generated and the corresponding wait control, as shown in Table 18-2.

During Slave Device Operation				During Master Device Operation				
WTIM0	Address	Data Reception	Data Transmission	Address	Data Reception	Data Transmission		
0	₉ Notes 1, 2	8Note 2	8Note 2	9	8	8		
1	₉ Notes 1, 2	9Note 2	9Note 2	9	9	9		

Table 18-2. INTIICO Generation Timing and Wait Control

Notes 1. The slave device's INTIICO signal and wait period occurs at the falling edge of the ninth clock only when there is a match with the address set to slave address register 0 (SVA0). At this point, ACK is generated regardless of the value set to IICCO's bit 2 (ACKE0). For a slave device that has received an extension code, INTIICO occurs at the falling edge of the eighth clock. However, if the address does not match after restart, INTIICO is generated at the falling edge of the 9th clock, but wait does not occur.

2. If the received address does not match the contents of slave address register 0 (SVA0) and extension code is not received, neither INTIIC0 nor a wait occurs.

(1) During address transmission/reception

- Slave device operation: Interrupt and wait timing are determined depending on the conditions described in
 Notes 1 and 2 above, regardless of the WTIM0 bit.
- Master device operation: Interrupt and wait timing occur at the falling edge of the ninth clock regardless of the WTIM0 bit.

(2) During data reception

• Master/slave device operation: Interrupt and wait timing are determined according to the WTIM0 bit.

(3) During data transmission

Master/slave device operation: Interrupt and wait timing are determined according to the WTIM0 bit.

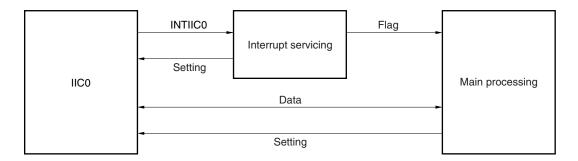
(4) Wait cancellation method

The four wait cancellation methods are as follows.

- By setting bit 5 (WREL0) of IIC control register 0 (IICC0) to 1
- By writing to IIC shift register 0 (IIC0)
- By setting a start condition (setting bit 1 (STT0) of IICC0 to 1)Note
- By setting a stop condition (setting bit 0 (SPT0) of IICC0 to 1)^{Note}

Note Master only.

When an 8-clock wait has been selected (WTIM0 = 0), the presence/absence of \overline{ACK} generation must be determined prior to wait cancellation.


Remark The numbers in the table indicate the number of the serial clock's clock signals. Interrupt requests and wait control are both synchronized with the falling edge of these clock signals.

(2) Slave operation

The processing procedure of the slave operation is as follows.

Basically, the slave operation is event-driven. Therefore, processing by the INTIIC0 interrupt (processing that must substantially change the operation status such as detection of a stop condition during communication) is necessary.

In the following explanation, it is assumed that the extension code is not supported for data communication. It is also assumed that the INTIIC0 interrupt servicing only performs status transition processing, and that actual data communication is performed by the main processing.

Therefore, data communication processing is performed by preparing the following three flags and passing them to the main processing instead of INTIICO.

<1> Communication mode flag

This flag indicates the following two communication statuses.

- Clear mode: Status in which data communication is not performed
- Communication mode: Status in which data communication is performed (from valid address detection to stop condition detection, no detection of ACK from master, address mismatch)

