Intel - 5CSEBA5U19C8SN Datasheet

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are Embedded - System On Chip (SoC)?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

Product Status	Active
Architecture	MCU, FPGA
Core Processor	Single ARM [®] Cortex [®] -A9 MPCore [™] with CoreSight [™]
Flash Size	-
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, MMC/SD/SDIO, SPI, UART/USART, USB OTG
Speed	600MHz
Primary Attributes	FPGA - 85K Logic Elements
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-FBGA
Supplier Device Package	484-UBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5cseba5u19c8sn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Condition (V)	Overshoot Duration as % of High Time	Unit
		4.5	0.6	%
		4.55	0.4	%
		4.6	0.2	%

For an overshoot of 3.8 V, the percentage of high time for the overshoot can be as high as 100% over a 10-year period. Percentage of high time is calculated as ([delta T]/T) × 100. This 10-year period assumes that the device is always turned on with 100% I/O toggle rate and 50% duty cycle signal.

Figure 1. **Cyclone V Devices Overshoot Duration**

Recommended Operating Conditions

This section lists the functional operation limits for the AC and DC parameters for Cyclone V devices.

Recommended Operating Conditions

Table 4. Recommended Operating Conditions for Cyclone V Devices

This table lists the steady-state voltage values expected from Cyclone V devices. Power supply ramps must all be strictly monotonic, without plateaus.

Symbol	Description	Condition	Minimum ⁽²⁾	Typical	Maximum ⁽²⁾	Unit
V _{CC}	Core voltage, periphery circuitry power supply, transceiver physical coding sublayer (PCS)	Devices without internal scrubbing feature	1.07	1.1	1.13	V
	(PCIe*) hard IP digital power supply	Devices with internal scrubbing feature (with SC suffix) ⁽³⁾	1.12	1.15	1.18	V
V _{CC_AUX}	Auxiliary supply	-	2.375	2.5	2.625	V
V _{CCPD} ⁽⁴⁾	I/O pre-driver power supply	3.3 V	3.135	3.3	3.465	V
		3.0 V	2.85	3.0	3.15	V
		2.5 V	2.375	2.5	2.625	V
V _{CCIO}	I/O buffers power supply	3.3 V	3.135	3.3	3.465	V
		3.0 V	2.85	3.0	3.15	V
		2.5 V	2.375	2.5	2.625	V
		1.8 V	1.71	1.8	1.89	V
		1.5 V	1.425	1.5	1.575	V
		1.35 V	1.283	1.35	1.418	V
		1.25 V	1.19	1.25	1.31	V
		1.2 V	1.14	1.2	1.26	V
		•			•	continued

⁽²⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽³⁾ The SEU internal scrubbing feature is available for Cyclone V E, GX, SE, and SX devices with the "SC" suffix in the part number. For device availability and ordering, contact your local Intel sales representatives.

⁽⁴⁾ V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, 1.35, 1.25, or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V. V_{CCPD} must be 3.3 V when V_{CCIO} is 3.3 V.

CV-51002 | 2018.05.07

HPS Power Supply Operating Conditions

Table 6. HPS Power Supply Operating Conditions for Cyclone V SX and ST Devices

This table lists the steady-state voltage and current values expected from Cyclone V system-on-a-chip (SoC) devices with Arm*-based hard processor system (HPS). Power supply ramps must all be strictly monotonic, without plateaus. Refer to the *Recommended Operating Conditions for Cyclone V Devices* table for the steady-state voltage values expected from the FPGA portion of the Cyclone V SoC devices.

Symbol	Description	Condition	Minimum ⁽¹¹⁾	Typical	Maximum ⁽¹¹⁾	Unit
V _{CC_HPS}	HPS core voltage and periphery circuitry power supply	_	1.07	1.1	1.13	V
V _{CCPD_HPS} ⁽¹²⁾	HPS I/O pre-driver power supply	3.3 V	3.135	3.3	3.465	V
		3.0 V	2.85	3.0	3.15	V
		2.5 V	2.375	2.5	2.625	V
V _{CCIO_HPS}	HPS I/O buffers power supply	3.3 V	3.135	3.3	3.465	V
		3.0 V	2.85	3.0	3.15	V
		2.5 V	2.375	2.5	2.625	V
		1.8 V	1.71	1.8	1.89	V
		1.5 V	1.425	1.5	1.575	V
		1.35 V ⁽¹³⁾	1.283	1.35	1.418	V
		1.2 V	1.14	1.2	1.26	V
V _{CCRSTCLK_HPS}	HPS reset and clock input pins power supply	3.3 V	3.135	3.3	3.465	V
		3.0 V	2.85	3.0	3.15	V
		2.5 V	2.375	2.5	2.625	V
						continued

