# Intel - 5CSXFC6C6U23C8N Datasheet





Welcome to E-XFL.COM

#### Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

**Embedded - System On Chip (SoC)** refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

#### What are Embedded - System On Chip (SoC)?

**System On Chip (SoC)** integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

#### Details

| Product Status          | Active                                                                                         |
|-------------------------|------------------------------------------------------------------------------------------------|
| Architecture            | MCU, FPGA                                                                                      |
| Core Processor          | Dual ARM® Cortex®-A9 MPCore <sup><math>m</math></sup> with CoreSight <sup><math>m</math></sup> |
| Flash Size              | -                                                                                              |
| RAM Size                | 64KB                                                                                           |
| Peripherals             | DMA, POR, WDT                                                                                  |
| Connectivity            | CANbus, EBI/EMI, Ethernet, I <sup>2</sup> C, MMC/SD/SDIO, SPI, UART/USART, USB OTG             |
| Speed                   | 600MHz                                                                                         |
| Primary Attributes      | FPGA - 110K Logic Elements                                                                     |
| Operating Temperature   | 0°C ~ 85°C (TJ)                                                                                |
| Package / Case          | 672-FBGA                                                                                       |
| Supplier Device Package | 672-UBGA (23x23)                                                                               |
|                         |                                                                                                |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



| Density | Ordering Part Number (OPN) | Static Power Reduction |
|---------|----------------------------|------------------------|
| 110K LE | 5CSEBA6U19I7LN             |                        |
|         | 5CSEBA6U23I7LN             |                        |
|         | 5CSXFC6C6U23I7LN           |                        |

To estimate total power consumption for a low-power device, listed in Table 1 on page 3:

- 1. Multiply the Total Static Power reported by the Early Power Estimator (EPE) by the appropriate scale factor:
  - For 25K LE and 40K LE devices, use 0.7
  - For 85K LE and 110K LE devices, use 0.8
- 2. Add the result from Step 1 on page 4 to the Total Dynamic Power reported by the EPE.

#### **Related Information**

#### Cyclone V Device Overview

Provides more information about the densities and packages of devices in the Cyclone V family.

# **Electrical Characteristics**

The following sections describe the operating conditions and power consumption of Cyclone V devices.

## **Operating Conditions**

Cyclone V devices are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of the Cyclone V devices, you must consider the operating requirements described in this section.

#### **Absolute Maximum Ratings**

This section defines the maximum operating conditions for Cyclone V devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms.

The functional operation of the device is not implied for these conditions.

**Caution:** Conditions outside the range listed in the following table may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.



#### **Transceiver Power Supply Operating Conditions**

#### Table 5. Transceiver Power Supply Operating Conditions for Cyclone V GX, GT, SX, and ST Devices

| Symbol                                   | Description                                | Minimum <sup>(8)</sup> | Typical | Maximum <sup>(8)</sup> | Unit |
|------------------------------------------|--------------------------------------------|------------------------|---------|------------------------|------|
| V <sub>CCH_GXBL</sub>                    | Transceiver high voltage power (left side) | 2.375                  | 2.5     | 2.625                  | V    |
| V <sub>CCE_GXBL</sub> <sup>(9)(10)</sup> | Transmitter and receiver power (left side) | 1.07/1.17              | 1.1/1.2 | 1.13/1.23              | V    |
| V <sub>CCL_GXBL</sub> <sup>(9)(10)</sup> | Clock network power (left side)            | 1.07/1.17              | 1.1/1.2 | 1.13/1.23              | V    |

#### **Related Information**

• PCIe Supported Configurations and Placement Guidelines

Provides more information about the maximum full duplex channels recommended in Cyclone V GT and ST devices which require full compliance to the PCIe Gen2 transmit jitter specification.

6.144-Gbps Support Capability in Cyclone V GT Devices
 Provides more information about the maximum full duplex channels recommended in Cyclone V GT and ST devices for
 CPRI 6.144 Gbps.

<sup>&</sup>lt;sup>(8)</sup> The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

<sup>(9)</sup> Intel recommends increasing the V<sub>CCE\_GXBL</sub> and V<sub>CCL\_GXBL</sub> typical value from 1.1 V to 1.2 V for Cyclone V GT and ST FPGA systems which require full compliance to the PCIe Gen2 transmit jitter specification. For more information about the maximum full duplex channels recommended in Cyclone V GT and ST devices under this condition, refer to the *Transceiver Protocol Configurations in Cyclone V Devices* chapter.

<sup>(10)</sup> Intel recommends increasing the V<sub>CCE\_GXBL</sub> and V<sub>CCL\_GXBL</sub> typical value from 1.1 V to 1.2 V for full compliance to CPRI transmit jitter specification at 4.9152 Gbps (Cyclone V GT and ST devices) and 6.144Gbps (Cyclone V GT and ST devices only). For more information about the maximum full duplex channels recommended in Cyclone V GT and ST devices for CPRI 6.144 Gbps, refer to the *Transceiver Protocol Configurations in Cyclone V Devices* chapter.



