Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Product Status | Obsolete | |----------------------------|--| | Core Processor | F ² MC-8FX | | Core Size | 8-Bit | | Speed | 16MHz | | Connectivity | I ² C, LINbus, SIO, UART/USART | | Peripherals | LVD, POR, PWM, WDT | | Number of I/O | 45 | | Program Memory Size | 60KB (60K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 1.98K x 8 | | /oltage - Supply (Vcc/Vdd) | 2.4V ~ 5.5V | | Data Converters | A/D 12x8/10b | | Oscillator Type | External | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 48-LQFP | | Supplier Device Package | 48-LQFP (7x7) | | Purchase URL | https://www.e-xfl.com/product-detail/infineon-technologies/mb95f398kpmc-g-sne2 | | Part number | , | | | | | | | | | | |--|--|---|---|----------------------------|--------------------|---------------------|--|--|--|--| | | MB95F394H | MB95F396H | MB95F398H | MB95F394K | MB95F396K | MB95F398K | | | | | | Parameter | 1112001 00411 | 1112001 00011 | III DOOL GOOTI | IIIDOOI OO 41X | III DOOL GOOK | III DOOL COOK | | | | | | | 1 channel | | | | | | | | | | | UART/SIO | Data transfer with UART/SIO is enabled. It has a full duplex double buffer, variable data length (5/6/7/8 bits), a built-in baud rate generator and an error detection function. It uses the NRZ type transfer format. LSB-first data transfer and MSB-first data transfer are available to use. Clock-asynchronous (UART) serial data transfer and clock-synchronous (SIO) serial data transfer is enabled. | | | | | | | | | | | | 1 channel | | | | | | | | | | | I ² C | It has the follow
wake-up function | | | | | detection function, | | | | | | | 3 channels | | | | | | | | | | | 8/16-bit PPG | The counter ope | rating clock can be | as two 8-bit PPG ch
selected from eight | | 16-bit PPG channel | | | | | | | 16-bit PPG | The counter opeIt supports extern | nal trigger start. | e available to use.
selected from eight
er with the multi-pul | | | | | | | | | 16-bit reload timer | It can output squCount clock: it caTwo counter ope | are waveform.
an be selected from
rating modes: reloa | operating modes are
n internal clocks (se
ad mode and one-sl
er with the multi-pul | ven types) and exte | ernal clocks. | | | | | | | Multi-pulse
generator (for DC
motor control) | 16-bit reload timeEvent counter: 1 | It can work independently or together with the multi-pulse generator. 16-bit PPG timer: 1 channel 16-bit reload timer operations: toggle output, one-shot output Event counter: 1 channel Waveform sequencer (including a 16-bit timer equipped with a buffer and a compare clear function) | | | | | | | | | | Watch prescaler | Eight different time | intervals can be se | elected. | | - | | | | | | | Flash memory | It supports automatic programming, Embedded Algorithm, and write/erase/erase-suspend/erase-resume commands. It has a flag indicating the completion of the operation of Embedded Algorithm. Number of write/erase cycles: 100000 Data retention time: 20 years Flash security feature for protecting the content of the Flash memory | | | | | | | | | | | Standby mode | Sleep mode, stop r | node, watch mode, | time-base timer mo | ode | | | | | | | | Package | | | FPT-52 | BP-M49
2P-M02
BP-M11 | | | | | | | ^{*:} High-current pin (8 mA/12 mA) # 7. Notes On Device Handling #### ■ Preventing latch-ups When using the device, ensure that the voltage applied does not exceed the maximum voltage rating. In a CMOS IC, if a voltage higher than V_{CC} or a voltage lower than V_{SS} is applied to an input/output pin that is neither a medium-withstand voltage pin nor a high-withstand voltage pin, or if a voltage out of the rating range of power supply voltage mentioned in "14.1 Absolute Maximum Ratings" of "Electrical Characteristics" is applied to the V_{CC} pin or the V_{SS} pin, a latch-up may occur. When a latch-up occurs, power supply current increases significantly, which may cause a component to be thermally destroyed. #### ■ Stabilizing supply voltage Supply voltage must be stabilized. A malfunction may occur when power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the V_{CC} power supply voltage. As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in V_{CC} ripple (p-p value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard V_{CC} value, and the transient fluctuation rate does not exceed 0.1 V/ms