⁽¹¹⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹²⁾ V_{CCPD_HPS} must be 2.5 V when V_{CCIO_HPS} is 2.5, 1.8, 1.5, or 1.2 V. V_{CCPD_HPS} must be 3.0 V when V_{CCIO_HPS} is 3.0 V. V_{CCPD_HPS} must be 3.3 V when V_{CCIO_HPS} is 3.3 V.

 $^{^{(13)}}$ V_{CCIO HPS} 1.35 V is supported for HPS row I/O bank only.

Table 9. OCT Calibration Accuracy Specifications for Cyclone V Devices

Calibration accuracy for the calibrated on-chip series termination (R_S OCT) and on-chip parallel termination (R_T OCT) are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.

Symbol	Description	Condition (V)	C	alibration Accura	c y	Unit
			-C6	-I7, -C7	-C8, -A7	
25-Ω R _S	Internal series termination with calibration (25- Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%
50-Ω R _S	Internal series termination with calibration (50- Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%
34- Ω and 40- Ω R _S	Internal series termination with calibration (34- Ω and 40- Ω setting)	V _{CCIO} = 1.5, 1.35, 1.25, 1.2	±15	±15	±15	%
48-Ω, 60-Ω, and 80-Ω $\rm R_S$	Internal series termination with calibration (48- Ω , 60- Ω , and 80- Ω setting)	V _{CCI0} = 1.2	±15	±15	±15	%
50-Ω R _T	Internal parallel termination with calibration (50- Ω setting)	V _{CCIO} = 2.5, 1.8, 1.5, 1.2	-10 to +40	-10 to +40	-10 to +40	%
20- Ω , 30- Ω , 40- Ω ,60- Ω , and 120- Ω R _T	Internal parallel termination with calibration (20- Ω , 30- Ω , 40- Ω , 60- Ω , and 120- Ω setting)	V _{CCI0} = 1.5, 1.35, 1.25	-10 to +40	-10 to +40	-10 to +40	%
$60\text{-}\Omega$ and $120\text{-}\Omega$ R_{T}	Internal parallel termination with calibration ($60-\Omega$ and $120-\Omega$ setting)	V _{CCIO} = 1.2	-10 to +40	-10 to +40	-10 to +40	%
$25-\Omega R_{S_left_shift}$	Internal left shift series termination with calibration (25- Ω $R_{S_left_shift}$ setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%

I/O Standard		V _{CCIO} (V)		V _{REF} (V)				V _{TT} (V)	
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Мах
SSTL-15 Class I, II	1.425	1.5	1.575	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$
SSTL-135 Class I, II	1.283	1.35	1.418	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$
SSTL-125 Class I, II	1.19	1.25	1.26	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	0.49 × V _{CCIO}	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	_	V _{CCIO} /2	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.68	0.75	0.9	_	V _{CCIO} /2	_
HSTL-12 Class I, II	1.14	1.2	1.26	$0.47 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.53 \times V_{CCIO}$	_	V _{CCIO} /2	_
HSUL-12	1.14	1.2	1.3	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	_	_	-

Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications

Table 17. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Cyclone V Devices

I/O Standard	VIL	(DC) (V)	V _{IH(DC}	c) (V)	V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{OL} (V)	V _{он} (V)	I _{OL} ⁽¹⁹⁾	I _{OH} ⁽¹⁹⁾
	Min	Max	Min	Max	Max	Min	Max	Min	(ma)	(ma)
SSTL-2 Class I	-0.3	V _{REF} - 0.15	$V_{REF} + 0.15$	$V_{CCIO} + 0.3$	V _{REF} - 0.31	V _{REF} + 0.31	V _{TT} - 0.608	V _{TT} + 0.608	8.1	-8.1
SSTL-2 Class II	-0.3	V _{REF} - 0.15	V _{REF} + 0.15	V _{CCIO} + 0.3	V _{REF} - 0.31	V _{REF} + 0.31	V _{TT} - 0.81	V _{TT} + 0.81	16.2	-16.2
SSTL-18 Class I	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	V _{CCIO} + 0.3	V _{REF} - 0.25	V _{REF} + 0.25	V _{TT} – 0.603	V _{TT} + 0.603	6.7	-6.7
SSTL-18 Class II	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	V _{CCIO} + 0.3	V _{REF} - 0.25	V _{REF} + 0.25	0.28	V _{CCIO} - 0.28	13.4	-13.4
	continued									

⁽¹⁹⁾ To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the SSTL15CI specification (8 mA), you should set the current strength settings to 8 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the datasheet.

Differential I/O Standard Specifications

Table 20. Differential I/O Standard Specifications for Cyclone V Devices

Differential inputs are powered by V_{CCPD} which requires 2.5 V.

I/O Standard		V _{CCIO} (V)			V _{ID} (mV) ⁽²¹⁾		V _{ICM(DC)} (V)		V _{ICM(DC)} (V)		V	OD (V) ⁽²²	!)	Voc	м (V) ⁽²²⁾	(23)
	Min	Тур	Мах	Min	Condition	Мах	Min	Condition	Мах	Min	Тур	Max	Min	Тур	Max	
PCML	PCML Transmitter, receiver, and input reference clock pins of high-speed transceivers use the PCML I/O standard. For transmitter, receiver, and reference clock I/O pin specifications, refer to <i>Transceiver Specifications for Cyclone V GX, GT, SX, and ST Devices</i> table.										ce clock					
2.5 V LVDS ⁽²⁴⁾	2.375	2.5	2.625	100	V _{CM} = 1.25 V	—	0.05	D _{MAX} ≤ 700 Mbps	1.80	0.247	_	0.6	1.125	1.25	1.375	
							1.05	D _{MAX} > 700 Mbps	1.55							
BLVDS ⁽²⁵⁾⁽²⁶⁾	2.375	2.5	2.625	100	_	_	-	-	_	_	_	-	-	_	_	
RSDS (HIO) ⁽²⁷⁾	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.25	-	1.45	0.1	0.2	0.6	0.5	1.2	1.4	
Mini-LVDS (HIO) (28)	2.375	2.5	2.625	200	_	600	0.300	_	1.425	0.25		0.6	1	1.2	1.4	
														conti	nued	

 $^{(21)}$ The minimum V_{ID} value is applicable over the entire common mode range, V_{CM}.

⁽²²⁾ R_L range: $90 \le R_L \le 110 \Omega$.

- ⁽²³⁾ This applies to default pre-emphasis setting only.
- (24) For optimized LVDS receiver performance, the receiver voltage input range must be within 1.0 V to 1.6 V for data rate above 700 Mbps and 0.00 V to 1.85 V for data rate below 700 Mbps.
- (25) There are no fixed V_{ICM}, V_{OD}, and V_{OCM} specifications for BLVDS. They depend on the system topology.
- ⁽²⁶⁾ For more information about BLVDS interface support in Intel devices, refer to AN522: Implementing Bus LVDS Interface in Supported Intel Device Families.
- ⁽²⁷⁾ For optimized RSDS receiver performance, the receiver voltage input range must be within 0.25 V to 1.45 V.
- ⁽²⁸⁾ For optimized mini-LVDS receiver performance, the receiver voltage input range must be within 0.300 V to 1.425 V.