## Table 9. OCT Calibration Accuracy Specifications for Cyclone V Devices

Calibration accuracy for the calibrated on-chip series termination ( $R_S$  OCT) and on-chip parallel termination ( $R_T$  OCT) are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.

| Symbol                                                                                      | Description                                                                                                                            | Condition (V)                               | C          | Calibration Accuracy |            |   |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------|----------------------|------------|---|
|                                                                                             |                                                                                                                                        |                                             | -C6        | -I7, -C7             | -C8, -A7   |   |
| 25-Ω R <sub>S</sub>                                                                         | Internal series termination with calibration (25- $\Omega$ setting)                                                                    | V <sub>CCIO</sub> = 3.0, 2.5, 1.8, 1.5, 1.2 | ±15        | ±15                  | ±15        | % |
| 50-Ω R <sub>S</sub>                                                                         | Internal series termination with calibration (50- $\Omega$ setting)                                                                    | V <sub>CCIO</sub> = 3.0, 2.5, 1.8, 1.5, 1.2 | ±15        | ±15                  | ±15        | % |
| 34- $\Omega$ and 40- $\Omega$ R <sub>S</sub>                                                | Internal series termination with calibration (34- $\Omega$ and 40- $\Omega$ setting)                                                   | V <sub>CCIO</sub> = 1.5, 1.35, 1.25, 1.2    | ±15        | ±15                  | ±15        | % |
| 48-Ω, 60-Ω, and 80-Ω $\rm R_S$                                                              | Internal series termination with calibration (48- $\Omega$ , 60- $\Omega$ , and 80- $\Omega$ setting)                                  | V <sub>CCI0</sub> = 1.2                     | ±15        | ±15                  | ±15        | % |
| 50-Ω R <sub>T</sub>                                                                         | Internal parallel termination with calibration (50- $\Omega$ setting)                                                                  | V <sub>CCIO</sub> = 2.5, 1.8, 1.5, 1.2      | -10 to +40 | -10 to +40           | -10 to +40 | % |
| 20- $\Omega$ , 30- $\Omega$ , 40- $\Omega$ ,60- $\Omega$ , and 120- $\Omega$ R <sub>T</sub> | Internal parallel termination with calibration (20- $\Omega$ , 30- $\Omega$ , 40- $\Omega$ , 60- $\Omega$ , and 120- $\Omega$ setting) | V <sub>CCI0</sub> = 1.5, 1.35, 1.25         | -10 to +40 | -10 to +40           | -10 to +40 | % |
| $60\text{-}\Omega$ and $120\text{-}\Omega$ $R_{T}$                                          | Internal parallel termination with calibration ( $60-\Omega$ and $120-\Omega$ setting)                                                 | V <sub>CCIO</sub> = 1.2                     | -10 to +40 | -10 to +40           | -10 to +40 | % |
| $25-\Omega R_{S\_left\_shift}$                                                              | Internal left shift series termination with calibration (25- $\Omega$ $R_{S\_left\_shift}$ setting)                                    | V <sub>CCIO</sub> = 3.0, 2.5, 1.8, 1.5, 1.2 | ±15        | ±15                  | ±15        | % |



- $\Delta V$  is the variation of voltage with respect to the V<sub>CCIO</sub> at power up.
- dR/dT is the percentage change of R<sub>SCAL</sub> with temperature.
- dR/dV is the percentage change of  $R_{SCAL}$  with voltage.

#### **OCT Variation after Power-Up Calibration**

#### Table 11. OCT Variation after Power-Up Calibration for Cyclone V Devices

This table lists OCT variation with temperature and voltage after power-up calibration. The OCT variation is valid for a  $V_{CCIO}$  range of ±5% and a temperature range of 0°C to 85°C.

| Symbol | Description                                          | V <sub>CCIO</sub> (V) | Value | Unit |
|--------|------------------------------------------------------|-----------------------|-------|------|
| dR/dV  | OCT variation with voltage without recalibration     | 3.0                   | 0.100 | %/mV |
|        |                                                      | 2.5                   | 0.100 |      |
|        |                                                      | 1.8                   | 0.100 |      |
|        |                                                      | 1.5                   | 0.100 |      |
|        |                                                      | 1.35                  | 0.150 |      |
|        |                                                      | 1.25                  | 0.150 |      |
|        |                                                      | 1.2                   | 0.150 |      |
| dR/dT  | OCT variation with temperature without recalibration | 3.0                   | 0.189 | %/°C |
|        |                                                      | 2.5                   | 0.208 |      |
|        |                                                      | 1.8                   | 0.266 |      |
|        |                                                      | 1.5                   | 0.273 |      |
|        |                                                      | 1.35                  | 0.200 |      |
|        |                                                      | 1.25                  | 0.200 |      |
|        |                                                      | 1.2                   | 0.317 |      |

