

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb95f396kpmc-g-sne2
Supplier Device Package	48-LQFP (7x7)
Package / Case	48-LQFP
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Oscillator Type	External
Data Converters	A/D 12x8/10b
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
RAM Size	1008 x 8
EEPROM Size	-
Program Memory Type	FLASH
Program Memory Size	36KB (36K x 8)
lumber of I/O	45
Peripherals	LVD, POR, PWM, WDT
Connectivity	I ² C, LINbus, SIO, UART/USART
Speed	16MHz
Core Size	8-Bit
Core Processor	F ² MC-8FX
Product Status	Obsolete
Details	

3. Differences Among Products and Notes on Product Selection

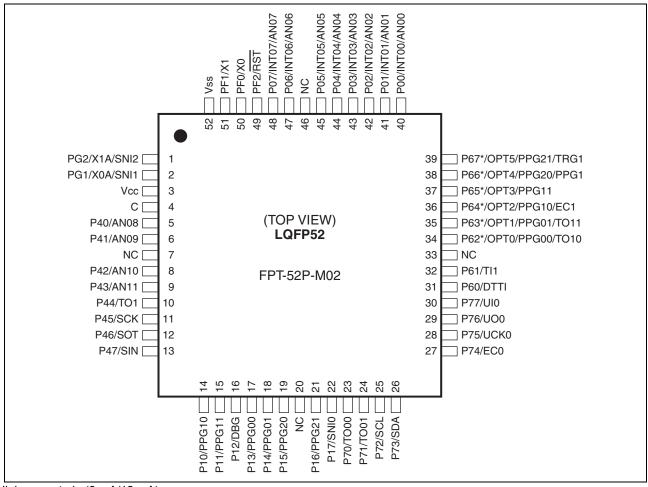
■ Current consumption

When using the on-chip debug function, take account of the current consumption of flash erase/write. For details of current consumption, see "Electrical Characteristics".

■ Package

For details of information on each package, see "Packages and Corresponding Products" and "Package Dimension".

■ Operating voltage


The operating voltage varies, depending on whether the on-chip debug function is used or not. For details of the operating voltage, see "Electrical Characteristics".

■ On-chip debug function

The on-chip debug function requires that V_{CC} , V_{SS} and one serial wire be connected to an evaluation tool. For details of the connection method, refer to "CHAPTER 29 EXAMPLE OF SERIAL PROGRAMMING CONNECTION" in the hardware manual of the MB95390H Series.

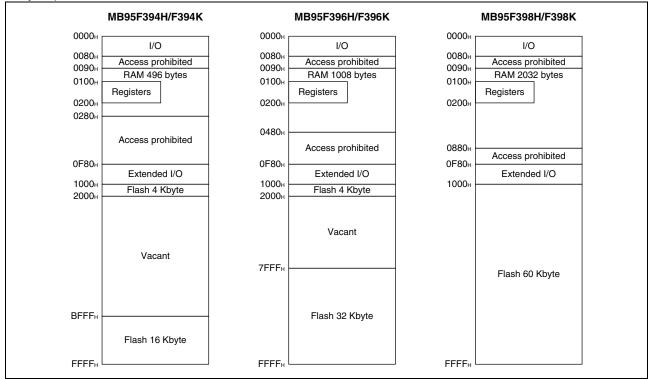
Document Number: 002-07573 Rev. *B Page 7 of 72

^{*:} High-current pin (8 mA/12 mA)

5. Pin Functions

	Pin no.		Pin	I/O	
LQFP48*1	QFN48* ²	LQFP52*3	name	circuit type* ⁴	Function
			PG2		General-purpose I/O port
1	1	1	X1A	С	Subclock I/O oscillation pin
	·	'	SNI2		Trigger input pin for the position detection function of the MPG waveform sequencer
			PG1		General-purpose I/O port
2	2	2	X0A	С	Subclock input oscillation pin
			SNI1		Trigger input pin for the position detection function of the MPG waveform sequencer
3	3	3	V _{CC}	_	Power supply pin
4	4	4	С	_	Capacitor connection pin
5	5	5	P40	K	General-purpose I/O port
3	3	3	AN08	IX.	A/D converter analog input pin
6	6	6	P41	K	General-purpose I/O port
0	U	0	AN09	IX.	A/D converter analog input pin
_	_	7	NC	_	It is an internally connected pin. Always leave it unconnected.
7	7	8	P42	К	General-purpose I/O port
,	,	O	AN10	K	A/D converter analog input pin
8	8	9	P43	K	General-purpose I/O port
0	0	9	AN11	K	A/D converter analog input pin
9	9	10	P44	G	General-purpose I/O port
		10	TO1	Ŭ	16-bit reload timer ch. 0 output pin
10	10	11	P45	G	General-purpose I/O port
10	10		SCK	0	LIN-UART clock I/O pin
11	11	12	P46	G	General-purpose I/O port
	11	12	SOT	0	LIN-UART data output pin
12	12	13	P47	J	General-purpose I/O port
12	12	10	SIN	o o	LIN-UART data input pin
13	13	14	P10	G	General-purpose I/O port
10	10	17	PPG10	0	8/16-bit PPG ch. 1 output pin
14	14	15	P11	G	General-purpose I/O port
17	14	10	PPG11	0	8/16-bit PPG ch. 1 output pin
15	15	16	P12	Н	General-purpose I/O port
10	10	10	DBG	""	DBG input pin
16	16	17	P13	G	General-purpose I/O port
10	10	17	PPG00		8/16-bit PPG ch. 0 output pin