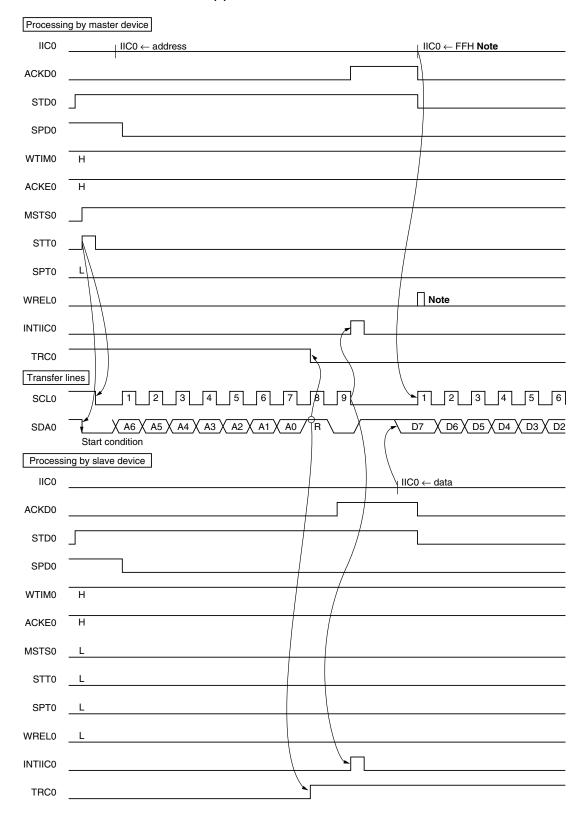
<2> Ready flag

This flag indicates that data communication is enabled. Its function is the same as the INTIIC0 interrupt for ordinary data communication. This flag is set by interrupt servicing and cleared by the main processing. Clear this flag by interrupt servicing when communication is started. However, the ready flag is not set by interrupt servicing when the first data is transmitted. Therefore, the first data is transmitted without the flag being cleared (an address match is interpreted as a request for the next data).

<3> Communication direction flag

This flag indicates the direction of communication. Its value is the same as TRC0.

(b) When arbitration loss occurs during transmission of extension code


(i) When WTIM0 = 0

ST AD6-AD0	R/W ACK	D7-D0 ACK	D7-D0 ACK	SP	
	▲1	▲2	▲3	∆4	
▲1 : IICS0 = (0110×010B (E	xample When ALD) is read durin	a interrupt serv	icina)
▲2 : IICS0 = 0		•		0	0,
▲3 : IICS0 = 0	0010×000B				
$\triangle 4$: IICS0 = 0	00000001B				
Remark	▲: Always g	generated			
	∆: Generate	ed only when SPIE0	= 1		
	×: Don't ca	re			

(ii) When WTIM0 = 1

ST AD6-AD	0 R/W ACK	D7-D0	ACK C	07-D0	ĀCK	SP		
	▲1 ▲	2	▲3			4 <i>L</i>	<u>5</u>	
▲1 : IICS0 = (0110~010B (E	vample W		is road	ldurin	a inter	runt convic	ina)
▲1 : 11CS0 = 0		valliple w		15 1640	uunni	y inten	upt servic	ng)
▲2 : IICS0 = (
▲4 : IICS0 = 0								
$\triangle 5$: IICS0 = 0	00000018							
Remark	▲: Always	generated						
	∆: Generat	ed only who	en SPIE0	= 1				
	×:Don't ca	re						

(1) Start condition ~ address

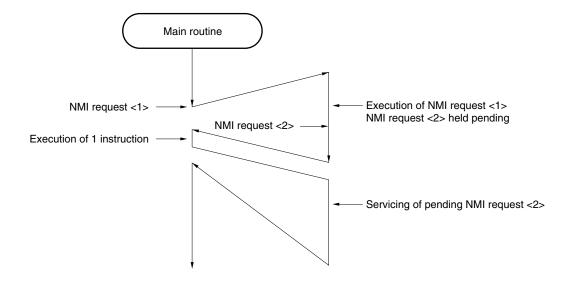
Note To cancel master wait, write "FFH" to IIC0 or set WREL0.

19.4 Interrupt Servicing Operations

19.4.1 Non-maskable interrupt request acknowledgment operation

A non-maskable interrupt request is unconditionally acknowledged even in an interrupt acknowledgment disabled state. It does not undergo interrupt priority control and has the highest priority of all interrupts.

If a non-maskable interrupt request is acknowledged, the contents are saved into the stacks in the order of PSW, then PC, the IE flag and ISP flag are reset (0), and the contents of the vector table are loaded into the PC and branched. This disables the acknowledgment of multiple interrupts.


A new non-maskable interrupt request generated during execution of a non-maskable interrupt servicing program is acknowledged after the current non-maskable interrupt servicing program is terminated (following RETI instruction execution) and one main routine instruction has been executed. However, if a new non-maskable interrupt request is generated twice or more during non-maskable interrupt servicing program execution, only one non-maskable interrupt request is acknowledged after termination of the non-maskable interrupt servicing program.

