Intel - 5CSXFC5D6F31I7N Datasheet

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are Embedded - System On Chip (SoC)?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

Betuils	
Product Status	Active
Architecture	MCU, FPGA
Core Processor	Dual ARM [®] Cortex [®] -A9 MPCore [™] with CoreSight [™]
Flash Size	-
RAM Size	64КВ
Peripherals	DMA, POR, WDT
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, MMC/SD/SDIO, SPI, UART/USART, USB OTG
Speed	800MHz
Primary Attributes	FPGA - 85K Logic Elements
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	896-BGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5csxfc5d6f31i7n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

yclone V Device Datasheet	
Electrical Characteristics	
Operating Conditions	
Switching Characteristics	24
Transceiver Performance Specifications	
Core Performance Specifications	40
Periphery Performance	45
HPS Specifications	51
Configuration Specifications	67
POR Specifications	
FPGA JTAG Configuration Timing	
FPP Configuration Timing	
Active Serial (AS) Configuration Timing	73
DCLK Frequency Specification in the AS Configuration Scheme	74
Passive Serial (PS) Configuration Timing	
Initialization	75
Configuration Files	
Minimum Configuration Time Estimation	77
Remote System Upgrades	
User Watchdog Internal Oscillator Frequency Specifications	
I/O Timing	
Programmable IOE Delay	
Programmable Output Buffer Delay	
Glossary	
Document Revision History for Cyclone V Device Datasheet	

Density	Ordering Part Number (OPN)	Static Power Reduction
110K LE	5CSEBA6U19I7LN	
	5CSEBA6U23I7LN	
	5CSXFC6C6U23I7LN	

To estimate total power consumption for a low-power device, listed in Table 1 on page 3:

- 1. Multiply the Total Static Power reported by the Early Power Estimator (EPE) by the appropriate scale factor:
 - For 25K LE and 40K LE devices, use 0.7
 - For 85K LE and 110K LE devices, use 0.8
- 2. Add the result from Step 1 on page 4 to the Total Dynamic Power reported by the EPE.

Related Information

Cyclone V Device Overview

Provides more information about the densities and packages of devices in the Cyclone V family.

Electrical Characteristics

The following sections describe the operating conditions and power consumption of Cyclone V devices.

Operating Conditions

Cyclone V devices are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of the Cyclone V devices, you must consider the operating requirements described in this section.

Absolute Maximum Ratings

This section defines the maximum operating conditions for Cyclone V devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms.

The functional operation of the device is not implied for these conditions.

Caution: Conditions outside the range listed in the following table may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Transceiver Power Supply Operating Conditions

Table 5. Transceiver Power Supply Operating Conditions for Cyclone V GX, GT, SX, and ST Devices

Symbol	Description	Minimum ⁽⁸⁾	Typical	Maximum ⁽⁸⁾	Unit
V _{CCH_GXBL}	Transceiver high voltage power (left side)	2.375	2.5	2.625	V
V _{CCE_GXBL} ⁽⁹⁾⁽¹⁰⁾	Transmitter and receiver power (left side)	1.07/1.17	1.1/1.2	1.13/1.23	V
V _{CCL_GXBL} ⁽⁹⁾⁽¹⁰⁾	Clock network power (left side)	1.07/1.17	1.1/1.2	1.13/1.23	V

Related Information

• PCIe Supported Configurations and Placement Guidelines

Provides more information about the maximum full duplex channels recommended in Cyclone V GT and ST devices which require full compliance to the PCIe Gen2 transmit jitter specification.

6.144-Gbps Support Capability in Cyclone V GT Devices
 Provides more information about the maximum full duplex channels recommended in Cyclone V GT and ST devices for
 CPRI 6.144 Gbps.

⁽⁸⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽⁹⁾ Intel recommends increasing the V_{CCE_GXBL} and V_{CCL_GXBL} typical value from 1.1 V to 1.2 V for Cyclone V GT and ST FPGA systems which require full compliance to the PCIe Gen2 transmit jitter specification. For more information about the maximum full duplex channels recommended in Cyclone V GT and ST devices under this condition, refer to the *Transceiver Protocol Configurations in Cyclone V Devices* chapter.