	Pin no.		Pin	I/O	
LQFP48*1	QFN48* ²	LQFP52*3	name	circuit type* ⁴	Function
47	47	40	P14	_	General-purpose I/O port
17	17	18	PPG01	G	8/16-bit PPG ch. 0 output pin
40	40	40	P15	G	General-purpose I/O port
18	18	19	PPG20	G	8/16-bit PPG ch. 2 output pin
_	_	20	NC	_	It is an internally connected pin. Always leave it unconnected.
19	19	21	P16	G	General-purpose I/O port
19	19	21	PPG21]	8/16-bit PPG ch. 2 output pin
			P17		General-purpose I/O port
20	20	22	SNI0	G	Trigger input pin for the position detection function of the MPG waveform sequencer
21	21	23	P70	G	General-purpose I/O port
21	21	23	TO00	G	8/16-bit composite timer ch. 0 output pin
22	22	24	P71	G	General-purpose I/O port
22	22	24	TO01	G	8/16-bit composite timer ch. 0 output pin
23	23	25	P72		General-purpose I/O port
25	25	23	SCL	'	I ² C clock I/O pin
24	24	26	P73	ı	General-purpose I/O port
24	24	20	SDA		I ² C data I/O pin
25	25	27	P74	G	General-purpose I/O port
20	25	21	EC0	Ŭ	8/16-bit composite timer ch. 0 clock input pin
26	26	28	P75	G	General-purpose I/O port
		20	UCK0	Ů	UART/SIO ch. 0 clock I/O pin
27	27	29	P76	G	General-purpose I/O port
21		20	UO0	Ů	UART/SIO ch. 0 data output pin
28	28	30	P77	J	General-purpose I/O port
		00	UI0	ŭ	UART/SIO ch. 0 data input pin
29	29	31	P60	G	General-purpose I/O port
		01	DTTI	J	MPG waveform sequencer input pin
30	30	32	P61	G	General-purpose I/O port
		<u> </u>	TI1		16-bit reload timer ch. 0 input pin
_	_	33	NC	_	It is an internally connected pin. Always leave it unconnected.
			P62		General-purpose I/O port High-current pin
31	31	34	OPT0	D	MPG waveform sequencer output pin
			PPG00		8/16-bit PPG ch. 0 output pin
			TO10		8/16-bit composite timer ch. 1 output pin



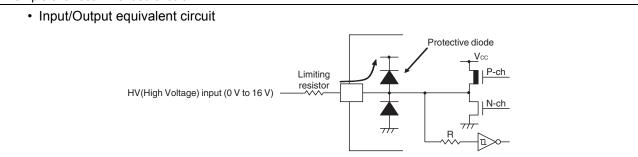
11. CPU Core

■ Memory Space

The memory space of the MB95390H Series is 64 Kbyte in size, and consists of an I/O area, a data area, and a program area. The memory space includes areas intended for specific purposes such as general-purpose registers and a vector table. The memory maps of the MB95390H Series are shown below.