#### Cyclone V Device Datasheet

CV-51002 | 2018.05.07



#### Single-Ended I/O Standards

| I/O Standard |       | V <sub>CCIO</sub> (V) |       | ١    | / <sub>IL</sub> (V)    | VIH                      | (V)                     | V <sub>OL</sub> (V)    | V <sub>OH</sub> (V)      | I <sub>OL</sub> <sup>(18)</sup> | I <sub>OH</sub> <sup>(18)</sup> |
|--------------|-------|-----------------------|-------|------|------------------------|--------------------------|-------------------------|------------------------|--------------------------|---------------------------------|---------------------------------|
|              | Min   | Тур                   | Max   | Min  | Max                    | Min                      | Max                     | Max                    | Min                      | (mA)                            | (mA)                            |
| 3.3-V LVTTL  | 3.135 | 3.3                   | 3.465 | -0.3 | 0.8                    | 1.7                      | 3.6                     | 0.45                   | 2.4                      | 4                               | -4                              |
| 3.3-V LVCMOS | 3.135 | 3.3                   | 3.465 | -0.3 | 0.8                    | 1.7                      | 3.6                     | 0.2                    | V <sub>CCIO</sub> - 0.2  | 2                               | -2                              |
| 3.0-V LVTTL  | 2.85  | 3                     | 3.15  | -0.3 | 0.8                    | 1.7                      | 3.6                     | 0.4                    | 2.4                      | 2                               | -2                              |
| 3.0-V LVCMOS | 2.85  | 3                     | 3.15  | -0.3 | 0.8                    | 1.7                      | 3.6                     | 0.2                    | V <sub>CCIO</sub> – 0.2  | 0.1                             | -0.1                            |
| 3.0-V PCI*   | 2.85  | 3                     | 3.15  | -    | $0.3 \times V_{CCIO}$  | $0.5 \times V_{CCIO}$    | $V_{CCIO} + 0.3$        | $0.1 \times V_{CCIO}$  | $0.9 \times V_{CCIO}$    | 1.5                             | -0.5                            |
| 3.0-V PCI-X  | 2.85  | 3                     | 3.15  | -    | $0.35 \times V_{CCIO}$ | $0.5 \times V_{CCIO}$    | $V_{CCIO} + 0.3$        | $0.1 \times V_{CCIO}$  | $0.9 \times V_{CCIO}$    | 1.5                             | -0.5                            |
| 2.5 V        | 2.375 | 2.5                   | 2.625 | -0.3 | 0.7                    | 1.7                      | 3.6                     | 0.4                    | 2                        | 1                               | -1                              |
| 1.8 V        | 1.71  | 1.8                   | 1.89  | -0.3 | $0.35 \times V_{CCIO}$ | 0.65 × V <sub>CCIO</sub> | $V_{CCIO} + 0.3$        | 0.45                   | V <sub>CCIO</sub> – 0.45 | 2                               | -2                              |
| 1.5 V        | 1.425 | 1.5                   | 1.575 | -0.3 | $0.35 \times V_{CCIO}$ | $0.65 \times V_{CCIO}$   | $V_{CCIO} + 0.3$        | $0.25 \times V_{CCIO}$ | $0.75 \times V_{CCIO}$   | 2                               | -2                              |
| 1.2 V        | 1.14  | 1.2                   | 1.26  | -0.3 | $0.35 \times V_{CCIO}$ | 0.65 × V <sub>CCIO</sub> | V <sub>CCIO</sub> + 0.3 | $0.25 \times V_{CCIO}$ | 0.75 × V <sub>CCIO</sub> | 2                               | -2                              |

#### Table 15. Single-Ended I/O Standards for Cyclone V Devices

#### Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications

#### Table 16. Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications for Cyclone V Devices

| I/O Standard           |       | V <sub>CCIO</sub> (V) |       |                        | V <sub>REF</sub> (V)  |                        | ν <sub>ττ</sub> (ν)     |                  |                         |  |
|------------------------|-------|-----------------------|-------|------------------------|-----------------------|------------------------|-------------------------|------------------|-------------------------|--|
|                        | Min   | Тур                   | Мах   | Min                    | Тур                   | Max                    | Min                     | Тур              | Max                     |  |
| SSTL-2 Class I,<br>II  | 2.375 | 2.5                   | 2.625 | $0.49 \times V_{CCIO}$ | $0.5 \times V_{CCIO}$ | $0.51 \times V_{CCIO}$ | V <sub>REF</sub> - 0.04 | V <sub>REF</sub> | V <sub>REF</sub> + 0.04 |  |
| SSTL-18 Class I,<br>II | 1.71  | 1.8                   | 1.89  | 0.833                  | 0.9                   | 0.969                  | V <sub>REF</sub> - 0.04 | V <sub>REF</sub> | V <sub>REF</sub> + 0.04 |  |
|                        | •     | •                     | •     | •                      | •                     | •                      |                         | -                | continued               |  |

<sup>&</sup>lt;sup>(18)</sup> To meet the  $I_{OL}$  and  $I_{OH}$  specifications, you must set the current strength settings accordingly. For example, to meet the 3.3-V LVTTL specification (4 mA), you should set the current strength settings to 4 mA. Setting at lower current strength may not meet the  $I_{OL}$  and  $I_{OH}$  specifications in the datasheet.



| I/O Standard            |       | V <sub>CCIO</sub> (V) |       |                        | V <sub>REF</sub> (V)  |                        |                          | V <sub>TT</sub> (V)   |                        |
|-------------------------|-------|-----------------------|-------|------------------------|-----------------------|------------------------|--------------------------|-----------------------|------------------------|
|                         | Min   | Тур                   | Max   | Min                    | Тур                   | Max                    | Min                      | Тур                   | Мах                    |
| SSTL-15 Class I,<br>II  | 1.425 | 1.5                   | 1.575 | $0.49 \times V_{CCIO}$ | $0.5 \times V_{CCIO}$ | $0.51 \times V_{CCIO}$ | $0.49 \times V_{CCIO}$   | $0.5 \times V_{CCIO}$ | $0.51 \times V_{CCIO}$ |
| SSTL-135 Class<br>I, II | 1.283 | 1.35                  | 1.418 | $0.49 \times V_{CCIO}$ | $0.5 \times V_{CCIO}$ | $0.51 \times V_{CCIO}$ | $0.49 \times V_{CCIO}$   | $0.5 \times V_{CCIO}$ | $0.51 \times V_{CCIO}$ |
| SSTL-125 Class<br>I, II | 1.19  | 1.25                  | 1.26  | $0.49 \times V_{CCIO}$ | $0.5 \times V_{CCIO}$ | $0.51 \times V_{CCIO}$ | 0.49 × V <sub>CCIO</sub> | $0.5 \times V_{CCIO}$ | $0.51 \times V_{CCIO}$ |
| HSTL-18 Class I,<br>II  | 1.71  | 1.8                   | 1.89  | 0.85                   | 0.9                   | 0.95                   | _                        | V <sub>CCIO</sub> /2  | _                      |
| HSTL-15 Class I,<br>II  | 1.425 | 1.5                   | 1.575 | 0.68                   | 0.75                  | 0.9                    | _                        | V <sub>CCIO</sub> /2  | _                      |
| HSTL-12 Class I,<br>II  | 1.14  | 1.2                   | 1.26  | $0.47 \times V_{CCIO}$ | $0.5 \times V_{CCIO}$ | $0.53 \times V_{CCIO}$ | _                        | V <sub>CCIO</sub> /2  | _                      |
| HSUL-12                 | 1.14  | 1.2                   | 1.3   | $0.49 \times V_{CCIO}$ | $0.5 \times V_{CCIO}$ | $0.51 \times V_{CCIO}$ | _                        | _                     | _                      |

## Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications

#### Table 17. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Cyclone V Devices

| I/O Standard        | VIL  | (DC) <b>(V)</b>          | V <sub>IH(DC</sub>       | c) <b>(V)</b>           | V <sub>IL(AC)</sub> (V) | <b>V</b> <sub>IH(AC)</sub> <b>(V)</b> | V <sub>OL</sub> (V)     | V <sub>он</sub> (V)      | I <sub>OL</sub> <sup>(19)</sup> | I <sub>OH</sub> <sup>(19)</sup> |
|---------------------|------|--------------------------|--------------------------|-------------------------|-------------------------|---------------------------------------|-------------------------|--------------------------|---------------------------------|---------------------------------|
|                     | Min  | Max                      | Min                      | Max                     | Max                     | Min                                   | Max                     | Min                      | (ma)                            | (ma)                            |
| SSTL-2 Class I      | -0.3 | V <sub>REF</sub> - 0.15  | $V_{REF} + 0.15$         | $V_{CCIO} + 0.3$        | V <sub>REF</sub> - 0.31 | V <sub>REF</sub> + 0.31               | V <sub>TT</sub> - 0.608 | V <sub>TT</sub> + 0.608  | 8.1                             | -8.1                            |
| SSTL-2 Class<br>II  | -0.3 | V <sub>REF</sub> - 0.15  | V <sub>REF</sub> + 0.15  | V <sub>CCIO</sub> + 0.3 | V <sub>REF</sub> - 0.31 | V <sub>REF</sub> + 0.31               | V <sub>TT</sub> - 0.81  | V <sub>TT</sub> + 0.81   | 16.2                            | -16.2                           |
| SSTL-18 Class<br>I  | -0.3 | V <sub>REF</sub> - 0.125 | V <sub>REF</sub> + 0.125 | V <sub>CCIO</sub> + 0.3 | V <sub>REF</sub> - 0.25 | V <sub>REF</sub> + 0.25               | V <sub>TT</sub> – 0.603 | V <sub>TT</sub> + 0.603  | 6.7                             | -6.7                            |
| SSTL-18 Class<br>II | -0.3 | V <sub>REF</sub> - 0.125 | V <sub>REF</sub> + 0.125 | V <sub>CCIO</sub> + 0.3 | V <sub>REF</sub> - 0.25 | V <sub>REF</sub> + 0.25               | 0.28                    | V <sub>CCIO</sub> - 0.28 | 13.4                            | -13.4                           |
|                     |      |                          |                          |                         |                         |                                       |                         |                          | со                              | ntinued                         |

<sup>&</sup>lt;sup>(19)</sup> To meet the  $I_{OL}$  and  $I_{OH}$  specifications, you must set the current strength settings accordingly. For example, to meet the SSTL15CI specification (8 mA), you should set the current strength settings to 8 mA. Setting at lower current strength may not meet the  $I_{OL}$  and  $I_{OH}$  specifications in the datasheet.



## **Differential SSTL I/O Standards**

## Table 18. Differential SSTL I/O Standards for Cyclone V Devices

| I/O Standard           |       | V <sub>CCIO</sub> (V) |       | V <sub>SWI</sub> | NG(DC) <b>(V)</b>    |                                 | V <sub>X(AC)</sub> (V) |                                 | V <sub>SWING(AC)</sub> (V)                    |                                               |  |
|------------------------|-------|-----------------------|-------|------------------|----------------------|---------------------------------|------------------------|---------------------------------|-----------------------------------------------|-----------------------------------------------|--|
|                        | Min   | Тур                   | Max   | Min              | Max                  | Min                             | Min Typ                |                                 | Min                                           | Max                                           |  |
| SSTL-2 Class I,<br>II  | 2.375 | 2.5                   | 2.625 | 0.3              | $V_{CCIO} + 0.6$     | V <sub>CCIO</sub> /2 - 0.2      | _                      | V <sub>CCIO</sub> /2 + 0.2      | 0.62                                          | $V_{CCIO} + 0.6$                              |  |
| SSTL-18 Class<br>I, II | 1.71  | 1.8                   | 1.89  | 0.25             | $V_{\rm CCIO}$ + 0.6 | V <sub>CCIO</sub> /2 -<br>0.175 | _                      | V <sub>CCI0</sub> /2<br>+ 0.175 | 0.5                                           | $V_{\rm CCIO}$ + 0.6                          |  |
| SSTL-15 Class<br>I, II | 1.425 | 1.5                   | 1.575 | 0.2              | (20)                 | V <sub>CCIO</sub> /2 - 0.15     | _                      | V <sub>CCIO</sub> /2 + 0.15     | 2(V <sub>IH(AC)</sub> –<br>V <sub>REF</sub> ) | 2(V <sub>IL(AC)</sub> -<br>V <sub>REF</sub> ) |  |
| SSTL-135               | 1.283 | 1.35                  | 1.45  | 0.18             | (20)                 | V <sub>CCIO</sub> /2 - 0.15     | V <sub>CCIO</sub> /2   | $V_{\rm CCIO}/2 + 0.15$         | 2(V <sub>IH(AC)</sub> –<br>V <sub>REF</sub> ) | 2(V <sub>IL(AC)</sub> –<br>V <sub>REF</sub> ) |  |
| SSTL-125               | 1.19  | 1.25                  | 1.31  | 0.18             | (20)                 | V <sub>CCIO</sub> /2 - 0.15     | V <sub>CCIO</sub> /2   | V <sub>CCIO</sub> /2 + 0.15     | 2(V <sub>IH(AC)</sub> –<br>V <sub>REF</sub> ) | 2(V <sub>IL(AC)</sub> –<br>V <sub>REF</sub> ) |  |