⁽¹⁰⁾ Intel recommends increasing the V_{CCE_GXBL} and V_{CCL_GXBL} typical value from 1.1 V to 1.2 V for full compliance to CPRI transmit jitter specification at 4.9152 Gbps (Cyclone V GT and ST devices) and 6.144Gbps (Cyclone V GT and ST devices only). For more information about the maximum full duplex channels recommended in Cyclone V GT and ST devices for CPRI 6.144 Gbps, refer to the *Transceiver Protocol Configurations in Cyclone V Devices* chapter.

Transceiver Performance Specifications

Transceiver Specifications for Cyclone V GX, GT, SX, and ST Devices

Table 21. Reference Clock Specifications for Cyclone V GX, GT, SX, and ST Devices

Symbol/Description	Condition	Transceiv	er Speed G	rade 5 ⁽³⁰⁾	Transce	iver Speed	Grade 6	Transceiver Speed Grade 7			Unit
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Supported I/O standards		1.2	2 V PCML, 1.	5 V PCML, 2.	5 V PCML, I	Differential L	VPECL ⁽³¹⁾ , H	CSL, and LV	DS	•	
Input frequency from REFCLK input pins ⁽³²⁾	_	27	-	550	27	-	550	27	-	550	MHz
Rise time	Measure at ±60 mV of differential signal ⁽³³⁾	_	-	400	_	-	400	-	-	400	ps
Fall time	Measure at ±60 mV of differential signal ⁽³³⁾	_	-	400	_	-	400	-	-	400	ps
Duty cycle	-	45	-	55	45	-	55	45	-	55	%
Peak-to-peak differential input voltage	_	200	-	2000	200	-	2000	200	-	2000	mV
Spread-spectrum modulating clock frequency	PCIe	30	-	33	30	-	33	30	-	33	kHz
Spread-spectrum downspread	PCIe	-	0 to - 0.5%	-	_	0 to - 0.5%	-	-	0 to - 0.5%	-	-
On-chip termination resistors	_	-	100	—	_	100	-	-	100	-	Ω
	1	1	1	1				1	1	CO	ntinued

⁽³⁰⁾ Transceiver Speed Grade 5 covers specifications for Cyclone V GT and ST devices.

⁽³¹⁾ Differential LVPECL signal levels must comply to the minimum and maximum peak-to-peak differential input voltage specified in this table.

(32) The reference clock frequency must be ≥ 307.2 MHz to be fully compliance to CPRI transmit jitter specification at 6.144 Gbps. For more information about CPRI 6.144 Gbps, refer to the *Transceiver Protocol Configurations in Cyclone V Devices* chapter.

⁽³³⁾ REFCLK performance requires to meet transmitter REFCLK phase noise specification.

Symbol/Description	Condition	Transceiv	er Speed G	rade 5 ⁽³⁰⁾	Transce	iver Speed	Grade 6	Transce	iver Speed	Grade 7	Unit
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Minimum differential eye opening at the receiver serial input pins ⁽⁴⁰⁾	-	110	-	-	110	-	-	110	_	-	mV
Differential on-chip termination resistors	85-Ω setting	-	85	-	-	85	-	-	85	-	Ω
	100-Ω setting	-	100	_	_	100	_	-	100	_	Ω
	120-Ω setting	-	120	_	_	120	-	-	120	_	Ω
	150-Ω setting	-	150	_	_	150	_	-	150	_	Ω
V_{ICM} (AC coupled)	2.5 V PCML, LVPECL, and LVDS	V _{CCE_GXBL} supply ⁽³⁴⁾⁽³⁵⁾			V _{CCE_GXBL} supply			Vo	_{CCE_GXBL} sup	V	
	1.5 V PCML				0.6	0.65/0.75/0.8 ⁽⁴¹⁾					V
t _{LTR} ⁽⁴²⁾	_	-	-	10	_	_	10	-	-	10	μs
t _{LTD} ⁽⁴³⁾	-	-	-	4	_	-	4	-	-	4	μs
t _{LTD_manual} (44)	-	_	_	4	_	_	4	-	-	4	μs
t _{LTR_LTD_manual} (45)	_	15	-	_	15	_	_	15	-	_	μs
				•						со	ntinued

- $^{(43)}$ t_{LTD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.
- t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.

⁽⁴⁰⁾ The differential eye opening specification at the receiver input pins assumes that you have disabled the Receiver Equalization feature. If you enable the Receiver Equalization feature, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

⁽⁴¹⁾ The AC coupled V_{ICM} = 650 mV for Cyclone V GX and SX in PCIe mode only. The AC coupled V_{ICM} = 750mV for Cyclone V GT and ST in PCIe mode only.