Figures 19-7, 19-8, and 19-9 show the flowchart of non-maskable interrupt request generation through acknowledgment, the acknowledgment timing of a non-maskable interrupt request, and the acknowledgment operation when multiple non-maskable interrupt requests are generated, respectively.

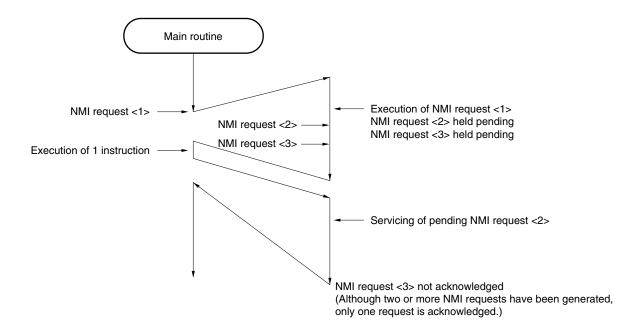
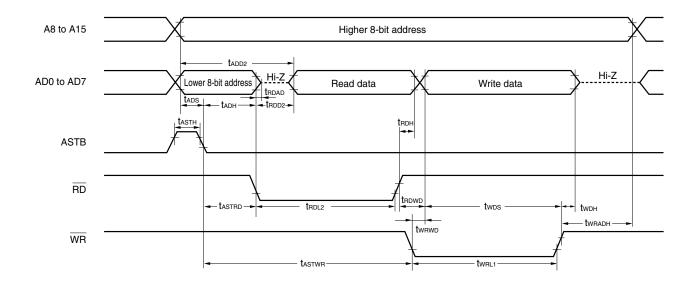

Caution Be sure to use the RETI instruction to restore processing from the non-maskable interrupt.

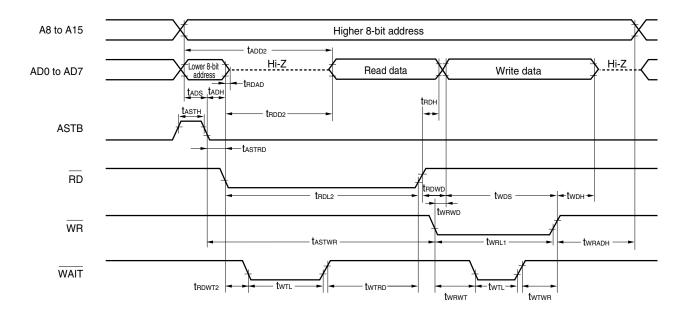
Figure 19-9. Non-Maskable Interrupt Request Acknowledgment Operation

(a) If a non-maskable interrupt request is generated during non-maskable interrupt servicing program execution

(b) If two non-maskable interrupt requests are generated during non-maskable interrupt servicing program execution


Instruction Mnemonic		Onevende	Dutes	Clocks		Quanting		Flag	g
Group	winemonic	Operands	Bytes	Note 1	Note 2	Operation	Z	AC	CY
Bit	AND1	CY, saddr.bit	3	6	7	$CY \leftarrow CY \land (saddr.bit)$			×
manipu-		CY, sfr.bit	3	-	7	$CY \leftarrow CY \land sfr.bit$			×
late		CY, A.bit	2	4	-	$CY \leftarrow CY \land A.bit$			×
		CY, PSW.bit	3	-	7	$CY \leftarrow CY \land PSW.bit$			×
		CY, [HL].bit	2	6	7 + n	$CY \leftarrow CY \land (HL).bit$			Х
	OR1	CY, saddr.bit	3	6	7	$CY \gets CY \lor (saddr.bit)$			×
		CY, sfr.bit	3	-	7	$CY \leftarrow CY \lor sfr.bit$			×
		CY, A.bit	2	4	-	$CY \leftarrow CY \lor A.bit$			×
		CY, PSW.bit	3	-	7	$CY \leftarrow CY \lor PSW.bit$			×
		CY, [HL].bit	2	6	7 + n	$CY \leftarrow CY \lor (HL).bit$			×
	XOR1	CY, saddr.bit	3	6	7	$CY \leftarrow CY \forall$ (saddr.bit)			×
		CY, sfr.bit	3	-	7	$CY \leftarrow CY \forall sfr.bit$			х
		CY, A.bit	2	4	-	$CY \leftarrow CY \forall A.bit$			Х
		CY, PSW. bit	3	-	7	$CY \leftarrow CY \forall PSW.bit$			×
		CY, [HL].bit	2	6	7 + n	$CY \leftarrow CY \forall (HL).bit$			×
	SET1	saddr.bit	2	4	6	$(saddr.bit) \leftarrow 1$			
		sfr.bit	3	-	8	sfr.bit $\leftarrow 1$			
		A.bit	2	4	-	A.bit ← 1			
		PSW.bit	2	-	6	$PSW.bit \leftarrow 1$	×	×	×
		[HL].bit	2	6	8 + n + m	(HL).bit \leftarrow 1			
	CLR1	saddr.bit	2	4	6	$(saddr.bit) \leftarrow 0$			
		sfr.bit	3	-	8	sfr.bit ← 0			
	A.bit	2	4		A.bit \leftarrow 0				
	PSW.bit	2	-	6	$PSW.bit \gets 0$	×	×	×	
		[HL].bit	2	6	8 + n + m	(HL).bit \leftarrow 0			
	SET1	CY	1	2	-	CY ← 1			1
	CLR1	CY	1	2	-	$CY \leftarrow 0$			0
	NOT1	CY	1	2	-	$CY \leftarrow \overline{CY}$			×