■ Memory Maps

Address	Register abbreviation	Register name	R/W	Initial value
0FAC _H				
to 0FAF _H	_	(Disabled)	-	_
0FB0 _H	PDCRH1	16-bit PPG down counter register (upper)	R	00000000 _R
0FB1 _H	PDCRL1	16-bit PPG down counter register (lower)	R	00000000 _B
0FB2 _H	PCSRH1	16-bit PPG cycle setting buffer register (upper)	R/W	11111111 _B
0FB3 _H	PCSRL1	16-bit PPG cycle setting buffer register (lower)	R/W	11111111 _B
0FB4 _H	PDUTH1	16-bit PPG duty setting buffer register (upper)	R/W	11111111 _B
0FB5 _H	PDUTL1	16-bit PPG duty setting buffer register (lower)	R/W	11111111 _B
0FB6 _H to 0FBB _H	_	(Disabled)	_	_
0FBC _H	BGR1	LIN-UART baud rate generator register 1	R/W	00000000 _B
0FBD _H	BGR0	LIN-UART baud rate generator register 0	R/W	00000000 _B
0FBE _H	PSSR0	UART/SIO prescaler select register	R/W	00000000 _B
0FBF _H	BRSR0	UART/SIO baud rate setting register	R/W	00000000 _B
0FC0 _H , 0FC1 _H	_	(Disabled)	_	_
0FC2 _H	AIDRH	A/D input disable register (upper)	R/W	00000000 _B
0FC3 _H	AIDRL	A/D input disable register (lower)	R/W	00000000 _B
0FC4 _H	OPDBRH0	Output data buffer register (upper) ch. 0	R/W	00000000 _B
0FC5 _H	OPDBRL0	Output data buffer register (lower) ch. 0	R/W	00000000 _B
0FC6 _H	OPDBRH1	Output data buffer register (upper) ch. 1	R/W	00000000 _B
0FC7 _H	OPDBRL1	Output data buffer register (lower) ch. 1	R/W	00000000 _B
0FC8 _H	OPDBRH2	Output data buffer register (upper) ch. 2	R/W	00000000 _B
0FC9 _H	OPDBRL2	Output data buffer register (lower) ch. 2	R/W	00000000 _B
0FCA _H	OPDBRH3	Output data buffer register (upper) ch. 3	R/W	00000000 _B
0FCB _H	OPDBRL3	Output data buffer register (lower) ch. 3	R/W	00000000 _B
0FCC _H	OPDBRH4	Output data buffer register (upper) ch. 4	R/W	00000000 _B
0FCD _H	OPDBRL4	Output data buffer register (lower) ch. 4	R/W	00000000 _B
0FCE _H	OPDBRH5	Output data buffer register (upper) ch. 5	R/W	00000000 _B
0FCF _H	OPDBRL5	Output data buffer register (lower) ch. 5	R/W	00000000 _B
0FD0 _H	OPDBRH6	Output data buffer register (upper) ch. 6	R/W	00000000 _B
0FD1 _H	OPDBRL6	Output data buffer register (lower) ch. 6	R/W	00000000 _B
0FD2 _H	OPDBRH7	Output data buffer register (upper) ch. 7	R/W	00000000 _B
0FD3 _H	OPDBRL7	Output data buffer register (lower) ch. 7	R/W	00000000 _B
0FD4 _H	OPDBRH8	Output data buffer register (upper) ch. 8	R/W	00000000 _B
0FD5 _H	OPDBRL8	Output data buffer register (lower) ch. 8	R/W	00000000 _B
0FD6 _H	OPDBRH9	Output data buffer register (upper) ch. 9	R/W	00000000 _B
0FD7 _H	OPDBRL9	Output data buffer register (lower) ch. 9	R/W	00000000 _B
0FD8 _H	OPDBRHA	Output data buffer register (upper) ch. A	R/W	00000000 _B
0FD9 _H	OPDBRLA	Output data buffer register (lower) ch. A	R/W	00000000 _B


14. Electrical Characteristics

14.1 Absolute Maximum Ratings

Donomatan	Cumbal	Rat	ting	11:-::4	Downsylve
Parameter	Symbol	Min	Max	- Unit	Remarks
Power supply voltage*1	V _{CC}	V _{SS} - 0.3	V _{SS} + 6	V	
Input voltage*1	VI	V _{SS} - 0.3	V _{SS} + 6	V	*2
Output voltage*1	Vo	V _{SS} - 0.3	V _{SS} + 6	V	*2
Maximum clamp current	I _{CLAMP}	-2	+2	mA	Applicable to specific pins*3
Total maximum clamp current	$\Sigma I_{CLAMP} $	_	20	mA	Applicable to specific pins*3
"L" level maximum output	I _{OL1}	_	15		Other than P62 to P67
current	I _{OL2}	_	15	mA	P62 to P67
"I " lovel everage eurrort	I _{OLAV1}	_	4	A	Other than P62 to P67 Average output current = operating current × operating ratio (1 pin)
"L" level average current	I _{OLAV2}	_	12	mA	P62 to P67 Average output current = operating current × operating ratio (1 pin)
"L" level total maximum output current	ΣI_{OL}	_	100	mA	
"L" level total average output current	Σl _{OLAV}	_	50	mA	Total average output current = operating current × operating ratio (Total number of pins)
"H" level maximum output	I _{OH1}	_	-15	mA	Other than P12, P62 to P67, P72, P73 and PF2
current	I _{OH2}	_	-15		P12, P62 to P67, P72, P73 and PF2
"H" level average current	I _{OHAV1}	_	-4	mA	Other than P12, P62 to P67, P72, P73 and PF2 Average output current = operating current × operating ratio (1 pin)
	I _{OHAV2}	_	-8		P12, P62 to P67, P72, P73 and PF2 Average output current = operating current × operating ratio (1 pin)
"H" level total maximum output current	ΣI_{OH}	_	-100	mA	
"H" level total average output current	ΣI_{OHAV}	_	-50	mA	Total average output current = operating current × operating ratio (Total number of pins)
Power consumption	Pd	_	320	mW	
Operating temperature	T _A	-40	+85	°C	
Storage temperature	Tstg	-55	+150	°C	