 $^{^{(42)}}$ t_{LTR} is the time required for the receive clock data recovery (CDR) to lock to the input reference clock frequency after coming out of reset.

Exceptions for PCIe Gen2 design:

- V_{OD} setting = 50 and pre-emphasis setting = 22 are allowed for PCIe Gen2 design with transmit de-emphasis -6dB setting (pipe_txdeemp = 1'b0) using Intel PCIe Hard IP and PIPE IP cores.
- V_{OD} setting = 50 and pre-emphasis setting = 12 are allowed for PCIe Gen2 design with transmit de-emphasis -3.5dB setting (pipe_txdeemp = 1'b1) using Intel PCIe Hard IP and PIPE IP cores.

For example, when V_{OD} = 800 mV, the corresponding V_{OD} value setting is 40. The following conditions show that the 1st post tap pre-emphasis setting = 2 is valid:

- $|B| + |C| \le 60 \rightarrow 40 + 2 = 42$
- |B| |C| > 5→ 40 2 = 38
- $(V_{MAX}/V_{MIN} 1)\% < 600\% \rightarrow (42/38 1)\% = 10.52\%$

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Cyclone V HSSI HSPICE models.

Intel Quartus Prime 1st			Intel Qu	u <mark>artus Prime V_{OD}</mark>	Setting			Unit
Post Tap Pre-Emphasis Setting	10 (200 mV)	20 (400 mV)	30 (600 mV)	35 (700 mV)	40 (800 mV)	45 (900 mV)	50 (1000 mV)	
0	0	0	0	0	0	0	0	dB
1	1.97	0.88	0.43	0.32	0.24	0.19	0.13	dB
2	3.58	1.67	0.95	0.76	0.61	0.5	0.41	dB
3	5.35	2.48	1.49	1.2	1	0.83	0.69	dB
4	7.27	3.31	2	1.63	1.36	1.14	0.96	dB
5	_	4.19	2.55	2.1	1.76	1.49	1.26	dB
6	_	5.08	3.11	2.56	2.17	1.83	1.56	dB
7	_	5.99	3.71	3.06	2.58	2.18	1.87	dB
8	_	6.92	4.22	3.47	2.93	2.48	2.11	dB
9	_	7.92	4.86	4	3.38	2.87	2.46	dB
10	_	9.04	5.46	4.51	3.79	3.23	2.77	dB
			•			•		continue

Table 28. Transmitter Pre-Emphasis Levels for Cyclone V Devices

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _{ARESET}	Minimum pulse width on the areset signal	_	10	-	_	ns
t _{INCCJ} ⁽⁵⁶⁾⁽⁵⁷⁾	Input clock cycle-to-cycle jitter	$F_{REF} \ge 100 \text{ MHz}$	-	-	0.15	UI (p-p)
		$F_{REF} < 100 \text{ MHz}$	_	_	±750	ps (p-p)
t _{OUTPJ_DC} ⁽⁵⁸⁾	Period jitter for dedicated clock output in	$F_{OUT} \ge 100 \text{ MHz}$	_	-	300	ps (p-p)
	integer PLL	F _{OUT} < 100 MHz	_	-	30	mUI (p-p)
t _{FOUTPJ_DC} ⁽⁵⁸⁾	Period jitter for dedicated clock output in	$F_{OUT} \ge 100 \text{ MHz}$	_	-	425 ⁽⁶¹⁾ , 300 ⁽⁵⁹⁾	ps (p-p)
	fractional PLL	F _{OUT} < 100 MHz	-	-	42.5 ⁽⁶¹⁾ , 30 ⁽⁵⁹⁾	mUI (p-p)
t _{OUTCCJ_DC} ⁽⁵⁸⁾	Cycle-to-cycle jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps (p-p)
	in integer PLL	F _{OUT} < 100 MHz	_	-	30	mUI (p-p)
t _{FOUTCCJ_DC} ⁽⁵⁸⁾	Cycle-to-cycle jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$	-	-	425 ⁽⁶¹⁾ , 300 ⁽⁵⁹⁾	ps (p-p)
	in fractional PLL	F _{OUT} < 100 MHz	_	-	42.5 ⁽⁶¹⁾ , 30 ⁽⁵⁹⁾	mUI (p-p)
t _{OUTPJ_IO} ⁽⁵⁸⁾⁽⁶⁰⁾	Period jitter for clock output on a regular I/O	$F_{OUT} \ge 100 \text{ MHz}$	-	-	650	ps (p-p)
	in integer PLL	F _{OUT} < 100 MHz	_	_	65	mUI (p-p)
t _{FOUTPJ_IO} ⁽⁵⁸⁾⁽⁶⁰⁾⁽⁶¹⁾	Period jitter for clock output on a regular I/O in fractional PLL	$F_{OUT} \ge 100 \text{ MHz}$	-	-	650	ps (p-p)
	· · ·		I	1		continued