Symbol/Description	Condition	Transceiver Speed Grade 5 ⁽³⁰⁾			Transce	iver Speed	Grade 6	Transce	Unit		
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Minimum differential eye opening at the receiver serial input pins ⁽⁴⁰⁾	-	110	-	-	110	-	-	110	-	_	mV
Differential on-chip	85-Ω setting	-	85	-	_	85	-	-	85	-	Ω
termination resistors	100-Ω setting	-	100	-	_	100	-	-	100	-	Ω
	120-Ω setting	-	120	-	_	120	-	-	120	-	Ω
	150-Ω setting	-	150	-	_	150	-	-	150	-	Ω
V _{ICM} (AC coupled)	2.5 V PCML, LVPECL, and LVDS	V _{CCE} _	_{GXBL} supply ⁽	34)(35)	Vo	_{CCE_GXBL} supp	oly	V	_{CCE_GXBL} sup	oly	V
	1.5 V PCML				0.6	65/0.75/0.8	(41)	•			V
t _{LTR} ⁽⁴²⁾	-	-	-	10	_	-	10	-	-	10	μs
t _{LTD} ⁽⁴³⁾	-	-	-	4	_	-	4	-	-	4	μs
t _{LTD_manual} (44)	_	-	_	4	_	-	4	-	-	4	μs
t _{LTR_LTD_manual} (45)	_	15	-	-	15	-	-	15	-	-	μs
										СО	ntinued

- $^{(43)}$ t_{LTD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.
- t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.

⁽⁴⁰⁾ The differential eye opening specification at the receiver input pins assumes that you have disabled the Receiver Equalization feature. If you enable the Receiver Equalization feature, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

⁽⁴¹⁾ The AC coupled V_{ICM} = 650 mV for Cyclone V GX and SX in PCIe mode only. The AC coupled V_{ICM} = 750mV for Cyclone V GT and ST in PCIe mode only.

 $^{^{(42)}}$ t_{LTR} is the time required for the receive clock data recovery (CDR) to lock to the input reference clock frequency after coming out of reset.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _{ARESET}	Minimum pulse width on the areset signal	_	10	-	-	ns
t _{INCCJ} ⁽⁵⁶⁾⁽⁵⁷⁾	Input clock cycle-to-cycle jitter	$F_{REF} \ge 100 \text{ MHz}$	—	_	0.15	UI (p-p)
		$F_{REF} < 100 \text{ MHz}$	—	_	±750	ps (p-p)
t _{outpj_dc} ⁽⁵⁸⁾	Period jitter for dedicated clock output in	$F_{OUT} \ge 100 \text{ MHz}$	—	-	300	ps (p-p)
	Integer PLL	F _{OUT} < 100 MHz	_	-	30	mUI (p-p)
t _{FOUTPJ_DC} ⁽⁵⁸⁾	Period jitter for dedicated clock output in	$F_{OUT} \ge 100 \text{ MHz}$	—	-	425 ⁽⁶¹⁾ , 300 ⁽⁵⁹⁾	ps (p-p)
		F _{OUT} < 100 MHz	—	-	42.5 ⁽⁶¹⁾ , 30 ⁽⁵⁹⁾	mUI (p-p)
t _{OUTCCJ_DC} ⁽⁵⁸⁾	Cycle-to-cycle jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$	—	-	300	ps (p-p)
		F _{OUT} < 100 MHz	—	-	30	mUI (p-p)
t _{FOUTCCJ_DC} ⁽⁵⁸⁾	Cycle-to-cycle jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$	_	-	425 ⁽⁶¹⁾ , 300 ⁽⁵⁹⁾	ps (p-p)
		F _{OUT} < 100 MHz	—	-	42.5 ⁽⁶¹⁾ , 30 ⁽⁵⁹⁾	mUI (p-p)
t _{outpj_io} ⁽⁵⁸⁾⁽⁶⁰⁾	Period jitter for clock output on a regular I/O	$F_{OUT} \ge 100 \text{ MHz}$	—	-	650	ps (p-p)
	in integer PLL	F _{OUT} < 100 MHz	—	-	65	mUI (p-p)
t _{FOUTPJ_IO} ⁽⁵⁸⁾⁽⁶⁰⁾⁽⁶¹⁾	Period jitter for clock output on a regular I/O in fractional PLL	$F_{OUT} \ge 100 \text{ MHz}$	_	_	650	ps (p-p)
						continued

(56) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps.</p>

- ⁽⁵⁷⁾ F_{REF} is f_{IN}/N , specification applies when N = 1.
- (58) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.999999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in *Memory Output Clock Jitter Specification for Cyclone V Devices* table.
- ⁽⁵⁹⁾ This specification only covers fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.20–0.80 must be \geq 1200 MHz.
- ⁽⁶⁰⁾ External memory interface clock output jitter specifications use a different measurement method, which are available in *Memory Output Clock Jitter Specification for Cyclone V Devices* table.