Notes 1. When the internal high-speed RAM area is accessed or an instruction with no data access is executed.


2. When an area except the internal high-speed RAM area is accessed

- **Remarks 1.** One instruction clock cycle is one cycle of the CPU clock (fcPU) selected by the processor clock control register (PCC).
 - 2. The number of clocks applies when there is a program in the internal ROM.
 - 3. n is the number of waits when external memory expansion area is read from.
 - 4. m is the number of waits when external memory expansion area is written to.

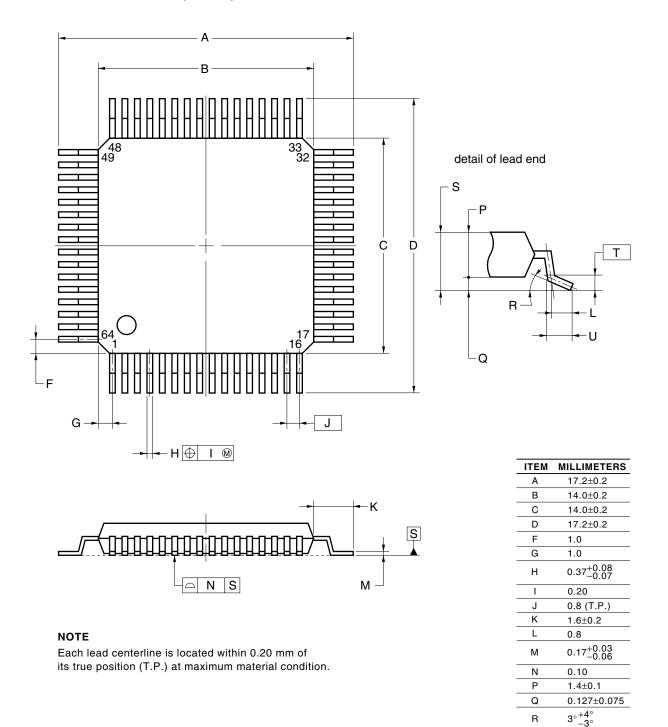
External data access (no wait):

External data access (wait insertion):

Flash Memory Programming Characteristics ($T_A = +10$ to $+40^{\circ}C$, $V_{DD} = 2.7$ to 5.5 V, $V_{SS} = AV_{SS} = 0$ V)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Operating frequency	fx	$4.0 \ V \leq V_{DD}$	≤ 5.5 V		1.0		8.38	MHz
		$2.7~V \leq V_{\text{DD}}$	< 4.0 V		1.0		5.00	MHz
VPP supply voltage	VPP2	During flash	n memory program	nming	9.7	10.0	10.3	V
VDD supply current	IDD	When	fx = 8.38 MHz	$V_{DD} = 5.0 \text{ V} \pm 10\%$			24	mA
		$V_{PP} = V_{PP2}$	fx = 5.00 MHz	$V_{DD} = 3.0 \text{ V} \pm 10\%$			12	mA
VPP supply current	Ірр	When VPP =	When VPP = VPP2				100	mA
Step erase time ^{Note 1}	Ter				0.99	1.0	1.01	s
Overall erase time per area ^{Note 2}	Tera	When step	When step erase time = 1 s				20	s/area
Step write time	Twr				50		100	μs
Overall write time per word ^{Note 3}	Twrw	When step write time = 100 μ s					1000	μs
Number of rewrites per area ^{Note 4}	Cerwr	1 erase + 1 write after erase = 1 rewrite					20	Times/area