(56) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps.</p>

- ⁽⁵⁷⁾ F_{REF} is f_{IN}/N , specification applies when N = 1.
- (58) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.999999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in *Memory Output Clock Jitter Specification for Cyclone V Devices* table.
- ⁽⁵⁹⁾ This specification only covers fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.20–0.80 must be \geq 1200 MHz.
- ⁽⁶⁰⁾ External memory interface clock output jitter specifications use a different measurement method, which are available in *Memory Output Clock Jitter Specification for Cyclone V Devices* table.

Cyclone V Device Datasheet

CV-51002 | 2018.05.07

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		F_{OUT} < 100 MHz	-	-	65	mUI (p-p)
t _{OUTCCJ_IO} ⁽⁵⁸⁾⁽⁶⁰⁾	Cycle-to-cycle jitter for clock output on	$F_{OUT} \ge 100 \text{ MHz}$	—	—	650	ps (p-p)
	regular I/O in integer PLL	$F_{OUT} < 100 \text{ MHz}$	_	—	65	mUI (p-p)
	Cycle-to-cycle jitter for clock output on	$F_{OUT} \ge 100 \text{ MHz}$	-	-	650	ps (p-p)
	regular I/O in fractional PLL	F_{OUT} < 100 MHz	-	-	65	mUI (p-p)
t _{CASC_OUTPJ_DC} ⁽⁵⁸⁾⁽⁶²⁾	Period jitter for dedicated clock output in	$F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps (p-p)
	cascaded PLLs	F _{OUT} < 100 MHz	_	_	30	mUI (p-p)
t _{DRIFT}	Frequency drift after PFDENA is disabled for a duration of 100 μs	_	_	_	±10	%
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)	_	8	24	32	Bits
kvalue	Numerator of fraction	_	128	8388608	2147483648	_
f _{RES}	Resolution of VCO frequency	$f_{INPFD} = 100 \text{ MHz}$	390625	5.96	0.023	Hz

Related Information

Memory Output Clock Jitter Specifications on page 49

Provides more information about the external memory interface clock output jitter specifications.

- Upstream PLL: 0.59 MHz \leq Upstream PLL BW < 1 MHz
- Downstream PLL: Downstream PLL BW > 2 MHz

⁽⁶¹⁾ This specification only covers fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05–0.95 must be \geq 1000 MHz.

⁽⁶²⁾ The cascaded PLL specification is only applicable with the following conditions:

DSP Block Performance Specifications

Table 32. DSP Block Performance Specifications for Cyclone V Devices

	Mode			Unit	
		-C6	-C7, -I7	-C8, -A7	
Modes using One DSP Block	Independent 9 \times 9 multiplication	340	300	260	MHz
	Independent 18 × 19 multiplication	287	250	200	MHz
	Independent 18 × 18 multiplication	287	250	200	MHz
	Independent 27 × 27 multiplication	250	200	160	MHz
	Independent 18 × 25 multiplication	310	250	200	MHz
	Independent 20 × 24 multiplication	310	250	200	MHz
	Two 18 \times 19 multiplier adder mode	310	250	200	MHz
	18×18 multiplier added summed with 36-bit input	310	250	200	MHz
Modes using Two DSP Blocks	Complex 18 × 19 multiplication	310	250	200	MHz

Memory Block Performance Specifications

To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL and set to 50% output duty cycle. Use the Intel Quartus Prime software to report timing for the memory block clocking schemes.