Cyclone V Device Datasheet

CV-51002 | 2018.05.07

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		F_{OUT} < 100 MHz	-	-	65	mUI (p-p)
t _{outccj_I0} ⁽⁵⁸⁾⁽⁶⁰⁾	Cycle-to-cycle jitter for clock output on	$F_{OUT} \ge 100 \text{ MHz}$	_	-	650	ps (p-p)
		F_{OUT} < 100 MHz	_	_	65	mUI (p-p)
t _{FOUTCCJ_IO} ⁽⁵⁸⁾⁽⁶⁰⁾⁽⁶¹⁾	Cycle-to-cycle jitter for clock output on	$F_{OUT} \ge 100 \text{ MHz}$	_	-	650	ps (p-p)
	regular 1/0 in fractional PLL	$F_{OUT} < 100 \text{ MHz}$	-	-	65	mUI (p-p)
t _{CASC_OUTPJ_DC} ⁽⁵⁸⁾⁽⁶²⁾	Period jitter for dedicated clock output in	$F_{OUT} \ge 100 \text{ MHz}$	-	-	300	ps (p-p)
		$F_{OUT} < 100 \text{ MHz}$	_	-	30	mUI (p-p)
t _{drift}	Frequency drift after \mathtt{PFDENA} is disabled for a duration of 100 μs	_	-	_	±10	%
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)	-	8	24	32	Bits
k _{VALUE}	Numerator of fraction	_	128	8388608	2147483648	-
f _{RES}	Resolution of VCO frequency	$f_{INPFD} = 100 \text{ MHz}$	390625	5.96	0.023	Hz

Related Information

Memory Output Clock Jitter Specifications on page 49

Provides more information about the external memory interface clock output jitter specifications.

- Upstream PLL: 0.59 MHz \leq Upstream PLL BW < 1 MHz
- Downstream PLL: Downstream PLL BW > 2 MHz

⁽⁶¹⁾ This specification only covers fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05–0.95 must be \geq 1000 MHz.

⁽⁶²⁾ The cascaded PLL specification is only applicable with the following conditions:

DSP Block Performance Specifications

Table 32. DSP Block Performance Specifications for Cyclone V Devices

	Mode		Performance		Unit
		-C6	-C7, -I7	-C8, -A7	
Modes using One DSP Block	Independent 9 × 9 multiplication	340	300	260	MHz
	Independent 18 × 19 multiplication	287	250	200	MHz
	Independent 18 \times 18 multiplication	287	250	200	MHz
	Independent 27 × 27 multiplication	250	200	160	MHz
	Independent 18 \times 25 multiplication	310	250	200	MHz
	Independent 20 × 24 multiplication	310	250	200	MHz
	Two 18 \times 19 multiplier adder mode	310	250	200	MHz
	18×18 multiplier added summed with 36-bit input	310	250	200	MHz
Modes using Two DSP Blocks	Complex 18 × 19 multiplication	310	250	200	MHz

Memory Block Performance Specifications

To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL and set to 50% output duty cycle. Use the Intel Quartus Prime software to report timing for the memory block clocking schemes.

When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in f_{MAX}.

Table 33. Memory Block Performance Specifications for Cyclone V Devices

Memory	Mode	Resources Used		Performance			Unit
		ALUTs	Memory	-C6	-C7, -I7	-C8, -A7	
MLAB	Single port, all supported widths	0	1	420	350	300	MHz
	Simple dual-port, all supported widths	0	1	420	350	300	MHz
	Simple dual-port with read and write at the same address	0	1	340	290	240	MHz
			•				continued