at a momentary fluctuation such as switching the power supply. #### Notes on using the external clock When an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from subclock mode or stop mode. #### 8. Pin Connection #### ■ Treatment of unused pins If an unused input pin is left unconnected, a component may be permanently damaged due to malfunctions or latch-ups. Always pull up or pull down an unused input pin through a resistor of at least $2 \text{ k}\Omega$. Set an unused input/output pin to the output state and leave it unconnected, or set it to the input state and treat it the same as an unused input pin. If there is an unused output pin, leave it unconnected. ## 9. Power supply pins To reduce unnecessary electro-magnetic emission, prevent malfunctions of strobe signals due to an increase in the ground level, and conform to the total output current standard, always connect the V_{CC} pin and the V_{SS} pin to the power supply and ground outside the device. In addition, connect the current supply source to the V_{CC} pin and the V_{SS} pin with low impedance. It is also advisable to connect a ceramic capacitor of approximately 0.1 μ F as a bypass capacitor between the V_{CC} pin and the V_{SS} pin at a location close to this device. ## ■ DBG pin Connect the DBG pin directly to an external pull-up resistor. To prevent the device from unintentionally entering the debug mode due to noise, minimize the distance between the DBG pin and the V_{CC} or V_{SS} pin when designing the layout of the printed circuit board. The DBG pin should not stay at "L" level after power-on until the reset output is released. #### ■ RST pin Connect the RST pin directly to an external pull-up resistor. To prevent the device from unintentionally entering the reset mode due to noise, minimize the distance between the \overline{RST} pin and the V_{CC} or V_{SS} pin when designing the layout of the printed circuit board. The RST/PF2 pin functions as the reset input/output pin after power-on. In addition, the reset output of the RST/PF2 pin can be enabled by the RSTOE bit in the SYSC register, and the reset input function and the general purpose I/O function can be selected by the RSTEN bit in the SYSC register. # 12. I/O Map | Address | Register abbreviation | Register name | | Initial value | |--|-----------------------|--|-----|-----------------------| | 0000 _H | PDR0 | Port 0 data register | R/W | 00000000 _B | | 0001 _H | DDR0 | Port 0 direction register | R/W | 00000000 _B | | 0002 _H | PDR1 | Port 1 data register | R/W | 00000000 _B | | 0003 _H | DDR1 | Port 1 direction register | R/W | 00000000 _B | | 0004 _H | _ | (Disabled) | | _ | | 0005 _H | WATR | Oscillation stabilization wait time setting register | R/W | 11111111 _B | | 0006 _H | _ | (Disabled) | | _ | | 0007 _H | SYCC | System clock control register | R/W | 0000X011 _B | | 0008 _H | STBC | Standby control register | R/W | 00000XXX _B | | 0009 _H | RSRR | Reset source register | R/W | XXXXXXXX | | 000A _H | TBTC | Time-base timer control register | R/W | 00000000 _B | | 000B _H | WPCR | Watch prescaler control register | R/W | 00000000 _B | | 000C _H | WDTC | Watchdog timer control register | R/W | 00XX0000 _B | | 000D _H | SYCC2 | System clock control register 2 | R/W | XX100011 _B | | 000E _H | | | | | | to
0011 _H | I | (Disabled) | _ | ı | | 0012 _H | PDR4 | Port 4 data register | R/W | 00000000 _B | | 0013 _H | PDR4 | Port 4 direction register | R/W | 00000000 _B | | 0014 _H ,
0015 _H | | (Disabled) | _ | - | | 0016 _H | PDR6 | Port 6 data register | R/W | 00000000 _B | | 0017 _H | DDR6 | Port 6 direction register | R/W | 00000000 _B | | 0018 _H | DDR7 | Port 7 data register | R/W | 00000000 _B | | 0019 _H | DDR7 | Port 7 direction register | R/W | 00000000 _B | | 001A _H
to
0027 _H | _ | (Disabled) | _ | _ | | 0028 _H | PDRF | Port F data register | R/W | 00000000 _B | | 0029 _H | DDRF | Port F direction register | R/W | 00000000 _B | | 002A _H | PDRG | Port G data register | R/W | 00000000 _B | | 002B _H | DDRG | Port G direction register | R/W | 00000000 _B | | 002C _H | PUL0 | Port 0 pull-up register | R/W | 00000000 _B | | 002D _H | PUL1 | Port 1 pull-up register | R/W | 00000000 _B | | 002E _H ,