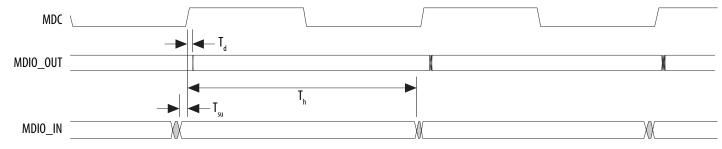
When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in f_{MAX}.

Table 33. Memory Block Performance Specifications for Cyclone V Devices

Memory	Mode	Resources Used			Unit				
		ALUTs	Memory	-C6	-C7, -I7	-C8, -A7			
MLAB	Single port, all supported widths	0	1	420	350	300	MHz		
	Simple dual-port, all supported widths	0	1	420	350	300	MHz		
	Simple dual-port with read and write at the same address	0	1	340	290	240	MHz		
	conti								

Cyclone V Device Datasheet

CV-51002 | 2018.05.07


Memory	Mode	Resources Used			Unit		
		ALUTs	Memory	-C6	-C7, -I7	-C8, -A7	
	ROM, all supported width	0	1	420	350	300	MHz
M10K Block	Single-port, all supported widths	0	1	315	275	240	MHz
	Simple dual-port, all supported widths	0	1	315	275	240	MHz
	Simple dual-port with the read-during-write option set to Old Data , all supported widths	0	1	275	240	180	MHz
	True dual port, all supported widths	0	1	315	275	240	MHz
	ROM, all supported widths	0	1	315	275	240	MHz

Periphery Performance

This section describes the periphery performance, high-speed I/O, and external memory interface.

Actual achievable frequency depends on design and system specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

Figure 13. MDIO Timing Diagram

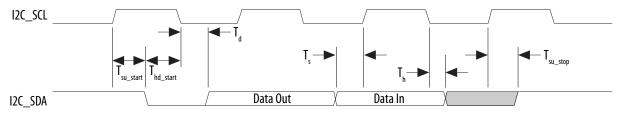

I²C Timing Characteristics

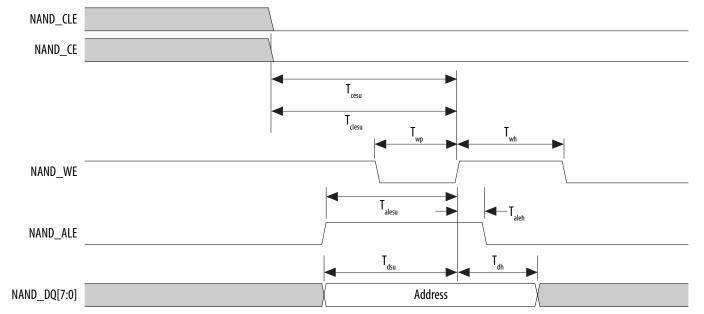
Table 51. I	² C Timing	Requirements for	Cyclone V Devices
-------------	-----------------------	-------------------------	-------------------

Symbol	Description	Standa	rd Mode	Fast	Mode	Unit
		Min	Мах	Min	Мах	
T _{clk}	Serial clock (SCL) clock period	10	-	2.5	-	μs
T _{clkhigh}	SCL high time	4.7	-	0.6	-	μs
T _{clklow}	SCL low time	4	-	1.3	-	μs
Ts	Setup time for serial data line (SDA) data to SCL	0.25	-	0.1	-	μs
T _h	Hold time for SCL to SDA data	0	3.45	0	0.9	μs
T _d	SCL to SDA output data delay	-	0.2	-	0.2	μs
T _{su_start}	Setup time for a repeated start condition	4.7	-	0.6	-	μs
T _{hd_start}	Hold time for a repeated start condition	4	-	0.6	-	μs
T _{su_stop}	Setup time for a stop condition	4	-	0.6	_	μs

Figure 14. I²C Timing Diagram

NAND Timing Characteristics

Table 52. NAND ONFI 1.0 Timing Requirements for Cyclone V Devices


The NAND controller supports Open NAND FLASH Interface (ONFI) 1.0 Mode 5 timing as well as legacy NAND devices. This table lists the requirements for ONFI 1.0 mode 5 timing. The HPS NAND controller can meet this timing by programming the C4 output of the main HPS PLL and timing registers provided in the NAND controller.