#### **Differential HSTL and HSUL I/O Standards**

## Table 19. Differential HSTL and HSUL I/O Standards for Cyclone V Devices

| I/O Standard           |       | V <sub>CCIO</sub> (V) |       | VDI  | F(DC) <b>(V)</b>        | V <sub>X(AC)</sub> (V)       |                       |                                 |                       | V <sub>CM(DC)</sub> (V) |                       | V <sub>DIF(AC)</sub> (V) |                             |
|------------------------|-------|-----------------------|-------|------|-------------------------|------------------------------|-----------------------|---------------------------------|-----------------------|-------------------------|-----------------------|--------------------------|-----------------------------|
|                        | Min   | Тур                   | Max   | Min  | Max                     | Min                          | Тур                   | Мах                             | Min                   | Тур                     | Мах                   | Min                      | Мах                         |
| HSTL-18 Class<br>I, II | 1.71  | 1.8                   | 1.89  | 0.2  | _                       | 0.78                         | -                     | 1.12                            | 0.78                  | -                       | 1.12                  | 0.4                      | _                           |
| HSTL-15 Class<br>I, II | 1.425 | 1.5                   | 1.575 | 0.2  | _                       | 0.68                         | -                     | 0.9                             | 0.68                  | _                       | 0.9                   | 0.4                      | -                           |
| HSTL-12 Class<br>I, II | 1.14  | 1.2                   | 1.26  | 0.16 | V <sub>CCIO</sub> + 0.3 | -                            | $0.5 \times V_{CCIO}$ | -                               | $0.4 \times V_{CCIO}$ | $0.5 \times V_{CCIO}$   | $0.6 \times V_{CCIO}$ | 0.3                      | V <sub>CCIO</sub><br>+ 0.48 |
| HSUL-12                | 1.14  | 1.2                   | 1.3   | 0.26 | 0.26                    | $0.5 \times V_{CCIO} - 0.12$ | $0.5 \times V_{CCIO}$ | $0.5 \times V_{CCIO}$<br>+ 0.12 | $0.4 \times V_{CCIO}$ | $0.5 \times V_{CCIO}$   | $0.6 \times V_{CCIO}$ | 0.44                     | 0.44                        |

<sup>&</sup>lt;sup>(20)</sup> The maximum value for  $V_{SWING(DC)}$  is not defined. However, each single-ended signal needs to be within the respective single-ended limits ( $V_{IH(DC)}$  and  $V_{IL(DC)}$ ).



# **Transceiver Performance Specifications**

# Transceiver Specifications for Cyclone V GX, GT, SX, and ST Devices

## Table 21. Reference Clock Specifications for Cyclone V GX, GT, SX, and ST Devices

| Symbol/Description                                        | ConditionTransceiver Speed Grade 5(30)Transceiver Speed Grade 6Transceiver Speed Grade 7MinTypMaxMinTypMaxMinTypMaxImage: Speed Grade 11.2 V PCML, 1.5 V PCML, 2.5 V PCML, Differential LVPECL(31), HCSL, and LVDSImage: Speed Grade 7Image: Speed Grade 127-55027-550Image: Speed Grade 355027-55027-Image: Speed Grade 3400400400Image: Speed Grade 3400400400Image: Speed Grade 3400400400Image: Speed Grade 3400400400Image: Speed Grade 3400400400 |     |                |             |              |                | Grade 7                   | Unit        |                |      |         |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------|-------------|--------------|----------------|---------------------------|-------------|----------------|------|---------|
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Min | Тур            | Max         | Min          | Тур            | Max                       | Min         | Тур            | Max  |         |
| Supported I/O standards                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2 | 2 V PCML, 1.   | 5 V PCML, 2 | .5 V PCML, I | Differential L | VPECL <sup>(31)</sup> , H | CSL, and LV | DS             |      |         |
| Input frequency from<br>REFCLK input pins <sup>(32)</sup> | _                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27  | _              | 550         | 27           | -              | 550                       | 27          | -              | 550  | MHz     |
| Rise time                                                 | Measure at ±60 mV of differential signal <sup>(33)</sup>                                                                                                                                                                                                                                                                                                                                                                                                | _   | —              | 400         | —            | _              | 400                       | _           | _              | 400  | ps      |
| Fall time                                                 | Measure at ±60 mV of differential signal <sup>(33)</sup>                                                                                                                                                                                                                                                                                                                                                                                                | _   | _              | 400         | —            | _              | 400                       | _           | _              | 400  | ps      |
| Duty cycle                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45  | _              | 55          | 45           | -              | 55                        | 45          | _              | 55   | %       |
| Peak-to-peak differential<br>input voltage                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 200 | _              | 2000        | 200          | -              | 2000                      | 200         | _              | 2000 | mV      |
| Spread-spectrum<br>modulating clock frequency             | PCIe                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30  | _              | 33          | 30           | -              | 33                        | 30          | -              | 33   | kHz     |
| Spread-spectrum<br>downspread                             | PCIe                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _   | 0 to –<br>0.5% | -           | -            | 0 to -<br>0.5% | _                         | _           | 0 to -<br>0.5% | _    | —       |
| On-chip termination resistors                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _   | 100            | _           | _            | 100            | _                         | _           | 100            | _    | Ω       |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                |             |              |                |                           |             |                | co   | ntinued |

<sup>(30)</sup> Transceiver Speed Grade 5 covers specifications for Cyclone V GT and ST devices.