002F _H | _ | (Disabled) | | _ | | 0030 _H | PUL4 | Port 4 pull-up register | R/W | 00000000 _B | | 0031 _H | PUL6 | Port 6 pull-up register | R/W | 00000000 _B | | 0032 _H | PUL7 | Port 7 pull-up register | R/W | 00000000 _B | | 0033 _H ,
0034 _H | _ | (Disabled) | _ | _ | | 0035 _H | PULG | Port G pull-up register | R/W | 00000000 _B | | Address | Register abbreviation | Register name | R/W | Initial value | |--|-----------------------|---|-----|-----------------------| | 0036 _H | T01CR1 | 8/16-bit composite timer 01 status control register 1 | R/W | 00000000 _B | | 0037 _H | T00CR1 | 8/16-bit composite timer 00 status control register 1 | R/W | 00000000 _B | | 0038 _H | T11CR1 | 8/16-bit composite timer 11 status control register 1 | R/W | 00000000 _B | | 0039 _H | T10CR1 | 8/16-bit composite timer 10 status control register 1 | R/W | 00000000 _B | | 003A _H | PC01 | 8/16-bit PPG timer 01 control register | R/W | 00000000 _B | | 003B _H | PC00 | 8/16-bit PPG timer 00 control register | R/W | 00000000 _B | | 003C _H | PC11 | 8/16-bit PPG timer 11 control register | R/W | 00000000 _B | | 003D _H | PC10 | 8/16-bit PPG timer 10 control register | R/W | 00000000 _B | | 003E _H | PC21 | 8/16-bit PPG timer 21 control register | R/W | 00000000 _B | | 003F _H | PC20 | 8/16-bit PPG timer 20 control register | R/W | 00000000 _B | | 0040 _H | TMCSRH1 | 16-bit reload timer control status register upper | R/W | 00000000 _B | | 0041 _H | TMCSRL1 | 16-bit reload timer control status register lower | R/W | 00000000 _B | | 0042 _H ,
0043 _H | _ | (Disabled) | _ | _ | | 0044 _H | PCNTH1 | 16-bit PPG status control register upper | R/W | 00000000 _B | | 0045 _H | PCNTL1 | 16-bit PPG status control register lower | R/W | 00000000 _B | | 0046 _H ,
0047 _H | _ | (Disabled) | _ | _ | | 0048 _H | EIC00 | External interrupt circuit control register ch. 0/ch. 1 | R/W | 00000000 _B | | 0049 _H | EIC10 | External interrupt circuit control register ch. 2/ch. 3 | R/W | 00000000 _B | | 004A _H | EIC20 | External interrupt circuit control register ch. 4/ch. 5 | R/W | 00000000 _B | | 004B _H | EIC30 | External interrupt circuit control register ch. 6/ch. 7 | R/W | 00000000 _B | | 004C _H
to
004F _H | _ | (Disabled) | _ | _ | | 0050 _H | SCR | LIN-UART serial control register | R/W | 00000000 _B | | 0051 _H | SMR | LIN-UART serial mode register | R/W | 00000000 _B | | 0052 _H | SSR | LIN-UART serial status register | R/W | 00001000 _B | | 0053 _H | RDR/TDR | LIN-UART receive/transmit data register | R/W | 00000000 _B | | 0054 _H | ESCR | LIN-UART extended status control register | R/W | 00000100 _B | | 0055 _H | ECCR | LIN-UART extended communication control register | R/W | 000000XX _B | | 0056 _H | SMC10 | UART/SIO serial mode control register 1 | R/W | 00000000 _B | | 0057 _H | SMC20 | UART/SIO serial mode control register 2 | R/W | 00100000 _B | | 0058 _H | SSR0 | UART/SIO serial status and data register | R/W | 00000001 _B | | 0059 _H | TDR0 | UART/SIO serial output data register | R/W | 00000000 _B | | 005A _H | RDR0 | UART/SIO serial input data register | R | 00000000 _B | | 005B _H | _ | (Disabled) | _ | _ | | 005F _H | | | | | | Address | Register abbreviation | Register name | R/W | Initial value | |-------------------|-----------------------|---|-----|-----------------------| | 0060 _H | IBCR00 | I ² C bus control register 0 | R/W | 00000000 _B | | 0061 _H | IBCR10 | I ² C bus control register 1 | | 00000000 _B | | 0062 _H | IBCR0 | I ² C bus status register | R/W | 00000000 _B | | 0063 _H | IDDR0 | I ² C data register | R/W | 00000000 _B | | 0064 _H | IAAR0 | I ² C address register | R/W | 00000000 _B | | 0065 _H | ICCR0 | I ² C clock control register | R/W | 00000000 _B | | 0066 _H | OPCUR | Output control register (upper) | R/W | 00000000 _B | | 0067 _H | OPCLR | Output control register (lower) | R/W | 00000000 _B | | 0068 _H | IPCUR | Input control register (upper) | R/W | 00000000 _B | | 0069 _H | IPCLR | Input control register (lower) | R/W | 00000000 _B | | 006A _H | NCCR | Noise cancellation control register | R/W | 00000000 _B | | 006B _H | TCSR | Timer control status register | R/W | 00000000 _B | | 006C _H | ADC1 | 8/10-bit A/D converter control register 1 | R/W | 00000000 _B | | 006D _H | ADC2 | 8/10-bit A/D converter control register 2 | R/W | 00000000 _B | | 006E _H | ADDH | 8/10-bit A/D converter data register (upper) | R/W | 00000000 _B | | 006F _H | ADDL | 8/10-bit A/D converter