Symbol	Description	Min	Мах	Unit
T _{wp} ⁽⁷²⁾	Write enable pulse width	10	-	ns
T _{wh} ⁽⁷²⁾	Write enable hold time	7	-	ns
T _{rp} ⁽⁷²⁾	Read enable pulse width	10	-	ns
T _{reh} (72)	Read enable hold time	7	-	ns
T _{clesu} ⁽⁷²⁾	Command latch enable to write enable setup time	10	-	ns
T _{cleh} ⁽⁷²⁾	Command latch enable to write enable hold time	5	-	ns
T _{cesu} (72)	Chip enable to write enable setup time	15	-	ns
T _{ceh} ⁽⁷²⁾	Chip enable to write enable hold time	5	_	ns
T _{alesu} ⁽⁷²⁾	Address latch enable to write enable setup time	10	-	ns
T _{aleh} ⁽⁷²⁾	Address latch enable to write enable hold time	5	-	ns
T _{dsu} ⁽⁷²⁾	Data to write enable setup time	10	_	ns
T _{dh} (72)	Data to write enable hold time	5	-	ns
	•			continued

⁽⁷²⁾ Timing of the NAND interface is controlled through the NAND configuration registers.

Figure 16. NAND Address Latch Timing Diagram

Cyclone V Device Datasheet CV-51002 | 2018.05.07

Symbol	Parameter	Minimum	Maximum	Unit
t _{DH}	DATA[] hold time after rising edge on DCLK	0	-	ns
t _{CH}	DCLK high time	$0.45 \times 1/f_{MAX}$	-	s
t _{CL}	DCLK low time	$0.45 \times 1/f_{MAX}$	-	S
t _{CLK}	DCLK period	1/f _{MAX}	-	S
f _{MAX}	DCLK frequency	-	125	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽⁹²⁾	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	—
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (T _{init} × CLKUSR period)	-	_
T _{init}	Number of clock cycles required for device initialization	8,576	_	Cycles

Related Information

PS Configuration Timing

Provides the PS configuration timing waveform.

Initialization

Table 63. Initialization Clock Source Option and the Maximum Frequency for Cyclone V Devices

Initialization Clock Source	Configuration Scheme	Maximum Frequency (MHz)	Minimum Number of Clock Cycles
Internal Oscillator	AS, PS, and FPP	12.5	T _{init}
CLKUSR ⁽⁹³⁾	PS and FPP	125	
	AS	100	
DCLK	PS and FPP	125	

⁽⁹²⁾ The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

⁽⁹³⁾ To enable CLKUSR as the initialization clock source, turn on the **Enable user-supplied start-up clock (CLKUSR)** option in the Intel Quartus Prime software from the **General** panel of the **Device and Pin Options** dialog box.

Configuration Files

Table 64. Uncompressed .rbf Sizes for Cyclone V Devices

Use this table to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal file (.hex) or tabular text file (.ttf) format, have different file sizes.

For the different types of configuration file and file sizes, refer to the Intel Quartus Prime software. However, for a specific version of the Intel Quartus Prime software, any design targeted for the same device has the same uncompressed configuration file size.

Variant	Member Code	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits)	Recommended EPCQ Serial Configuration Device ⁽⁹⁴⁾
Cyclone V E ⁽⁹⁵⁾	A2	21,061,280	275,608	EPCQ64
	A4	21,061,280	275,608	EPCQ64
	A5	33,958,560	322,072	EPCQ128
	Α7	56,167,552	435,288	EPCQ128
	A9	102,871,776	400,408	EPCQ256
Cyclone V GX	C3	14,510,912	320,280	EPCQ32
	C4	33,958,560	322,072	EPCQ128
	C5	33,958,560	322,072	EPCQ128
	C7	56,167,552	435,288	EPCQ128
	С9	102,871,776	400,408	EPCQ256
Cyclone V GT	D5	33,958,560	322,072	EPCQ128
	D7	56,167,552	435,288	EPCQ128
	D9	102,871,776	400,408	EPCQ256
Cyclone V SE ⁽⁹⁵⁾	A2	33,958,560	322,072	EPCQ128
		· ·		continue

The IOCSR raw binary file (.rbf) size is specifically for the Configuration via Protocol (CvP) feature.

⁽⁹⁴⁾ The recommended EPCQ serial configuration devices are able to store more than one image.

⁽⁹⁵⁾ No PCIe hard IP, configuration via protocol (CvP) is not supported in this family.