- *1: The parameter is based on V_{SS} = 0.0 V.
- *2: V_I and V_O must not exceed V_{CC} + 0.3 V. V_I must not exceed the rated voltage. However, if the maximum current to/from an input is limited by means of an external component, the I_{CLAMP} rating is used instead of the V_I rating.
- *3: Applicable to the following pins: P00 to P07, P10, P11, P13 to P17, P40 to P47, P60 to P67, P70, P71, P74 to P77, PF0, PF1, PG1 and PG2
 - · Use under recommended operating conditions.
 - · Use with DC voltage (current).
 - The HV (High Voltage) signal is an input signal exceeding the V_{CC} voltage. Always connect a limiting resistor between the HV (High Voltage) signal and the microcontroller before applying the HV (High Voltage) signal.
 - The value of the limiting resistor should be set to a value at which the current to be input to the microcontroller pin when the HV (High Voltage) signal is input is below the standard value, irrespective of whether the current is transient current or stationary current.
 - When the microcontroller drive current is low, such as in low power consumption modes, the HV (High Voltage) input potential
 may pass through the protective diode to increase the potential of the V_{CC} pin, affecting other devices.
 - If the HV (High Voltage) signal is input when the microcontroller power supply is off (not fixed at 0 V), since power is supplied from the pins, incomplete operations may be executed.
 - If the HV (High Voltage) input is input after power-on, since power is supplied from the pins, the voltage of power supply may not be sufficient to enable a power-on reset.
 - Do not leave the HV (High Voltage) input pin unconnected.
 - · Example of a recommended circuit

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

Document Number: 002-07573 Rev. *B

14.3 DC Characteristics

(V_{CC} = 5.0 V±10%, V_{SS} = 0.0 V, T_A = $-40^{\circ}C$ to $+85^{\circ}C$)

					Value			Remarks
Parameter	Symbol	Pin name	Condition	Min	Typ*3		Unit	
	V _{IHI}	P47, P72, P73, P77	*1	0.7 V _{CC}	_	V _{CC} + 0.3	V	When CMOS input level (hysteresis input) is selected
"H" level input voltage	V_{IHS}	P00 to P07, P10 to P17, P40 to P47, P60 to P67, P70 to P77, PF0, PF1, PG1, PG2	*1	0.8 V _{CC}		V _{CC} + 0.3	>	Hysteresis input
	V_{IHM}	PF2		0.7 V _{CC}	_	$V_{CC} + 0.3$	V	Hysteresis input
"L" level input voltage	V_{IL}	P47, P72, P73, P77	*1	V _{SS} - 0.3		0.3 V _{CC}	V	When CMOS input level (hysteresis input) is selected
	V _{ILS}	P00 to P07, P10 to P17, P40 to P47, P60 to P67, P70 to P77, PF0, PF1, PG1, PG2	*1	V _{SS} - 0.3		0.2 V _{CC}	V	Hysteresis input
	V _{ILM}	PF2	_	V _{SS} - 0.3	_	0.3 V _{CC}	V	Hysteresis input
Open-drain output application voltage	V _D	P12, P72, P73, PF2	_	V _{SS} - 0.3	_	V _{SS} + 5.5	٧	
"H" level output voltage	V _{OH1}	Output pins other than P12, P62 to P67, P72, P73, PF2	I _{OH} = -4 mA	V _{CC} - 0.5	_	_	٧	
	V _{OH2}	P62 to P67	I _{OH} = -8 mA	V _{CC} - 0.5	_	_	V	
"L" level output voltage	V _{OL1}	Output pins other than P62 to P67	I _{OL} = 4 mA	_		0.4	V	
	V _{OL2}	P62 to P67	I _{OL} = 12 mA	_	_	0.4	V	
Input leak current (Hi-Z output leak current)	I _{LI}	All input pins	0.0 V < V _I < V _{CC}	-5	_	+5	μΑ	When pull-up resistance is disabled
Pull-up resistance	R _{PULL}	P00 to P07, P10, P11, P13 to P17, P40 to P47, P60, P61, P70, P71, P74 to P76, PG1, PG2	V _I = 0 V	25	50	100	kΩ	When pull-up resistance is enabled

(V_{CC} = 5.0 V±10%, V_{SS} = 0.0 V, T_A = -40° C to $+85^{\circ}$ C)