data register (lower) | R/W | 00000000 _B | | 0070 _H | _ | (Disabled) | _ | _ | | 0071 _H | FSR2 | Flash memory status register 2 | R/W | 00000000 _B | | 0072 _H | FSR | Flash memory status register | R/W | 000X0000 _B | | 0073 _H | SWRE0 | Flash memory sector write control register 0 | R/W | 00000000 _B | | 0074 _H | FSR3 | Flash memory status register 3 | R | 00000000 _B | | 0075 _H | _ | (Disabled) | _ | _ | | 0076 _H | WREN | Wild register address compare enable register | R/W | 00000000 _B | | 0077 _H | WROR | Wild register data test setting register | R/W | 00000000 _B | | 0078 _H | _ | Mirror of register bank pointer (RP) and mirror of direct bank pointer (DP) | _ | _ | | 0079 _H | ILR0 | Interrupt level setting register 0 | R/W | 11111111 _B | | 007A _H | ILR1 | Interrupt level setting register 1 | R/W | 11111111 _B | | 007B _H | ILR2 | Interrupt level setting register 2 | R/W | 11111111 _B | | 007C _H | ILR3 | Interrupt level setting register 3 | R/W | 11111111 _B | | 007D _H | ILR4 | Interrupt level setting register 4 | R/W | 11111111 _B | | 007E _H | ILR5 | Interrupt level setting register 5 | R/W | 11111111 _B | | 007F _H | _ | (Disabled) | - | _ | | 0F80 _H | WRARH0 | Wild register address setting register (upper) ch. 0 | R/W | 00000000 _B | | 0F81 _H | WRARL0 | Wild register address setting register (lower) ch. 0 | R/W | 00000000 _B | | 0F82 _H | WRDR0 | Wild register data setting register ch. 0 | R/W | 00000000 _B | | Address | Register abbreviation | Register name | R/W | Initial value | |--|-----------------------|--|-----|-----------------------| | 0F83 _H | WRARH1 | Wild register address setting register (upper) ch. 1 | R/W | 00000000 _B | | 0F84 _H | WRARL1 | Wild register address setting register (lower) ch. 1 | R/W | 00000000 _B | | 0F85 _H | WRDR1 | Wild register data setting register ch. 1 | R/W | 00000000 _B | | 0F86 _H | WRARH2 | Wild register address setting register (upper) ch. 2 | R/W | 00000000 _B | | 0F87 _H | WRARL2 | Wild register address setting register (lower) ch. 2 | R/W | 00000000 _B | | 0F88 _H | WRDR2 | Wild register data setting register ch. 2 | R/W | 00000000 _B | | 0F89 _H
to
0F91 _H | _ | (Disabled) | _ | _ | | 0F92 _H | T01CR0 | 8/16-bit composite timer 01 status control register 0 | R/W | 00000000 _B | | 0F93 _H | T00CR0 | 8/16-bit composite timer 00 status control register 0 | R/W | 00000000 _B | | 0F94 _H | T01DR | 8/16-bit composite timer 01 data register | R/W | 00000000 _B | | 0F95 _H | T00DR | 8/16-bit composite timer 00 data register | R/W | 00000000 _B | | 0F96 _H | TMCR0 | 8/16-bit composite timer 00/01 timer mode control register | R/W | 00000000 _B | | 0F97 _H | T11CR0 | 8/16-bit composite timer 11 status control register 0 | R/W | 00000000 _B | | 0F98 _H | T10CR0 | 8/16-bit composite timer 10 status control register 0 | R/W | 00000000 _B | | 0F99 _H | T11DR | 8/16-bit composite timer 11 data register | R/W | 00000000 _B | | 0F9A _H | T10DR | 8/16-bit composite timer 10 data register | R/W | 00000000 _B | | 0F9B _H | TMCR1 | 8/16-bit composite timer 10/11 timer mode control register | R/W | 00000000 _B | | 0F9C _H | PPS01 | 8/16-bit PPG01 cycle setting buffer register | R/W | 11111111 _B | | 0F9D _H | PPS00 | 8/16-bit PPG00 cycle setting buffer register | R/W | 11111111 _B | | 0F9E _H | PDS01 | 8/16-bit PPG01 duty setting buffer register | R/W | 11111111 _B | | 0F9F _H | PDS00 | 8/16-bit PPG00 duty setting buffer register | R/W | 11111111 _B | | 0FA0 _H | PPS11 | 8/16-bit PPG11 cycle setting buffer register | R/W | 11111111 _B | | 0FA1 _H | PPS10 | 8/16-bit PPG10 cycle setting buffer register | R/W | 11111111 _B | | 0FA2 _H | PDS11 | 8/16-bit PPG11 duty setting buffer register | R/W | 11111111 _B | | 0FA3 _H | PDS10 | 8/16-bit PPG10 duty setting buffer register | R/W | 11111111 _B | | 0FA4 _H | PPGS | 8/16-bit PPG startup register | R/W | 00000000 _B | | 0FA5 _H | REVC | 8/16-bit PPG output reverse register | R/W | 00000000 _B | | 0FA6 _H | PPS21 | 8/16-bit PPG21 cycle setting buffer register | R/W | 11111111 _B | | 0FA7 _H | PPS20 | 8/16-bit PPG20 cycle setting buffer register | R/W | 11111111 _B | | | TMRH1 | 16-bit reload timer timer register (upper) | DAM | 0000000 | | 0FA8 _H | TMRLRH1 | 16-bit reload timer reload register (upper) | R/W | 00000000 _B | | 0540 | TMRL1 | 16-bit reload timer timer register (lower) | DAM | 0000000 | | 0FA9 _H | TMRLRL1 | 16-bit reload timer reload register (lower) | R/W | 00000000 _B | | 0FAA _H | PDS21 | 8/16-bit PPG21 duty setting buffer register | R/W | 11111111 _B | | 0FAB _H | PDS20 | 8/16-bit PPG20 duty setting buffer register | R/W | 11111111 _B | # 13. Interrupt Source Table | | | Vector tab | le address | | Priority order of | |---|--------------------------------|-------------------|-------------------|--|---| | Interrupt source | Interrupt