Variant	Member Code	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits)	Recommended EPCQ Serial Configuration Device ⁽⁹⁴⁾
	A4	33,958,560	322,072	EPCQ128
	A5	56,057,632	324,888	EPCQ128
	A6	56,057,632	324,888	EPCQ128
Cyclone V SX	C2	33,958,560	322,072	EPCQ128
	C4	33,958,560	322,072	EPCQ128
	C5	56,057,632	324,888	EPCQ128
	C6	56,057,632	324,888	EPCQ128
Cyclone V ST	D5	56,057,632	324,888	EPCQ128
	D6	56,057,632	324,888	EPCQ128

Minimum Configuration Time Estimation

Table 65. Minimum Configuration Time Estimation for Cyclone V Devices

The estimated values are based on the configuration .rbf sizes in Uncompressed .rbf Sizes for Cyclone V Devices table.

Variant	Member Code	Active Serial ⁽⁹⁶⁾				Fast Passive Pa	rallel ⁽⁹⁷⁾
		Width	DCLK (MHz)	Minimum Configuration Time (ms)	Width	DCLK (MHz)	Minimum Configuration Time (ms)
Cyclone V E	A2	4	100	53	16	125	11
	A4	4	100	53	16	125	11
	A5	4	100	85	16	125	17
	A7	4	100	140	16	125	28
	-		•	•		-	continued

⁽⁹⁴⁾ The recommended EPCQ serial configuration devices are able to store more than one image.

- ⁽⁹⁶⁾ DCLK frequency of 100 MHz using external CLKUSR.
- ⁽⁹⁷⁾ Maximum FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic.

Variant	Member Code		Active Serial ⁽⁹⁶⁾			Fast Passive Parallel ⁽⁹⁷⁾				
		Width	DCLK (MHz)	Minimum Configuration Time (ms)	Width	DCLK (MHz)	Minimum Configuration Time (ms)			
	A9	4	100	257	16	125	51			
Cyclone V GX	C3	4	100	36	16	125	7			
	C4	4	100	85	16	125	17			
	C5	4	100	85	16	125	17			
	C7	4	100	140	16	125	28			
	C9	4	100	257	16	125	51			
Cyclone V GT	D5	4	100	85	16	125	17			
	D7	4	100	140	16	125	28			
	D9	4	100	257	16	125	51			
Cyclone V SE	A2	4	100	85	16	125	17			
	A4	4	100	85	16	125	17			
	A5	4	100	140	16	125	28			
	A6	4	100	140	16	125	28			
Cyclone V SX	C2	4	100	85	16	125	17			
	C4	4	100	85	16	125	17			
	C5	4	100	140	16	125	28			
	C6	4	100	140	16	125	28			
Cyclone V ST	D5	4	100	140	16	125	28			
	D6	4	100	140	16	125	28			

⁽⁹⁶⁾ DCLK frequency of 100 MHz using external CLKUSR.

⁽⁹⁷⁾ Maximum FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis.

The Intel Quartus Prime Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

Related Information

Cyclone V I/O Timing Spreadsheet

Provides the Cyclone V Excel-based I/O timing spreadsheet.

Programmable IOE Delay

Parameter ⁽¹⁰⁰	Parameter ⁽¹⁰⁰ Available Minimum) Settings Offset ⁽¹⁰¹⁾			1odel Slow Model					Unit	
,		Industrial	Commercial	-C6	-C7	-C8	-17	-A7		
D1	32	0	0.508	0.517	0.971	1.187	1.194	1.179	1.160	ns
D3	8	0	1.761	1.793	3.291	4.022	3.961	3.999	3.929	ns
D4	32	0	0.510	0.519	1.180	1.187	1.195	1.180	1.160	ns
D5	32	0	0.508	0.517	0.970	1.186	1.194	1.179	1.179	ns

Table 68. I/O element (IOE) Programmable Delay for Cyclone V Devices

⁽¹⁰¹ Minimum offset does not include the intrinsic delay.

 ⁽¹⁰⁰ You can set this value in the Intel Quartus Prime software by selecting D1, D3, D4, and D5 in the Assignment Name column of
) Assignment Editor.