Cyclone V Device Datasheet

CV-51002 | 2018.05.07

Symbol	Condition		-C6			-C7, -I7			-C8, -A7		Unit
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
	SERDES factor J = 1 to 2, uses DDR registers	(65)	-	(66)	(65)	-	(66)	(65)	-	(66)	Mbps
Emulated Differential I/O Standards with Three External Output Resistor Networks- f _{HSDR} (data rate) ⁽⁶⁷⁾	SERDES factor J = 4 to 10	(65)	_	640	(65)	_	640	(65)	_	550	Mbps
Emulated Differential I/O Standards with One External Output Resistor Network - f _{HSDR} (data rate)	SERDES factor J = 4 to 10	(65)	_	170	(65)	_	170	(65)	_	170	Mbps
t _{x Jitter} -True Differential I/O Standards ⁽⁶⁷⁾	Total Jitterfor Data Rate, 600 Mbps – 840 Mbps	_	_	350	_	_	380	_	_	500	ps
	Total Jitter for Data Rate < 600Mbps	_	-	0.21	_	-	0.23	-	_	0.30	UI
t _{x Jitter} -Emulated Differential I/O Standards with Three External Output Resistor Networks	Total Jitter for Data Rate < 640Mbps	_	_	500	_	-	500	_	_	500	ps
t _{x Jitter} -Emulated Differential I/O Standards with One External Output Resistor Network	Total Jitter for Data Rate < 640Mbps	_	-	0.15	_	-	0.15	-	_	0.15	UI
t _{duty}	TX output clock duty cycle for both True and	45	50	55	45	50	55	45	50	55	%
continued						inued					

⁽⁶⁶⁾ The maximum ideal data rate is the SERDES factor (J) × PLL max output frequency (f_{out}), provided you can close the design timing and the signal integrity simulation is clean. You can estimate the achievable maximum data rate by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported.

⁽⁶⁷⁾ You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine the leftover timing margin.

Figure 13. MDIO Timing Diagram

I²C Timing Characteristics

Table 51. I	² C Timing	Requirements	for Cyclone \	/ Devices
-------------	-----------------------	---------------------	---------------	-----------

Symbol	Description	Standard Mode		Fast Mode		Unit
			Max	Min	Max	
T _{clk}	Serial clock (SCL) clock period	10	-	2.5	-	μs
T _{clkhigh}	SCL high time	4.7	-	0.6	-	μs
T _{clklow}	SCL low time	4	-	1.3	-	μs
Ts	Setup time for serial data line (SDA) data to SCL	0.25	-	0.1	-	μs
T _h	Hold time for SCL to SDA data	0	3.45	0	0.9	μs
T _d	SCL to SDA output data delay	-	0.2	-	0.2	μs
T _{su_start}	Setup time for a repeated start condition	4.7	-	0.6	-	μs
T _{hd_start}	Hold time for a repeated start condition	4	-	0.6	_	μs
T _{su_stop}	Setup time for a stop condition	4	-	0.6	_	μs

Cyclone V Device Datasheet CV-51002 | 2018.05.07

CAN Interface

The maximum controller area network (CAN) data rate is 1 Mbps.

HPS JTAG Timing Specifications

Table 54. HPS JTAG Timing Parameters and Values for Cyclone V Devices

Symbol	Description	Min	Мах	Unit
t _{JCP}	TCK clock period	30	—	ns
t _{JCH}	TCK clock high time	14	—	ns
t _{JCL}	TCK clock low time	14	_	ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2	—	ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3	_	ns
t _{JPH}	JTAG port hold time	5	—	ns
t _{JPCO}	JTAG port clock to output	_	12 ⁽⁷³⁾	ns
t _{JPZX}	JTAG port high impedance to valid output	_	14 ⁽⁷³⁾	ns
t _{JPXZ}	JTAG port valid output to high impedance		14(73)	ns

Configuration Specifications

This section provides configuration specifications and timing for Cyclone V devices.

⁽⁷³⁾ A 1-ns adder is required for each V_{CCIO_HPS} voltage step down from 3.0 V. For example, t_{JPCO} = 13 ns if V_{CCIO_HPS} of the TDO I/O bank = 2.5 V, or 14 ns if it equals 1.8 V.

DCLK Frequency Specification in the AS Configuration Scheme

Table 61. DCLK Frequency Specification in the AS Configuration Scheme

This table lists the internal clock frequency specification for the AS configuration scheme. The DCLK frequency specification applies when you use the internal oscillator as the configuration clock source. The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz.