request
number | Upper | Lower | Bit name of interrupt level setting register | interrupt sources
of the same level
(occurring
simultaneously) | | External interrupt ch. 0, ch. 4 | IRQ00 | FFFA _H | FFFB _H | L00 [1:0] | High | | External interrupt ch. 1, ch. 5 | IRQ01 | FFF8 _H | FFF9 _H | L01 [1:0] | A | | External interrupt ch. 2, ch. 6 | IRQ02 | FFF6 _H | FFF7 _H | L02 [1:0] | | | External interrupt ch. 3, ch. 7 | IRQ03 | FFF4 _H | FFF5 _H | L03 [1:0] | | | UART/SIO ch. 0, MPG (DTTI) | IRQ04 | FFF2 _H | FFF3 _H | L04 [1:0] | | | 8/16-bit composite timer ch. 0 (lower) | IRQ05 | FFF0 _H | FFF1 _H | L05 [1:0] | | | 8/16-bit composite timer ch. 0 (upper) | IRQ06 | FFEE _H | FFEF _H | L06 [1:0] | | | LIN-UART (reception) | IRQ07 | FFEC _H | FFED _H | L07 [1:0] | | | LIN-UART (transmission) | IRQ08 | FFEA _H | FFEB _H | L08 [1:0] | | | 8/16-bit PPG ch. 1 (lower) | IRQ09 | FFE8 _H | FFE9 _H | L09 [1:0] | | | 8/16-bit PPG ch. 1 (upper) | IRQ10 | FFE6 _H | FFE7 _H | L10 [1:0] | | | 8/16-bit PPG ch. 2 (upper) | IRQ11 | FFE4 _H | FFE5 _H | L11 [1:0] | | | 8/16-bit PPG ch. 0 (upper) | IRQ12 | FFE2 _H | FFE3 _H | L12 [1:0] | | | 8/16-bit PPG ch. 0 (lower) | IRQ13 | FFE0 _H | FFE1 _H | L13 [1:0] | | | 8/16-bit composite timer ch. 1 (upper) | IRQ14 | FFDE _H | FFDF _H | L14 [1:0] | | | 8/16-bit PPG ch. 2 (lower) | IRQ15 | FFDC _H | FFDD _H | L15 [1:0] | | | 16-bit reload timer ch. 1, MPG (write timing/compare clear), I ² C | IRQ16 | FFDA _H | FFDB _H | L16 [1:0] | | | 16-bit PPG timer ch. 1, MPG (position detection/compare match) | IRQ17 | FFD8 _H | FFD9 _H | L17 [1:0] | | | 8/10-bit A/D converter | IRQ18 | FFD6 _H | FFD7 _H | L18 [1:0] | | | Time-base timer | IRQ19 | FFD4 _H | FFD5 _H | L19 [1:0] | | | Watch prescaler | IRQ20 | FFD2 _H | FFD3 _H | L20 [1:0] | | | _ | IRQ21 | FFD0 _H | FFD1 _H | L21 [1:0] | | | 8/16-bit composite timer ch. 1 (lower) | IRQ22 | FFCE _H | FFCF _H | L22 [1:0] | | | Flash memory | IRQ23 | FFCC _H | FFCD _H | L23 [1:0] | | | | | | | | Low | # 14. Electrical Characteristics # 14.1 Absolute Maximum Ratings | Donomatan | Rating | | 11:-::4 | Downsylve | | |--|----------------------|-----------------------|---------------------|-----------|---| | Parameter | Symbol | Min | Max | - Unit | Remarks | | Power supply voltage*1 | V _{CC} | V _{SS} - 0.3 | V _{SS} + 6 | V | | | Input voltage*1 | VI | V _{SS} - 0.3 | V _{SS} + 6 | V | *2 | | Output voltage*1 | Vo | V _{SS} - 0.3 | V _{SS} + 6 | V | *2 | | Maximum clamp current | I _{CLAMP} | -2 | +2 | mA | Applicable to specific pins*3 | | Total maximum clamp current | $\Sigma I_{CLAMP} $ | _ | 20 | mA | Applicable to specific pins*3 | | "L" level maximum output | I _{OL1} | _ | 15 | | Other than P62 to P67 | | current | I _{OL2} | _ | 15 | mA | P62 to P67 | | "I " lovel everage eurrort | I _{OLAV1} | _ | 4 | A | Other than P62 to P67 Average output current = operating current × operating ratio (1 pin) | | "L" level average current | I _{OLAV2} | _ | 12 | mA | P62 to P67 Average output current = operating current × operating ratio (1 pin) | | "L" level total maximum output current | ΣI_{OL} | _ | 100 | mA | | | "L" level total average output current | Σl _{OLAV} | _ | 50 | mA | Total average output current = operating current × operating ratio (Total number of pins) | | "H" level maximum output | I _{OH1} | _ | -15 | mA | Other than P12, P62 to P67, P72, P73 and PF2 | | current | I _{OH2} | _ | -15 | | P12, P62 to P67, P72, P73 and PF2 | | "H" level average current | I _{OHAV1} | _ | -4 | mA | Other than P12, P62 to P67, P72, P73 and PF2 Average output current = operating current × operating ratio (1 pin) | | | I _{OHAV2} | _ | -8 | | P12, P62 to P67, P72, P73 and PF2
Average output current =
operating current × operating ratio