⁾

Document Revision History for Cyclone V Device Datasheet

Document Version	Changes
2018.05.07	 Added description about the low-power option ("L" suffix) for Cyclone V SE and SX devices. Added the <i>Cyclone V Devices Overshoot Duration</i> diagram. Removed the description on SD/MMC interface calibration support in the <i>Secure Digital (SD)/MultiMediaCard (MMC) Timing Requirements for Cyclone V Devices</i> table. This feature is currently supported in the preloader. Removed the note to Cyclone V SE A2 and A4 devices, and Cyclone V SX C2 and C4 devices in the <i>Uncompressed .rbf Sizes for Cyclone V Devices</i> table. These devices are currently supported in the Intel Quartus Prime software. Removed PowerPlay text from tool name. Updated the IP name from ALTREMOTE_UPDATE to Remote Update Intel FPGA IP. Rebranded as Intel. Added the Low Power Variants table and the estimating power consumption steps to the "Cyclone V Device Datasheet" Overview section. Updated the minimum value for t_{DH} to 2.5 for -6 speed grade/2.9 for -7 and -8 speed grade.

Date	Version	Changes
December 2016	2016.12.09	 Updated V_{ICM} (AC coupled) specifications for 1.5 V PCML in Receiver Specifications for Cyclone V GX, GT, SX, and ST Devices table. Added maximum specification for T_d in Management Data Input/Output (MDIO) Timing Requirements for Cyclone V Devices table. Updated T_{init} specifications in the following tables: FPP Timing Parameters When DCLK-to-DATA[] Ratio is 1 for Cyclone V Devices FPP Timing Parameters When DCLK-to-DATA[] Ratio is >1 for Cyclone V Devices AS Timing Parameters for AS ×1 and ×4 Configurations in Cyclone V Devices PS Timing Parameters for Cyclone V Devices
June 2016	2016.06.10	 Changed pin capacitance to maximum values. Updated SPI Master Timing Requirements for Cyclone V Devices table. Added T_{su} and T_h specifications. Removed T_{dinmax} specifications. Updated SPI Master Timing Diagram. Updated T_{clk} spec from maximum to minimum in I²C Timing Requirements for Cyclone V Devices table.
		continued

Cyclone V Device Datasheet

CV-51002 | 2018.05.07

Date	Version	Changes
December 2015	2015.12.04	 Updated Quad Serial Peripheral Interface (SPI) Flash Timing Requirements for Cyclone V Devices table. Updated F_{clk}, T_{dutycycle}, and T_{dssfrst} specifications. Added T_{qspi_clk}, T_{din_start}, and T_{din_end} specifications. Removed T_{dinmax} specification for T_{clk} to 16.67 ns and removed the maximum specification in SPI Master Timing Requirements for Cyclone V Devices table. Updated Secure Digital (SD)/MultiMediaCard (MMC) Timing Requirements for Cyclone V Devices table. Updated T_{clk} to T_{sdmmc_clk_out} symbol. Updated T_{sdmmc_clk_out} and T_d specifications. Added T_{sdmmc_clk}, T_{su}, and T_h specifications. Removed T_{dinmax} specifications. Updated the following diagrams: Quad SPI Flash Timing Diagram SD/MMC Timing Diagram Updated configuration .rbf sizes for Cyclone V devices. Changed instances of <i>Quartus II</i> to <i>Quartus Prime</i>.
June 2015	2015.06.12	 Updated the supported data rates for the following output standards using true LVDS output buffer types in the High-Speed I/O Specifications for Cyclone V Devices table: True RSDS output standard: data rates of up to 360 Mbps True mini-LVDS output standard: data rates of up to 400 Mbps Changed Queued Serial Peripheral Interface (QSPI) to Quad Serial Peripheral Interface (SPI) Flash. Updated T_h location in I²C Timing Diagram. Updated the maximum value for t_{CO} from 4 ns to 2 ns in AS Timing Parameters for AS ×1 and ×4 Configurations in Cyclone V Devices table. Moved the following timing diagrams to the Configuration, Design Security, and Remote System Upgrades in Cyclone V Devices chapter. FPP Configuration Timing Waveform When DCLK-to-DATA[] Ratio is 1 FPP Configuration Timing Waveform When DCLK-to-DATA[] Ratio is >1 AS Configuration Timing Waveform PS Configuration Timing Waveform
March 2015	2015.03.31	 Added V_{CC} specifications for devices with internal scrubbing feature (with SC suffix) in Recommended Operating Conditions table. Corrected the unit for t_{DH} from ns to s in FPP Timing Parameters When DCLK-to-DATA[] Ratio is >1 for Cyclone V Devices table.
		continued