<sup>(31)</sup> Differential LVPECL signal levels must comply to the minimum and maximum peak-to-peak differential input voltage specified in this table.

(32) The reference clock frequency must be ≥ 307.2 MHz to be fully compliance to CPRI transmit jitter specification at 6.144 Gbps. For more information about CPRI 6.144 Gbps, refer to the *Transceiver Protocol Configurations in Cyclone V Devices* chapter.

<sup>(33)</sup> REFCLK performance requires to meet transmitter REFCLK phase noise specification.



| Symbol/Description            | Condition                                            | Transceiv        | ransceiver Speed Grade 5 <sup>(30)</sup> T |         | Transceiver Speed Grade 6 |                         |      | Transceiver Speed Grade 7 |                          |      | Unit   |
|-------------------------------|------------------------------------------------------|------------------|--------------------------------------------|---------|---------------------------|-------------------------|------|---------------------------|--------------------------|------|--------|
|                               |                                                      | Min              | Тур                                        | Max     | Min                       | Тур                     | Max  | Min                       | Тур                      | Max  |        |
| V <sub>ICM</sub> (AC coupled) | -                                                    | V <sub>CCE</sub> | <sub>_GXBL</sub> supply <sup>(</sup>       | 34)(35) | V                         | <sub>CCE_GXBL</sub> sup | bly  | Vo                        | <sub>CCE_GXBL</sub> supp | bly  | V      |
| V <sub>ICM</sub> (DC coupled) | HCSL I/O standard for<br>the PCIe reference<br>clock | 250              | _                                          | 550     | 250                       | -                       | 550  | 250                       | _                        | 550  | mV     |
| Transmitter REFCLK phase      | 10 Hz                                                | -                | -                                          | -50     | _                         | -                       | -50  | -                         | -                        | -50  | dBc/Hz |
| noise(30)                     | 100 Hz                                               | -                | -                                          | -80     | _                         | -                       | -80  | -                         | -                        | -80  | dBc/Hz |
|                               | 1 KHz                                                | -                | -                                          | -110    | -                         | -                       | -110 | -                         | -                        | -110 | dBc/Hz |
|                               | 10 KHz                                               | -                | -                                          | -120    | _                         | -                       | -120 | -                         | -                        | -120 | dBc/Hz |
|                               | 100 KHz                                              | -                | -                                          | -120    | _                         | -                       | -120 | -                         | -                        | -120 | dBc/Hz |
|                               | ≥1 MHz                                               | -                | -                                          | -130    | _                         | -                       | -130 | -                         | -                        | -130 | dBc/Hz |
| R <sub>REF</sub>              | _                                                    | -                | 2000<br>±1%                                | _       | -                         | 2000<br>±1%             | -    | -                         | 2000<br>±1%              | _    | Ω      |

<sup>(30)</sup> Transceiver Speed Grade 5 covers specifications for Cyclone V GT and ST devices.

<sup>(36)</sup> The transmitter REFCLK phase jitter is 30 ps p-p at bit error rate (BER) 10<sup>-12</sup>.

 $<sup>^{(34)}</sup>$  Intel recommends increasing the V<sub>CCE\_GXBL</sub> and V<sub>CCL\_GXBL</sub> typical value from 1.1 V to 1.2 V for Cyclone V GT and ST FPGA systems which require full compliance to the PCIe Gen2 transmit jitter specification. For more information about the maximum full duplex channels recommended in Cyclone V GT and ST devices under this condition, refer to the *Transceiver Protocol Configurations in Cyclone V Devices* chapter.

<sup>(35)</sup> Intel recommends increasing the V<sub>CCE\_GXBL</sub> and V<sub>CCL\_GXBL</sub> typical value from 1.1 V to 1.2 V for full compliance to CPRI transmit jitter specification at 4.9152 Gbps (Cyclone V GT and ST devices) and 6.144 Gbps (Cyclone V GT and ST devices only). For more information about the maximum full duplex channels recommended in Cyclone V GT and ST devices for CPRI 6.144 Gbps, refer to the *Transceiver Protocol Configurations in Cyclone V Devices* chapter.