D		D .	0		Value			
Parameter	Symbol	Pin name	Condition	Min	Typ*3	Max	Unit	Remarks
Input capacitance	C _{IN}	Other than V_{CC} and V_{SS}	f = 1 MHz	_	5	15	pF	
			V _{CC} = 5.5 V F _{CH} = 32 MHz	ı	14.8	17	mA	Except during Flash memory writing and erasing
	I _{CC}		F _{MP} = 16 MHz Main clock mode (divided by 2)	1	33.5	39.5	mA	During Flash memory writing and erasing
			(4		16.6	21	mA	At A/D conversion
	I _{ccs}		V_{CC} = 5.5 V F_{CH} = 32 MHz F_{MP} = 16 MHz Main sleep mode (divided by 2)	_	7	9	mA	
	I _{CCL}	V _{CC} (External clock operation)	V_{CC} = 5.5 V F_{CL} = 32 kHz F_{MPL} = 16 kHz Subclock mode (divided by 2) T_A = +25°C	1	60	153	μА	
Power supply current* ²	Iccls		V_{CC} = 5.5 V F_{CL} = 32 kHz F_{MPL} = 16 kHz Subsleep mode (divided by 2) T_A = +25°C	-	9.4	84	μА	
	Ісст		V_{CC} = 5.5 V F_{CL} = 32 kHz Watch mode Main stop mode T_A = +25°C	ı	4.3	30	μΑ	
	I _{CCMCR}		V _{CC} = 5.5 V F _{CRH} = 12.5 MHz F _{MP} = 12.5 MHz Main CR clock mode	-	11.8	13.2	mA	
	I _{CCSCR}		V _{CC} = 5.5 V Sub-CR clock mode (divided by 2) T _A = +25°C	_	113	410	μA	

14.4.2 Source Clock/Machine Clock

(V_{CC} = 5.0 V±10%, V_{SS} = 0.0 V, T_A = -40°C to +85°C)

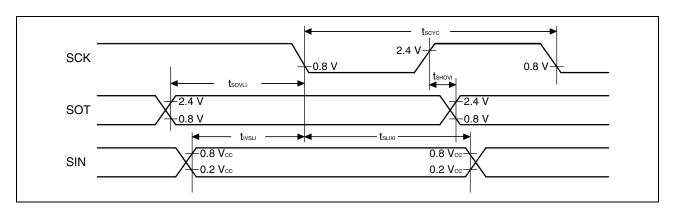
Doromotor	Cumbal	Pin		Value		Unit	Domoules
Parameter	Symbol	name	Min	Тур	Max	Unit	Remarks
			61.5	_	2000	ns	When the main external clock is used Min: F _{CH} = 32.5 MHz, divided by 2 Max: F _{CH} = 1 MHz, divided by 2
Source clock cycle time*1	t _{SCLK}	_	80	_	1000	ns	When the main CR clock is used Min: F _{CRH} = 12.5 MHz Max: F _{CRH} = 1 MHz
			_	61		μs	When the sub-oscillation clock is used F _{CL} = 32.768 kHz, divided by 2
			_	20		μs	When the sub-CR clock is used F _{CRL} = 100 kHz, divided by 2
	F _{SP}		0.5	_	16.25	MHz	When the main oscillation clock is used
Source clock frequency F _{SPL}	' SP		1	_	 — 12.5 MHz When the main CR clock is us 		When the main CR clock is used
		_	_	16.384	-	kHz	When the sub-oscillation clock is used
	F _{SPL}		_	50	_	kHz	When the sub-CR clock is used F _{CRL} = 100 kHz, divided by 2
			61.5	_	32000	ns	When the main oscillation clock is used Min: F _{SP} = 16.25 MHz, no division Max: F _{SP} = 0.5 MHz, divided by 16
Machine clock cycle time*2 (minimum			80	_	16000	ns	When the main CR clock is used Min: F _{SP} = 12.5 MHz Max: F _{SP} = 1 MHz, divided by 16
instruction execution time)	^t MCLK	_	61	_	976.5	μs	When the sub-oscillation clock is used Min: F _{SPL} = 16.384 kHz, no division Max: F _{SPL} = 16.384 kHz, divided by 16
			20	_	320	μs	When the sub-CR clock is used Min: F _{SPL} = 50 kHz, no division Max: F _{SPL} = 50 kHz, divided by 16
	F _{MP}		0.031	_	16.25	MHz	When the main oscillation clock is used
Machine clock	' MP		0.0625	_	12.5	MHz	When the main CR clock is used
frequency		_	1.024	_	16.384	kHz	When the sub-oscillation clock is used
, , , , ,	F _{MPL}		3.125	_	50	kHz	When the sub-CR clock is used F _{CRL} = 100 kHz

^{*1:} This is the clock before it is divided according to the division ratio set by the machine clock divide ratio select bits (SYCC:DIV1, DIV0). This source clock is divided to become a machine clock according to the divide ratio set by the machine clock divide ratio select bits (SYCC:DIV1, DIV0). In addition, a source clock can be selected from the following.

- Main clock divided by 2
- · Main CR clock
- Subclock divided by 2
- Sub-CR clock divided by 2

- Source clock (no division)
- · Source clock divided by 4
- Source clock divided by 8
- · Source clock divided by 16

^{*2:} This is the operating clock of the microcontroller. A machine clock can be selected from the following.