Parameter	Minimum	Typical	Maximum	Unit
DCLK frequency in AS configuration scheme	5.3	7.9	12.5	MHz
	10.6	15.7	25.0	MHz
	21.3	31.4	50.0	MHz
	42.6	62.9	100.0	MHz

Passive Serial (PS) Configuration Timing

Table 62. PS Timing Parameters for Cyclone V Devices

Symbol	Parameter	Minimum	Maximum	Unit	
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns	
t _{CF2ST0}	nCONFIG low to nSTATUS low	_	600	ns	
t _{CFG}	nCONFIG low pulse width	2	_	μs	
t _{STATUS}	nSTATUS low pulse width	268	1506 ⁽⁸⁹⁾	μs	
t _{CF2ST1}	nCONFIG high to nSTATUS high	-	1506 ⁽⁹⁰⁾	μs	
t _{CF2CK} ⁽⁹¹⁾	nCONFIG high to first rising edge on DCLK	1506	-	μs	
t _{ST2CK} ⁽⁹¹⁾	nSTATUS high to first rising edge of DCLK	2	-	μs	
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	-	ns	
continued					

⁽⁸⁹⁾ You can obtain this value if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

⁽⁹⁰⁾ You can obtain this value if you do not delay configuration by externally holding nSTATUS low.

⁽⁹¹⁾ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

Variant	Member Code	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits)	Recommended EPCQ Serial Configuration Device ⁽⁹⁴⁾
	A4	33,958,560	322,072	EPCQ128
	A5	56,057,632	324,888	EPCQ128
	A6	56,057,632	324,888	EPCQ128
Cyclone V SX	C2	33,958,560	322,072	EPCQ128
	C4	33,958,560	322,072	EPCQ128
	C5	56,057,632	324,888	EPCQ128
	C6	56,057,632	324,888	EPCQ128
Cyclone V ST	D5	56,057,632	324,888	EPCQ128
	D6	56,057,632	324,888	EPCQ128

Minimum Configuration Time Estimation

Table 65. Minimum Configuration Time Estimation for Cyclone V Devices

The estimated values are based on the configuration .rbf sizes in Uncompressed .rbf Sizes for Cyclone V Devices table.

Variant	Member Code	Active Serial ⁽⁹⁶⁾				Fast Passive Par	allel ⁽⁹⁷⁾
		Width	DCLK (MHz)	Minimum Configuration Time (ms)	Width	DCLK (MHz)	Minimum Configuration Time (ms)
Cyclone V E	A2	4	100	53	16	125	11
	A4	4	100	53	16	125	11
	A5	4	100	85	16	125	17
	A7	4	100	140	16	125	28
		•	•		•	•	continued

⁽⁹⁴⁾ The recommended EPCQ serial configuration devices are able to store more than one image.

- ⁽⁹⁶⁾ DCLK frequency of 100 MHz using external CLKUSR.
- ⁽⁹⁷⁾ Maximum FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic.

Cyclone V Device Datasheet

CV-51002 | 2018.05.07

Term	Definition
t _{outpj_io}	Period jitter on the GPIO driven by a PLL
t _{outpj_dc}	Period jitter on the dedicated clock output driven by a PLL
t _{RISE}	Signal low-to-high transition time (20-80%)
Timing Unit Interval (TUI)	The timing budget allowed for skew, propagation delays, and the data sampling window. (TUI = $1/(\text{Receiver Input Clock Frequency Multiplication Factor}) = t_C/w)$
V _{CM(DC)}	DC common mode input voltage.
V _{ICM}	Input common mode voltage—The common mode of the differential signal at the receiver.
V _{ID}	Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
V _{DIF(AC)}	AC differential input voltage—Minimum AC input differential voltage required for switching.
V _{DIF(DC)}	DC differential input voltage— Minimum DC input differential voltage required for switching.
V _{IH}	Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high.
V _{IH(AC)}	High-level AC input voltage
V _{IH(DC)}	High-level DC input voltage
V _{IL}	Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low.
V _{IL(AC)}	Low-level AC input voltage
V _{IL(DC)}	Low-level DC input voltage
V _{OCM}	Output common mode voltage—The common mode of the differential signal at the transmitter.
V _{OD}	Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission line at the transmitter.
V _{SWING}	Differential input voltage
V _X	Input differential cross point voltage
V _{OX}	Output differential cross point voltage
W	High-speed I/O block—Clock boost factor