| Symbol/Description                                                                 | Condition                       | Transceiv          | Transceiver Speed Grade 5 <sup>(30)</sup>                                                                          |     |     | Transceiver Speed Grade 6 |      |     | Transceiver Speed Grade 7 |     |         |
|------------------------------------------------------------------------------------|---------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------|-----|-----|---------------------------|------|-----|---------------------------|-----|---------|
|                                                                                    |                                 | Min                | Тур                                                                                                                | Max | Min | Тур                       | Max  | Min | Тур                       | Max |         |
| Minimum differential eye opening at the receiver serial input pins <sup>(40)</sup> | -                               | 110                | -                                                                                                                  | -   | 110 | -                         | _    | 110 | -                         | _   | mV      |
| Differential on-chip                                                               | 85-Ω setting                    | -                  | 85                                                                                                                 | -   | _   | 85                        | -    | -   | 85                        | -   | Ω       |
| termination resistors                                                              | 100-Ω setting                   | -                  | 100                                                                                                                | -   | _   | 100                       | -    | -   | 100                       | -   | Ω       |
|                                                                                    | 120-Ω setting                   | -                  | 120                                                                                                                | -   | _   | 120                       | -    | -   | 120                       | -   | Ω       |
|                                                                                    | 150-Ω setting                   | -                  | 150                                                                                                                | -   | _   | 150                       | -    | -   | 150                       | -   | Ω       |
| V <sub>ICM</sub> (AC coupled)                                                      | 2.5 V PCML, LVPECL,<br>and LVDS | V <sub>CCE</sub> _ | V <sub>CCE_GXBL</sub> supply <sup>(34)(35)</sup> V <sub>CCE_GXBL</sub> supply         V <sub>CCE_GXBL</sub> supply |     |     |                           |      | oly | V                         |     |         |
|                                                                                    | 1.5 V PCML                      |                    |                                                                                                                    |     | 0.6 | 65/0.75/0.8               | (41) | •   |                           |     | V       |
| t <sub>LTR</sub> <sup>(42)</sup>                                                   | -                               | -                  | -                                                                                                                  | 10  | _   | -                         | 10   | -   | -                         | 10  | μs      |
| t <sub>LTD</sub> <sup>(43)</sup>                                                   | -                               | -                  | -                                                                                                                  | 4   | _   | -                         | 4    | -   | -                         | 4   | μs      |
| t <sub>LTD_manual</sub> (44)                                                       | _                               | -                  | _                                                                                                                  | 4   | _   | -                         | 4    | -   | -                         | 4   | μs      |
| t <sub>LTR_LTD_manual</sub> (45)                                                   | _                               | 15                 | -                                                                                                                  | -   | 15  | -                         | _    | 15  | -                         | -   | μs      |
|                                                                                    |                                 |                    |                                                                                                                    |     |     |                           |      |     |                           | СО  | ntinued |

- $^{(43)}$  t<sub>LTD</sub> is time required for the receiver CDR to start recovering valid data after the rx\_is\_lockedtodata signal goes high.
- $t_{LTD\_manual}$  is the time required for the receiver CDR to start recovering valid data after the rx\_is\_lockedtodata signal goes high when the CDR is functioning in the manual mode.

<sup>(40)</sup> The differential eye opening specification at the receiver input pins assumes that you have disabled the Receiver Equalization feature. If you enable the Receiver Equalization feature, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

<sup>&</sup>lt;sup>(41)</sup> The AC coupled  $V_{ICM}$  = 650 mV for Cyclone V GX and SX in PCIe mode only. The AC coupled  $V_{ICM}$  = 750mV for Cyclone V GT and ST in PCIe mode only.

 $<sup>^{(42)}</sup>$  t<sub>LTR</sub> is the time required for the receive clock data recovery (CDR) to lock to the input reference clock frequency after coming out of reset.

## Cyclone V Device Datasheet

CV-51002 | 2018.05.07



| Symbol                   | Parameter                                                                                                       | Condition                     | Min | Тур | Мах                 | Unit      |
|--------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|-----|-----|---------------------|-----------|
|                          |                                                                                                                 | -C8, -A7 speed grades         | 600 | -   | 1300                | MHz       |
| teinduty                 | Input clock or external feedback clock input duty cycle                                                         | _                             | 40  | _   | 60                  | %         |
| fout                     | Output frequency for internal global or regional clock                                                          | –C6, –C7, –I7 speed<br>grades | _   | _   | 550 <sup>(54)</sup> | MHz       |
|                          |                                                                                                                 | –C8, –A7 speed grades         | _   | _   | 460 <sup>(54)</sup> | MHz       |
| f <sub>OUT_EXT</sub>     | Output frequency for external clock output                                                                      | –C6, –C7, –I7 speed<br>grades | _   | _   | 667 <sup>(54)</sup> | MHz       |
|                          |                                                                                                                 | -C8, -A7 speed grades         | -   | -   | 533 <sup>(54)</sup> | MHz       |
| toutduty                 | Duty cycle for external clock output (when set to 50%)                                                          | _                             | 45  | 50  | 55                  | %         |
| t <sub>FCOMP</sub>       | External feedback clock compensation time                                                                       | -                             | -   | -   | 10                  | ns        |
| t <sub>DYCONFIGCLK</sub> | Dynamic configuration clock for mgmt_clk and scanclk                                                            | _                             | _   | _   | 100                 | MHz       |
| t <sub>LOCK</sub>        | Time required to lock from end-of-device configuration or deassertion of areset                                 | _                             | _   | _   | 1                   | ms        |
| t <sub>DLOCK</sub>       | Time required to lock dynamically (after<br>switchover or reconfiguring any non-post-<br>scale counters/delays) | _                             | _   | _   | 1                   | ms        |
| f <sub>CLBW</sub>        | PLL closed-loop bandwidth                                                                                       | Low                           | -   | 0.3 | -                   | MHz       |
|                          |                                                                                                                 | Medium                        | -   | 1.5 | -                   | MHz       |
|                          |                                                                                                                 | High <sup>(55)</sup>          | -   | 4   | -                   | MHz       |
| t <sub>PLL_PSERR</sub>   | Accuracy of PLL phase shift                                                                                     | -                             | -   | -   | ±50                 | ps        |
|                          |                                                                                                                 | •<br>•                        |     |     |                     | continued |

<sup>&</sup>lt;sup>(53)</sup> The VCO frequency reported by the Intel Quartus Prime software takes into consideration the VCO post-scale counter  $\kappa$  value. Therefore, if the counter  $\kappa$  has a value of 2, the frequency reported can be lower than the f<sub>VCO</sub> specification.