Sampling is executed at the rising edge of the sampling $\operatorname{clock}^{*1}$, and serial clock delay is enabled*². (ESCR register: SCES bit = 0, ECCR register: SCDE bit = 1)

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	Unit	
raiailletei	Symbol	Fill flame	Condition	Min	Max	Oint
Serial clock cycle time	t _{SCYC}	SCK		5 t _{MCLK} *3	_	ns
$SCK \uparrow \to SOT \ delay\ time$	t _{SHOVI}	SCK, SOT	Internal clock	-95	+95	ns
$Valid\;SIN\toSCK\;\!\downarrow$	t _{IVSLI}	SCK, SIN	operation output pin:	t _{MCLK} *3 + 190	_	ns
$SCK \downarrow \to valid \; SIN \; hold \; time$	t _{SLIXI}	SCK, SIN	C _L = 80 pF + 1 TTL	0	_	ns
$SOT \to SCK \downarrow delay \; time$	t _{SOVLI}	SCK, SOT		_	4 t _{MCLK} *3	ns

- *1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.
- *2: The serial clock delay function is a function that delays the output signal of the serial clock for half clock.
- *3: See "Source Clock/Machine Clock" for t_{MCLK}.

(V_{CC} = 5.0 V±10%, AV_{SS} = V_{SS} = 0.0 V, T_A = $-40^{\circ}C$ to $+85^{\circ}C$)

Parameter	Sym-	Pin	Condition	Valu	ıe* ²	Unit	Remarks
T di dillietei	bol	name	Condition	Min	Max	Oilit	Remarks
SCL clock "L" width	t _{LOW}	SCL		(2 + nm/2)t _{MCLK} - 20		ns	Master mode
SCL clock "H" width	t _{HIGH}	SCL		(nm/2)t _{MCLK} – 20	(nm/2)t _{MCLK} + 20	ns	Master mode
START condition hold time	t _{HD;STA}	SCL, SDA		(–1 + nm/2)t _{MCLK} – 20	(–1 + nm)t _{MCLK} + 20	ns	Master mode Maximum value is applied when m, n = 1, 8. Otherwise, the minimum value is applied.
STOP condition setup time	t _{SU;STO}	SCL, SDA		(1 + nm/2)t _{MCLK} - 20	(1 + nm/2)t _{MCLK} + 20	ns	Master mode
START condition setup time	t _{SU;STA}	SCL, SDA		(1 + nm/2)t _{MCLK} - 20	(1 + nm/2)t _{MCLK} + 20	ns	Master mode
Bus free time between STOP condition and START condition	t _{BUF}	SCL, SDA	R = 1.7 kΩ, C = 50 pF* ¹	(2 nm + 4)t _{MCLK} – 20	-	ns	
Data hold time	t _{HD;DAT}	SCL, SDA		3 t _{MCLK} – 20	_	ns	Master mode
Data setup time	^t su;dat	SCL, SDA		(-2 + nm/2)t _{MCLK} - 20	(-1 + nm/2)t _{MCLK} + 20	ns	Master mode When assuming that "L" of SCL is not extended, the minimum value is applied to first bit of continuous data. Otherwise, the maxi- mum value is ap- plied.
Setup time be- tween clearing interrupt and SCL rising	t _{SU;INT}	SCL		(nm/2)t _{MCLK} – 20	(1 + nm/2)t _{MCLK} + 20	ns	Minimum value is applied to interrupt at 9th SCL↓. Maximum value is applied to the interrupt at the 8th SCL↓.

(V_{CC} = 5.0 V±10%, AV_{SS} = V_{SS} = 0.0 V, T_A = -40°C to +85°C)

	Sym-	Pin		Value* ²			
Parameter	bol	name	Condition	Min	Max	Unit	Remarks
SCL clock "L" width	t _{LOW}	SCL		4 t _{MCLK} – 20	_	ns	At reception
SCL clock "H" width	t _{HIGH}	SCL		4 t _{MCLK} – 20	_	ns	At reception
START condition detection	t _{HD;STA}	SCL, SDA		2 t _{MCLK} – 20	_	ns	Not detected when 1 t _{MCLK} is used at reception
STOP condition detection	t _{SU;STO}	SCL, SDA		2 t _{MCLK} – 20	_	ns	Not detected when 1 t _{MCLK} is used at reception
RESTART condition detection condition	t _{SU;STA}	SCL, SDA		2 t _{MCLK} – 20	_	ns	Not detected when 1 t _{MCLK} is used at reception
Bus free time	t _{BUF}	SCL, SDA		2 t _{MCLK} – 20	_	ns	At reception
Data hold time	t _{HD;DAT}	SCL, SDA	R = 1.7 kΩ, C = 50 pF* ¹	2 t _{MCLK} – 20	_	ns	At slave transmission mode
Data setup time	t _{SU;DAT}	SCL, SDA		t _{LOW} - 3 t _{MCLK} - 20	_	ns	At slave transmission mode
Data hold time	t _{HD;DAT}	SCL, SDA		0	_	ns	At reception
Data setup time	t _{SU;DAT}	SCL, SDA		t _{MCLK} - 20	_	ns	At reception
SDA↓ → SCL↑ (at wakeup function)	t _{WAKEUP}	SCL, SDA		Oscillation stabilization wait time +2 t _{MCLK} - 20	_	ns	

^{*1:} R represents the pull-up resistor of the SCL and SDA lines, and C the load capacitor of the SCL and SDA lines.