(1) Write erase characteristics


Notes 1. The recommended setting value of the step erase time is 1 s.

- 2. The prewrite time before erasure and the erase verify time (writeback time) are not included.
- 3. The actual write time per word is $100 \mu s$ longer. The internal verify time during or after a write is not included.
- When a product is first written after shipment, "erase → write" and "write only" are both taken as one rewrite.
 Example: P: Write, E: Erase
 Shipped product →P→E→P→E→P: 3 rewrites
 - Shipped product $\rightarrow E \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$: 3 rewrites

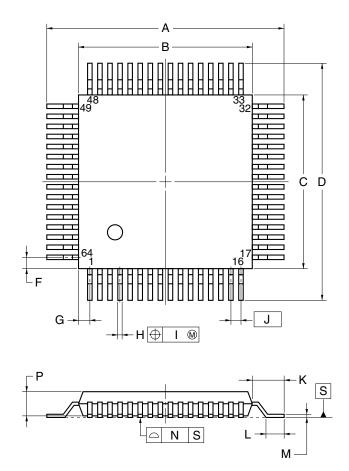
(2)	Serial	write	operation	characteristics
-----	--------	-------	-----------	-----------------

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Set time from VDD↑ to VPP↑	top		10			μs
Release time from V _{PP} ↑ to RESET↑	tpr		1.0			μs
V _{PP} pulse input start time from RESET↑	trp		1.0			μs
VPP pulse high-/low-level width	tew		8.0			μs
V _{PP} pulse input end time from RESET↑	trpe				20	ms
VPP pulse low-level input voltage	VPPL		0.8Vdd	Vdd	1.2VDD	V
VPP pulse high-level input voltage	VPPH		9.7	10.0	10.3	V

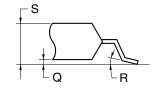
64-PIN PLASTIC LQFP (14x14)

Remark The external dimensions and materials of the ES version are the same as those of the mass-produced version.

1.7 MAX.


0.886±0.15 P64GC-80-8BS

0.25


S T

U

64-PIN PLASTIC QFP (14x14)

detail of lead end

NOTE

Each lead centerline is located within 0.15 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
А	17.6±0.4
В	14.0±0.2
С	14.0±0.2
D	17.6±0.4
F	1.0
G	1.0
н	$0.37\substack{+0.08 \\ -0.07}$
I	0.15
J	0.8 (T.P.)
К	1.8±0.2
L	0.8±0.2
М	$0.17\substack{+0.08 \\ -0.07}$
N	0.10
Р	2.55±0.1
Q	0.1±0.1
R	5°±5°
S	2.85 MAX.
	P64GC-80-AB8-5

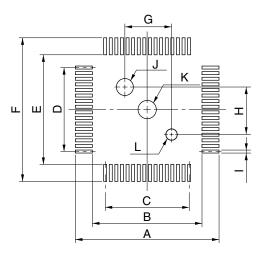

Remark The external dimensions and materials of the ES version are the same as those of the mass-produced version.

Table A-2. Major Differences Between μ PD78018F, 780024A, 780034A, and 780078 Subseries (Software) (1/2)