(1 pin) | | "H" level total maximum output current | ΣI_{OH} | _ | -100 | mA | | | "H" level total average output current | ΣI_{OHAV} | _ | -50 | mA | Total average output current = operating current × operating ratio (Total number of pins) | | Power consumption | Pd | _ | 320 | mW | | | Operating temperature | T _A | -40 | +85 | °C | | | Storage temperature | Tstg | -55 | +150 | °C | | # 14.3 DC Characteristics (V_{CC} = 5.0 V±10%, V_{SS} = 0.0 V, T_A = $-40^{\circ}C$ to $+85^{\circ}C$) | | | | | Value | | Value | | 33 1 7 A | |--|-------------------|---|--|-----------------------|-------|-----------------------|----------|--| | Parameter | Symbol | Pin name | Condition | Min | Typ*3 | | Unit | Remarks | | | V _{IHI} | P47, P72, P73, P77 | *1 | 0.7 V _{CC} | _ | V _{CC} + 0.3 | V | When CMOS input level (hysteresis input) is selected | | "H" level input
voltage | V_{IHS} | P00 to P07,
P10 to P17,
P40 to P47,
P60 to P67,
P70 to P77, PF0,
PF1, PG1, PG2 | *1 | 0.8 V _{CC} | | V _{CC} + 0.3 | > | Hysteresis input | | | V_{IHM} | PF2 | | 0.7 V _{CC} | _ | $V_{CC} + 0.3$ | V | Hysteresis input | | | V_{IL} | P47, P72, P73, P77 | *1 | V _{SS} - 0.3 | | 0.3 V _{CC} | V | When CMOS input level (hysteresis input) is selected | | "L" level input
voltage | V _{ILS} | P00 to P07,
P10 to P17,
P40 to P47,
P60 to P67,
P70 to P77, PF0,
PF1, PG1, PG2 | *1 | V _{SS} - 0.3 | | 0.2 V _{CC} | V | Hysteresis input | | | V _{ILM} | PF2 | _ | V _{SS} - 0.3 | _ | 0.3 V _{CC} | V | Hysteresis input | | Open-drain output application voltage | V _D | P12, P72, P73, PF2 | _ | V _{SS} - 0.3 | _ | V _{SS} + 5.5 | ٧ | | | "H" level output voltage | V _{OH1} | Output pins other
than P12, P62 to
P67, P72, P73, PF2 | I _{OH} = -4 mA | V _{CC} - 0.5 | _ | _ | ٧ | | | | V _{OH2} | P62 to P67 | I _{OH} = -8 mA | V _{CC} - 0.5 | _ | _ | V | | | "L" level output voltage | V _{OL1} | Output pins other
than
P62 to P67 | I _{OL} = 4 mA | _ | | 0.4 | V | | | | V _{OL2} | P62 to P67 | I _{OL} = 12 mA | _ | _ | 0.4 | V | | | Input leak
current (Hi-Z
output leak
current) | I _{LI} | All input pins | 0.0 V < V _I < V _{CC} | -5 | _ | +5 | μΑ | When pull-up resistance is disabled | | Pull-up
resistance | R _{PULL} | P00 to P07, P10,
P11,
P13 to P17,
P40 to P47, P60,
P61,
P70, P71,
P74 to P76, PG1,
PG2 | V _I = 0 V | 25 | 50 | 100 | kΩ | When pull-up resistance is enabled | #### 14.4 AC Characteristics # 14.4.1 Clock Timing (V_{CC} = 2.4 V to 5.5 V, V_{SS} = 0.0 V, T_A = -40° C to $+85^{\circ}$ C) | Parameter | Symbol | Pin name | Condition | | Value | | Unit | Remarks | | | | | |----------------------|--------------------------------------|--------------|-----------|-------|--------|-------|-------|--|------|---|------|-----| | Parameter | Symbol | Pili lialile | Condition | Min | Тур | Max | Ullit | Remarks | | | | | | | | X0, X1 | _ | 1 | _ | 16.25 | MHz | When the main oscillation circuit is used | | | | | | | F _{CH} | X0 | X1: open | 1 | _ | 12 | MHz | When the main external clock is | | | | | | | | X0, X1 | *1 | 1 | _ | 32.5 | MHz | used | | | | | | | | | | 12.25 | 12.5 | 12.75 | MHz | | | | | | | | | | | 9.80 | 10 | 10.20 | MHz | When the main CR clock is used ^{*2} | | | | | | | | | | 7.84 | 8 | 8.16 | MHz | When the main CR clock is used | | | | | | | _ | | | 0.98 | 1 | 1.02 | MHz | | | | | | | Clock frequency | F _{CRH} | _ | _ | 12.18 | 12.5 | 12.82 | MHz | | | | | | | | | | | 9.75 | 10 | 10.25 | MHz | When the main CR clock is used ^{*3} | | | | | | | | | | 7.80 | 8 | 8.20 | MHz | When the main CR clock is used a | | | | | | | | | | | | | | | 0.97 | 1 | 1.03 | MHz | | | F _{CL} X0A, X | V0A V4A | | _ | 32.768 | _ | kHz | When the sub-oscillation circuit is used | | | | | | | | XUA, X1A | _ | _ | 32.768 | _ | kHz | When the sub-external clock is used | | | | | | | F _{CRL} | _ | _ | 50 | 100 | 200 | kHz | When the sub-CR clock is used | | | | | | | | X0, X1 | _ | 61.5 | _ | 1000 | ns | When the main oscillation circuit is used | | | | | | Clock cycle time | t _{HCYL} | X0 | X1: open | 83.4 | _ | 1000 | ns | Miles of the content of all of the content | | | | | | | | X0, X1 | *1 | 30.8 | _ | 1000 | ns | When the external clock is used | | | | | | | t _{LCYL} | X0A, X1A | _ | _ | 30.5 | _ | μs | When the subclock is used | | | | | | | t _{WH1} | X0 | X1: open | 33.4 | _ | _ | ns | | | | | | | Input clock pulse | t _{WL1} | X0, X1 | *1 | 12.4 | _ | _ | ns | When the external clock is used, the duty ratio should range | | | | | | width | t _{WH2}