- *2: See "Source Clock/Machine Clock" for t_{MCLK}.
 - m represents the CS4 bit and CS3 bit (bit4 and bit3) in the I²C clock control register (ICCR0).
 - n represents the CS2 bit to CS0 bit (bit2 to bit0) in the I²C clock control register (ICCR0).
 - The actual timing of I²C is determined by the values of m and n set by the machine clock (t_{MCLK}) and the CS4 to CS0 bits in the ICCR0 register.
 - · Standard-mode:

m and n can be set to values in the following range: 0.9 MHz < t_{MCLK} (machine clock) < 10 MHz.

The usable frequencies of the machine clock are determined by the settings of m and n as shown below.

 $\begin{array}{ll} (m,\,n) = (1,\,8) & : 0.9 \; \text{MHz} < t_{\text{MCLK}} \leq 1 \; \text{MHz} \\ (m,\,n) = (1,\,22),\,(5,\,4),\,(6,\,4),\,(7,\,4),\,(8,\,4) & : 0.9 \; \text{MHz} < t_{\text{MCLK}} \leq 2 \; \text{MHz} \\ \end{array}$

(m, n) = (1, 38), (5, 8), (6, 8), (7, 8), (8, 8) $0.9 \text{ MHz} < t_{\text{MCLK}} = 2 \text{ MHz}$

(m, n) = (1, 98) : 0.9 MHz < $t_{MCLK} \le 10$ MHz

· Fast-mode:

m and n can be set to values in the following range: 3.3 MHz < t_{MCLK} (machine clock) < 10 MHz.

The usable frequencies of the machine clock are determined by the settings of m and n as shown below.

 $\begin{array}{ll} (m,\,n) = (1,\,8) & : 3.3 \; \text{MHz} < t_{\text{MCLK}} \le 4 \; \text{MHz} \\ (m,\,n) = (1,\,22),\,(5,\,4) & : 3.3 \; \text{MHz} < t_{\text{MCLK}} \le 8 \; \text{MHz} \\ (m,\,n) = (6,\,4) & : 3.3 \; \text{MHz} < t_{\text{MCLK}} \le 10 \; \text{MHz} \end{array}$

14.5 A/D Converter

14.5.1 A/D Converter Electrical Characteristics

(V_{CC} = 4.0 V to 5.5 V, V_{SS} = 0.0 V, T_A = $-40^{\circ}C$ to $+85^{\circ}C$)

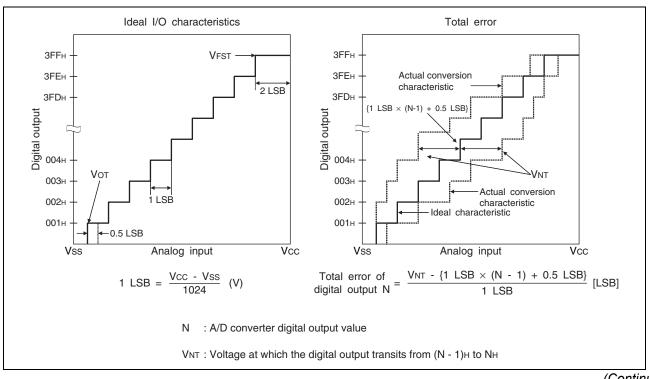
Davamatan	Cumbal		Value	Unit	Remarks	
Parameter	Symbol	Min Typ Max		Max	Unit	Remarks
Resolution		_	_	10	bit	
Total error		-3	_	+3	LSB	
Linearity error	—	-2.5	_	+2.5	LSB	
Differential linear error		-1.9	_	+1.9	LSB	
Zero transition voltage	V _{OT}	V _{SS} – 1.5 LSB	V _{SS} + 0.5 LSB	V _{SS} + 2.5 LSB	V	
Full-scale transition voltage	V _{FST}	V _{CC} – 4.5 LSB	V _{CC} – 2 LSB	V _{CC} + 0.5 LSB	V	
Compare time		0.9	_	16500	μs	$4.5 \text{ V} \le \text{V}_{CC} \le 5.5 \text{ V}$
Compare time	_	1.8	_	16500	μs	4.0 V ≤ V _{CC} < 4.5 V
Compling time		0.6	_	∞	μs	$4.5~\text{V} \le \text{V}_{CC} \le 5.5~\text{V}$, with external impedance < $5.4~\text{k}\Omega$
Sampling time		1.2	_	∞	μs	$4.0~\text{V} \leq \text{V}_{CC} \leq 4.5~\text{V}$, with external impedance $\leq 2.4~\text{k}\Omega$
Analog input current	I _{AIN}	-0.3	_	+0.3	μΑ	
Analog input voltage	V _{AIN}	V _{SS}	_	V _{CC}	V	