Document Revision History for Cyclone V Device Datasheet

Document Version	Changes
2018.05.07	 Added description about the low-power option ("L" suffix) for Cyclone V SE and SX devices. Added the <i>Cyclone V Devices Overshoot Duration</i> diagram. Removed the description on SD/MMC interface calibration support in the <i>Secure Digital (SD)/MultiMediaCard (MMC) Timing Requirements for Cyclone V Devices</i> table. This feature is currently supported in the preloader. Removed the note to Cyclone V SE A2 and A4 devices, and Cyclone V SX C2 and C4 devices in the <i>Uncompressed .rbf Sizes for Cyclone V Devices</i> table. These devices are currently supported in the Intel Quartus Prime software. Removed PowerPlay text from tool name. Updated the IP name from ALTREMOTE_UPDATE to Remote Update Intel FPGA IP. Rebranded as Intel. Added the Low Power Variants table and the estimating power consumption steps to the "Cyclone V Device Datasheet" Overview section. Updated the minimum value for t_{DH} to 2.5 for -6 speed grade/2.9 for -7 and -8 speed grade.

Date	Version	Changes
December 2016	2016.12.09	 Updated V_{ICM} (AC coupled) specifications for 1.5 V PCML in Receiver Specifications for Cyclone V GX, GT, SX, and ST Devices table. Added maximum specification for T_d in Management Data Input/Output (MDIO) Timing Requirements for Cyclone V Devices table. Updated T_{init} specifications in the following tables: FPP Timing Parameters When DCLK-to-DATA[] Ratio is 1 for Cyclone V Devices FPP Timing Parameters When DCLK-to-DATA[] Ratio is >1 for Cyclone V Devices AS Timing Parameters for AS ×1 and ×4 Configurations in Cyclone V Devices PS Timing Parameters for Cyclone V Devices
June 2016	2016.06.10	 Changed pin capacitance to maximum values. Updated SPI Master Timing Requirements for Cyclone V Devices table. Added T_{su} and T_h specifications. Removed T_{dinmax} specifications. Updated SPI Master Timing Diagram. Updated T_{clk} spec from maximum to minimum in I²C Timing Requirements for Cyclone V Devices table.
		continued

Date	Version	Changes
June 2013	3.4	 Updated Table 20, Table 27, and Table 34. Updated "UART Interface" and "CAN Interface" sections. Removed the following tables: Table 45: UART Baud Rate for Cyclone V Devices Table 47: CAN Pulse Width for Cyclone V Devices
May 2013	3.3	 Added Table 33. Updated Figure 5, Figure 6, Figure 17, Figure 19, and Figure 20. Updated Table 1, Table 4, Table 5, Table 10, Table 13, Table 19, Table 20, Table 26, Table 32, Table 35, Table 36, Table 43, Table 53, Table 54, Table 57, and Table 61.
March 2013	3.2	 Added HPS reset information in the "HPS Specifications" section. Added Table 57. Updated Table 1, Table 2, Table 17, Table 20, Table 52, and Table 56. Updated Figure 18.
January 2013	3.1	Updated Table 4, Table 20, and Table 56.
November 2012	3.0	 Updated Table 1, Table 4, Table 5, Table 9, Table 14, Table 16, Table 17, Table 19, Table 20, Table 25, Table 28, Table 52, Table 55, Table 56, and Table 59. Removed table: Transceiver Block Jitter Specifications for Cyclone V GX Devices. Added HPS information: Added "HPS Specifications" section. Added Table 33, Table 34, Table 35, Table 36, Table 37, Table 38, Table 39, Table 40, Table 41, Table 42, Table 43, Table 44, Table 45, and Table 46. Added Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, and Figure 16. Updated Table 3.
June 2012	2.0	 Updated for the Quartus Prime software v12.0 release: Restructured document. Removed "Power Consumption" section. Updated Table 1, Table 3, Table 19, Table 20, Table 25, Table 27, Table 28, Table 30, Table 31, Table 34, Table 36, Table 37, Table 38, Table 39, Table 41, Table 43, and Table 46. Added Table 22, Table 23, and Table 29. Added Figure 1 and Figure 2. Added "Initialization" and "Configuration Files" sections.