Name	µPD78018F Subseries ^{Note 1}	μPD780024A, 780034A	μPD780078	3 Subseries		
Item		Subseries				
A/D converter	_	Take the appropriate measures for the first A/D conversion result immediately after the A/D conversion operation is started (ADCS0 is set to 1), such as discarding it, because it may not satisfy the rating.				
			However, if a 14 μ s (MIN.) I secured after set to 1 before operation (AD 1), the first dat used.	nas been ADCE0 was e starting CS0 is set to		
16-bit timer/event counter	1 ch	1 ch	2 ch			
		TM0	 TM00	 		
Interval timer PWM output	0 0	0	0 _			
PPG output Pulse width measurement External event counter Square wave output	0					
Count clock	fx/2, fx/2 ² , fx/2 ³ , TI0	fx, fx/2 ² , fx/2 ⁶ , TI00	fx, fx/2 ² , fx/2 ⁶ , TI000	fx/2, fx/2 ³ fx/2 ⁹ , TI001		
Control register Output control register Compare/capture register Prescaler mode register Capture/compare control register	TMC0 TOC0 CR00, CR01 (Capture only) TCL0 ^{Note 2} —	TMC0 TOC0 CR00, CR01 PRM0 CRC0	TMC00 TOC00 CR000, CR010 PRM00 CRC00	TMC01 TOC01 CR001, CR011 PRM01 CRC01		
Interrupt	INTTMO	INTTM00, INTTM01	INTTM000, INTTM010	INTTM001, INTTM011		

Notes 1. Maintenance product

2. TCL0: Timer clock select register 0

Figure B-3. EV-9200GC-64 Recommended Board Mounting Pattern (for Reference Only)

EV-9200GC-64-P1E

ITEM	MILLIMETERS	INCHES	
Α	19.5	0.768	
В	14.8	0.583	
С	0.8-0.02 × 15=12.0-0.05	$0.031^{+0.002}_{-0.001}\!\!\times 0.591\!=\!\!0.472^{+0.003}_{-0.002}$	
D	0.8-0.02 × 15=12.0-0.05	$0.031^{+0.002}_{-0.001}\!\!\times 0.591\!=\!\!0.472^{+0.003}_{-0.002}$	
E	14.8	0.583	
F	19.5	0.768	
G	6.00-0.08	$0.236^{+0.004}_{-0.003}$	
Н	6.00-0.08	$0.236^{+0.004}_{-0.003}$	
I	0.5-0.02	$0.197\substack{+0.001\\-0.002}$	
J	¢2.36-0.03	ϕ 0.093 ^{+0.001} _{-0.002}	
К	¢2.2-0.1	$\phi_{0.087 \pm 0.005}^{+0.004}$	
L	¢1.57-0.03	$\phi_{0.062}^{+0.001}_{-0.002}$	

Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "Semiconductor Device Mount Manual" (http://www.necel.com/pkg/en/mount/index. html).

Edition	Contents	Applied to:	
2nd	Modification of 18.5.16 (3) (d) (ii) When WTIM0 = 1 (after restart, does not match with address (= not extension code))	CHAPTER 18 SERIAL INTERFACE IIC0	
	Modification of (1) Start condition ~ address and (2) Data in Figure 18-23 Example of Master to Slave Communication (When 9-Clock Wait Is Selected for Both Master and Slave)	(μPD780078Y SUBSERIES ONLY)	
	Modification of Figure 18-24 Example of Slave to Master Communication (When 9-Clock Wait Is Selected for Both Master and Slave)	-	
	Modification of (E) Software interrupt in Figure 19-1 Basic Configuration of Interrupt Function	CHAPTER 19 INTERRUPT FUNCTIONS	
	Addition of Cautions 3 and 4 in Figure 19-2 Format of Interrupt Request Flag Register (IF0L, IF0H, IF1L)	-	
	Addition of Caution in Figure 19-5 Format of External Interrupt Rising Edge Enable Register (EGP), External Interrupt Falling Edge Enable Register (EGN)	-	
	Addition of description and Remark in 19.4.1 Non-maskable interrupt request acknowledgment operation	-	
	Addition of description in 19.4.2 Maskable interrupt acknowledgment operation	-	
	Addition of item to Table 19-4 Interrupt Requests Enabled for Multiple Interrupt Servicing	-	
	Addition of description about when using expanded-specification products	CHAPTER 20 EXTERNAL DEVICE EXPANSION FUNCTION	
	Addition of clock output and buzzer output in Table 21-1 HALT Mode Operating Statuses	CHAPTER 21 STANDBY FUNCTION	
	Modification of clock output in Table 21-3 STOP Mode Operating Statuses	-	
	Modification of chapter	CHAPTER 23 μPD78F0078, 78F0078Υ	
	Addition of chapters	CHAPTER 25 ELECTRICAL SPECIFICATIONS	
		CHAPTER 26 PACKAGE DRAWINGS	
		CHAPTER 27 RECOMMENDED SOLDERING CONDITIONS	
	Addition of Table A-2 Major Differences Between μ PD78018F, 780024A , 780034A, and 780078 Subseries (Software)	APPENDIX A DIFFERENCES BETWEEN μPD78018F, 780024A, 780034A, AND 780078 SUBSERIES	
	Modification of chapter	APPENDIX B DEVELOPMENT TOOLS	
	Addition of chapters	APPENDIX C NOTES ON TARGET SYSTEM DESIGI	
		APPENDIX E REVISION HISTORY	