14.5.3 Definitions of A/D Converter Terms

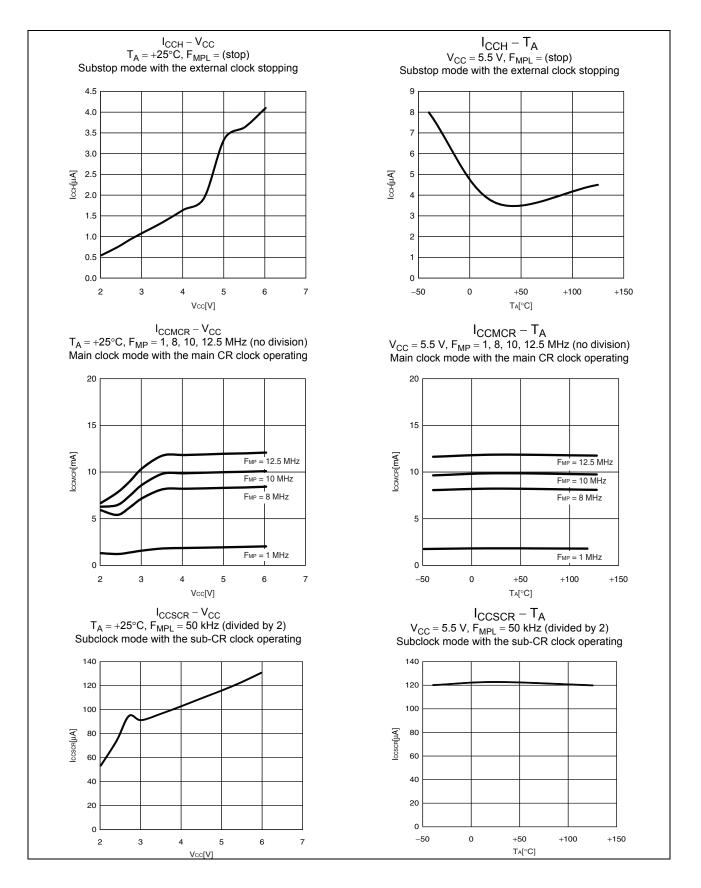
■ Resolution

It indicates the level of analog variation that can be distinguished by the A/D converter. When the number of bits is 10, analog voltage can be divided into $2^{10} = 1024$.

■ Linearity error (unit: LSB)


It indicates how much an actual conversion value deviates from the straight line connecting the zero transition point ("00 0000 0000" \leftarrow \rightarrow "00 0000 0001") of a device to the full-scale transition point ("11 1111 1111" \leftarrow \rightarrow "11 1111 1110") of the same device.

■ Differential linear error (unit: LSB)


It indicates how much the input voltage required to change the output code by 1 LSB deviates from an ideal value.

■ Total error (unit: LSB)

It indicates the difference between an actual value and a theoretical value. The error can be caused by a zero transition error, a full-scale transition errors, a linearity error, a quantum error, or noise.

16. Mask Options

No.	Part Number	MB95F394H MB95F396H MB95F398H	MB95F394K MB95F396K MB95F398K	
	Selectable/Fixed	Fixed		
1	Low-voltage detection reset	Without low-voltage detection reset	With low-voltage detection reset	
2	Reset	With dedicated reset input	Without dedicated reset input	

17. Ordering Information

Part Number	Package
MB95F394HPMC-G-SNE2 MB95F394KPMC-G-SNE2 MB95F396HPMC-G-SNE2 MB95F396KPMC-G-SNE2 MB95F398HPMC-G-SNE2 MB95F398KPMC-G-SNE2	48-pin plastic LQFP (FPT-48P-M49)
MB95F394HPMC1-G-SNE2 MB95F394KPMC1-G-SNE2 MB95F396HPMC1-G-SNE2 MB95F396KPMC1-G-SNE2 MB95F398HPMC1-G-SNE2 MB95F398KPMC1-G-SNE2	52-pin plastic LQFP (FPT-52P-M02)
MB95F394HWQN-G-SNE1 MB95F394HWQN-G-SNERE1 MB95F394KWQN-G-SNERE1 MB95F394KWQN-G-SNERE1 MB95F396HWQN-G-SNERE1 MB95F396HWQN-G-SNERE1 MB95F396KWQN-G-SNERE1 MB95F398HWQN-G-SNERE1 MB95F398HWQN-G-SNERE1 MB95F398HWQN-G-SNERE1 MB95F398KWQN-G-SNERE1 MB95F398KWQN-G-SNERE1 MB95F398KWQN-G-SNERE1	48-pin plastic QFN (LCC-48P-M11)

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers

Automotive

Clocks & Buffers

Interface

Internet of Things

cypress.com/arm

cypress.com/automotive

cypress.com/clocks

cypress.com/interface

cypress.com/iot

Memorycypress.com/memoryMicrocontrollerscypress.com/mcuPSoCcypress.com/psoc

Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless/RF cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation 2010-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (without the right to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.