t _{WL2} | X0A | _ | _ | 15.2 | _ | μs | between 40% and 60%. | | | | | | Input clock rise | t _{CR} | X0 | X1: open | _ | _ | 5 | ns | Miles of the content of all of the content | | | | | | time and fall time | t _{CF} | X0, X1 | *1 | _ | | 5 | ns | When the external clock is used | | | | | | CR oscillation start | t _{CRHWK} | _ | _ | _ | _ | 80 | μs | When the main CR clock is used | | | | | | time | t _{CRLWK} | _ | _ | _ | _ | 10 | μs | When the sub-CR clock is used | | | | | ^{*1:} The external clock signal is input to X0 and the inverted external clock signal to X1. ^{*2:} These specifications are only applicable to a product in LQFP package (FPT-48P-M49 or FPT-52P-M02). ^{*3:} These specifications are only applicable to a product in QFN package (LCC-48P-M11). # 14.4.5 Peripheral Input Timing (V_{CC} = 5.0 V±10%, V_{SS} = 0.0 V, T_A = -40°C to +85°C) | Parameter | Symbol Pin name | | Va | Unit | | |----------------------------------|-------------------|---------------------------------------|-----------------------|------|-------| | Faranieter | Symbol | Fili liame | Min | Max | Oilit | | Peripheral input "H" pulse width | t _{ILIH} | INT00 to INT07, EC0, EC1,TI1, TRG1 | 2 t _{MCLK} * | _ | ns | | Peripheral input "L" pulse width | t _{IHIL} | 110100 to 110107, ECO, ECT, 111, TRG1 | 2 t _{MCLK} * | _ | ns | ^{*:} See "Source Clock/Machine Clock" for $t_{\mbox{\scriptsize MCLK}}$. ## 14.4.6 LIN-UART Timing Sampling is executed at the rising edge of the sampling clock*1, and serial clock delay is disabled*2. (ESCR register: SCES bit = 0, ECCR register: SCDE bit = 0) $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{T}_{A} = -40^{\circ}\text{C to} +85^{\circ}\text{C})$ | Parameter | Symbol | Symbol Pin name Conditio | | Va | Value | | |---|--------------------|--------------------------|--------------------------------------|---|-----------------------------|------| | Farameter | Symbol | Pili lialile | Condition | Min | Max | Unit | | Serial clock cycle time | t _{SCYC} | SCK | | 5 t _{MCLK} *3 | _ | ns | | $SCK \downarrow \to SOT \ delay\ time$ | t _{SLOVI} | SCK, SOT | Internal clock operation output pin: | -95 | +95 | ns | | Valid SIN \rightarrow SCK $↑$ | t _{IVSHI} | SCK, SIN | C _L = 80 pF + 1 TTL | t _{MCLK} *3 + 190 | _ | ns | | $SCK \uparrow \to valid \; SIN \; hold \; time$ | t _{SHIXI} | SCK, SIN | | 0 | _ | ns | | Serial clock "L" pulse width | t _{SLSH} | SCK | | 3 t _{MCLK} *3 - t _R | _ | ns | | Serial clock "H" pulse width | t _{SHSL} | SCK | | t _{MCLK} *3 + 95 | _ | ns | | $SCK \downarrow \to SOT$ delay time | t _{SLOVE} | SCK, SOT | External clock | _ | 2 t _{MCLK} *3 + 95 | ns | | Valid SIN → SCK ↑ | t _{IVSHE} | SCK, SIN | operation output pin: | 190 | _ | ns | | $SCK \uparrow \rightarrow valid SIN hold time$ | t _{SHIXE} | SCK, SIN | C _L = 80 pF + 1 TTL | t _{MCLK} *3 + 95 | _ | ns | | SCK fall time | t _F | SCK | | _ | 10 | ns | | SCK rise time | t _R | SCK | | _ | 10 | ns | ^{*1:} There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock. Document Number: 002-07573 Rev. *B ^{*2:} The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock. ^{*3:} See "Source Clock/Machine Clock" for t_{MCLK}. Sampling is executed at the falling edge of the sampling clock^{*1}, and serial clock delay is enabled^{*2}. (ESCR register: SCES bit = 1, ECCR register: SCDE bit = 1) | $(V_{CC} = 5.0)$ | V±10%, V _S | $_{s} = 0.0 \text{ V}, T_{\Delta}$ | $_{c} = -40^{\circ}$ C to | +85°C) | |------------------|-----------------------|------------------------------------|---------------------------|--------| | | | | | | | Parameter | Symbol | Pin name | Condition | Value | | Unit | |---|--------------------|----------|---|----------------------------|------------------------|-------| | Faiailletei | | | Condition | Min | Max | Oilit | | Serial clock cycle time | t _{SCYC} | SCK | | 5 t _{MCLK} *3 | | ns | | $SCK \downarrow \to SOT \ delay\ time$ | t _{SLOVI} | SCK, SOT | Internal clock operation | -95 | +95 | ns | | Valid SIN → SCK ↑ | t _{IVSHI} | SCK, SIN | output pin:
C _L = 80 pF + 1 TTL | t _{MCLK} *3 + 190 | _ | ns | | $SCK \uparrow \to valid \; SIN \; hold \; time$ | t _{SHIXI} | SCK, SIN | | 0 | _ | ns | | $SOT \rightarrow SCK \uparrow delay time$ | t _{SOVHI} | SCK, SOT | | _ | 4 t _{MCLK} *3 | ns | ^{*1:} There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock. ^{*3:} See "Source Clock/Machine Clock" for t_{MCLK}. ^{*2:} The serial clock delay function is a function that delays the output signal of the serial clock for half clock. (V_{CC} = 5.0 V±10%, AV_{SS} = V_{SS} = 0.0 V, T_A = -40°C to +85°C) | Parameter | Sym- | Sym- Pin | | Value* ² | | | | |---------------------------------------|---------------------|-------------|---------------------------------|--|-----|------|--| | | bol | name | Condition | Min | Max | Unit | Remarks | | SCL clock "L" width | t _{LOW} | SCL | | 4 t _{MCLK} – 20 | _ | ns | At reception | | SCL clock "H" width | t _{HIGH} | SCL | | 4 t _{MCLK} – 20 | _ | ns | At reception | | START condition detection | t _{HD;STA} | SCL,
SDA | $R = 1.7 kΩ$, $C = 50 pF^{*1}$ | 2 t _{MCLK} – 20 | _ | ns | Not detected when 1 t _{MCLK} is used at reception | | STOP condition detection | t _{SU;STO} | SCL,
SDA | | 2 t _{MCLK} – 20 | _ | ns | Not detected when 1 t _{MCLK} is used at reception | | RESTART condition detection condition | t _{SU;STA} | SCL,
SDA | | 2 t _{MCLK} – 20 | _ | ns | Not detected when 1 t _{MCLK} is used at reception | | Bus free time | t _{BUF} | SCL,
SDA | | 2 t _{MCLK} – 20 | _ | ns | At reception | | Data hold time | t _{HD;DAT} | SCL,
SDA | | 2 t _{MCLK} – 20 | _ | ns | At slave transmission mode | | Data setup time | t _{SU;DAT} | SCL,
SDA | | t _{LOW} - 3 t _{MCLK} - 20 | _ | ns | At slave transmission mode | | Data hold time | t _{HD;DAT} | SCL,
SDA | | 0 | _ | ns | At reception | | Data setup time | t _{SU;DAT} | SCL,
SDA | | t _{MCLK} - 20 | _ | ns | At reception | | SDA↓ → SCL↑ (at wakeup function) | t _{WAKEUP} | SCL,
SDA | | Oscillation
stabilization wait
time
+2 t _{MCLK} - 20 | _ | ns | | ^{*1:} R represents the pull-up resistor of the SCL and SDA lines, and C the load capacitor of the SCL and SDA lines. - *2: See "Source Clock/Machine Clock" for t_{MCLK}. - m represents the CS4 bit and CS3 bit (bit4 and bit3) in the I²C clock control register (ICCR0). - n represents the CS2 bit to CS0 bit (bit2 to bit0) in the I²C clock control register (ICCR0). - The actual timing of I²C is determined by the values of m and n set by the machine clock (t_{MCLK}) and the CS4 to CS0 bits in the ICCR0 register. - · Standard-mode: m and n can be set to values in the following range: 0.9 MHz < t_{MCLK} (machine clock) < 10 MHz. The usable frequencies of the machine clock are determined by the settings of m and n as shown below. $\begin{array}{ll} (m,\,n) = (1,\,8) & : 0.9 \; \text{MHz} < t_{\text{MCLK}} \leq 1 \; \text{MHz} \\ (m,\,n) = (1,\,22),\,(5,\,4),\,(6,\,4),\,(7,\,4),\,(8,\,4) & : 0.9 \; \text{MHz} < t_{\text{MCLK}} \leq 2 \; \text{MHz} \\ \end{array}$ (m, n) = (1, 38), (5, 8), (6, 8), (7, 8), (8, 8) $0.9 \text{ MHz} < t_{\text{MCLK}} = 2 \text{ MHz}$ (m, n) = (1, 98) : 0.9 MHz < $t_{MCLK} \le 10$ MHz · Fast-mode: m and n can be set to values in the following range: 3.3 MHz < t_{MCLK} (machine clock) < 10 MHz. The usable frequencies of the machine clock are determined by the settings of m and n as shown below. $\begin{array}{ll} (m,\,n) = (1,\,8) & : 3.3 \; \text{MHz} < t_{\text{MCLK}} \le 4 \; \text{MHz} \\ (m,\,n) = (1,\,22),\,(5,\,4) & : 3.3 \; \text{MHz} < t_{\text{MCLK}} \le 8 \; \text{MHz} \\ (m,\,n) = (6,\,4) & : 3.3 \; \text{MHz} < t_{\text{MCLK}} \le 10 \; \text{MHz} \end{array}$ # ■ Input voltage characteristics # ■ Pull-up characteristics # Sales, Solutions, and Legal Information ### Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. #### **Products** ARM® Cortex® Microcontrollers Automotive Clocks & Buffers Interface Internet of Things cypress.com/automotive cypress.com/clocks cypress.com/interface cypress.com/iot Memorycypress.com/memoryMicrocontrollerscypress.com/mcuPSoCcypress.com/psoc Power Management ICs cypress.com/pmic Touch Sensing cypress.com/touch USB Controllers cypress.com/usb Wireless/RF cypress.com/wireless # PSoC® Solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 ### **Cypress Developer Community** Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components ### **Technical Support** cypress.com/support © Cypress Semiconductor Corporation 2010-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (without the right to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.