		(1/1)	
Edition	Contents	Applied to:	
3rd	Modification of description in (1) Registers to be used in 16.4.2 3-wire serial I/O mode	CHAPTER 16 SERIAL INTERFACE SIO3	
	Modification of Table 16-3 Register Settings		
	Partial modification of Figure 17-1 Block Diagram of Serial Interface CSI1	CHAPTER 17 SERIAL	
	Partial modification of Figure 17-3 Format of Serial Clock Select Register 1 (CSIC1)	INTERFACE CSI1	
	Modification of description in (1) Registers to be used in 17.4.2 3-wire serial I/O mode		
	Addition of (5) SO1 output to 17.4.2 3-wire serial I/O mode		
	Modification of Figure 18-18 Communication Reservation Timing	CHAPTER 18 SERIAL	
	Modification of Figure 18-21 Master Operation Flowchart (5/5)	INTERFACE IIC0 - (μPD780078Y SUBSERIES ONLY)	
	Modification of Figure 18-21 Master Operation Flowchart		
	Modification of (2) Slave operation in 18.5.15 Communication operations		
	Addition of Table 19-3 Ports Corresponding to EGPn and EGNn	CHAPTER 19 INTERRUPT FUNCTIONS	
	Modification of part of description in 19.4.1 Non-maskable interrupt request acknowledgment operation		
	Modification of part of description in 19.4.2 Maskable interrupt request acknowledgment operation		
	Addition of Note to Figure 20-2 Format of Memory Expansion Mode Register (MEM) and addition of Figure 20-3 Pins Specified for Address (with μ PD780076 and 780076Y)	CHAPTER 20 EXTERNAL DEVICE EXPANSION FUNCTION	
	Partial modification of Table 23-3 Communication Mode List	CHAPTER 23 μPD78F0078, 78F0078Υ	
	Division of Note in previous edition of Figure 23-5 Example of Connection with Dedicated Flash Programmer to Notes 1 and 2 and modification of contents		
	Addition of description on voltage monitoring of dedicated flash programmer to < Power supply > in 23.3.3 On-board pin processing		
	Revision of CHAPTER 25 ELECTRICAL SPECIFICATIONS (EXPANDED- SPECIFICATION PRODUCTS OF μPD780076, 780078, 78F0078)	CHAPTER 25 ELECTRI- CAL SPECIFICATIONS (EXPANDED-SPECIFICA- TION PRODUCTS OF μPD780076, 780078, 78F0078)	
	Addition of CHAPTER 26 ELECTRICAL SPECIFICATIONS (EXPANDED- SPECIFICATION PRODUCTS OF μPD780076Y, 780078Y, 78F0078Y)	CHAPTER 26 ELECTRI- CAL SPECIFICATIONS (EXPANDED-SPECIFICA- TION PRODUCTS OF μPD780076Y, 780078Y, 78F0078Y)	
	Revision of CHAPTER 27 ELECTRICAL SPECIFICATIONS (CONVENTIONAL PRODUCTS)	CHAPTER 27 ELECTRI- CAL SPECIFICATIONS (CONVENTIONAL PRODUCTS)	
	Partial modification of Table 29-1 Surface Mounting Type Soldering Conditions	CHAPTER 29 RECOM- MENDED SOLDERING CONDITIONS	
	Deletion of B.7 Embedded Software and B.8 System Upgrade from Former In-circuit Emulator for 78K/0 Series to IE-78001-R-A in the previous edition	APPENDIX B DEVELOP- MENT TOOLS	

(7/7)