 $<sup>^{(54)}</sup>$  This specification is limited by the lower of the two: I/O  $f_{MAX}$  or  $F_{OUT}$  of the PLL.

<sup>&</sup>lt;sup>(55)</sup> High bandwidth PLL settings are not supported in external feedback mode.

#### Cyclone V Device Datasheet

CV-51002 | 2018.05.07



| Memory     | Mode                                                                                                    | Resourc | ces Used |     | Performance |          | Unit |
|------------|---------------------------------------------------------------------------------------------------------|---------|----------|-----|-------------|----------|------|
|            |                                                                                                         | ALUTs   | Memory   | -C6 | -C7, -I7    | -C8, -A7 |      |
|            | ROM, all supported width                                                                                | 0       | 1        | 420 | 350         | 300      | MHz  |
| M10K Block | Single-port, all supported widths                                                                       | 0       | 1        | 315 | 275         | 240      | MHz  |
|            | Simple dual-port, all supported widths                                                                  | 0       | 1        | 315 | 275         | 240      | MHz  |
|            | Simple dual-port with the <b>read-during-write</b> option set to <b>Old Data</b> , all supported widths | 0       | 1        | 275 | 240         | 180      | MHz  |
|            | True dual port, all supported widths                                                                    | 0       | 1        | 315 | 275         | 240      | MHz  |
|            | ROM, all supported widths                                                                               | 0       | 1        | 315 | 275         | 240      | MHz  |

# **Periphery Performance**

This section describes the periphery performance, high-speed I/O, and external memory interface.

Actual achievable frequency depends on design and system specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.



## **Duty Cycle Distortion (DCD) Specifications**

#### Table 39. Worst-Case DCD on Cyclone V I/O Pins

The output DCD cycle only applies to the I/O buffer. It does not cover the system DCD.

| Symbol            | -C6 |     | -C7, -I7 |     | -C8, -A7 |     | Unit |
|-------------------|-----|-----|----------|-----|----------|-----|------|
|                   | Min | Max | Min      | Max | Min      | Max |      |
| Output Duty Cycle | 45  | 55  | 45       | 55  | 45       | 55  | %    |

# **HPS Specifications**

This section provides HPS specifications and timing for Cyclone V devices.

For HPS reset, the minimum reset pulse widths for the HPS cold and warm reset signals (HPS\_nRST and HPS\_nPOR) are six clock cycles of HPS\_CLK1.

#### **HPS Clock Performance**

#### Table 40. HPS Clock Performance for Cyclone V Devices

| Symbol/Description                       | -C6 | -C7, -I7 | -A7 | -C8 | Unit |
|------------------------------------------|-----|----------|-----|-----|------|
| mpu_base_clk (microprocessor unit clock) | 925 | 800      | 700 | 600 | MHz  |
| main_base_clk (L3/L4 interconnect clock) | 400 | 400      | 350 | 300 | MHz  |
| h2f_user0_clk                            | 100 | 100      | 100 | 100 | MHz  |
| h2f_user1_clk                            | 100 | 100      | 100 | 100 | MHz  |
| h2f_user2_clk                            | 200 | 200      | 160 | 160 | MHz  |



## Figure 7. SPI Master Timing Diagram



#### Table 45. SPI Slave Timing Requirements for Cyclone V Devices

The setup and hold times can be used for Texas Instruments SSP mode and National Semiconductor Microwire mode.

| Symbol            | Description                                     | Min | Max | Unit |
|-------------------|-------------------------------------------------|-----|-----|------|
| T <sub>clk</sub>  | CLK clock period                                | 20  | —   | ns   |
| Ts                | MOSI Setup time                                 | 5   | —   | ns   |
| T <sub>h</sub>    | MOSI Hold time                                  | 5   | —   | ns   |
| T <sub>suss</sub> | Setup time SPI_SS valid before first clock edge | 8   | —   | ns   |
| T <sub>hss</sub>  | Hold time SPI_SS valid after last clock edge    | 8   | _   | ns   |
| T <sub>d</sub>    | MISO output delay                               | _   | 6   | ns   |

#### Cyclone V Device Datasheet CV-51002 | 2018.05.07



| Symbol           | Description                        | Min | Max | Unit |
|------------------|------------------------------------|-----|-----|------|
| T <sub>cea</sub> | Chip enable to data access time    | —   | 25  | ns   |
| T <sub>rea</sub> | Read enable to data access time    | —   | 16  | ns   |
| T <sub>rhz</sub> | Read enable to data high impedance | _   | 100 | ns   |
| T <sub>rr</sub>  | Ready to read enable low           | 20  | —   | ns   |

## Figure 15. NAND Command Latch Timing Diagram





# **Configuration Files**

#### Table 64. Uncompressed .rbf Sizes for Cyclone V Devices

Use this table to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal file (.hex) or tabular text file (.ttf) format, have different file sizes.

For the different types of configuration file and file sizes, refer to the Intel Quartus Prime software. However, for a specific version of the Intel Quartus Prime software, any design targeted for the same device has the same uncompressed configuration file size.

| Variant                      | Member Code | Configuration .rbf Size (bits) | IOCSR .rbf Size (bits) | Recommended EPCQ Serial<br>Configuration Device <sup>(94)</sup> |
|------------------------------|-------------|--------------------------------|------------------------|-----------------------------------------------------------------|
| Cyclone V E <sup>(95)</sup>  | A2          | 21,061,280                     | 275,608                | EPCQ64                                                          |
|                              | A4          | 21,061,280                     | 275,608                | EPCQ64                                                          |
|                              | A5          | 33,958,560                     | 322,072                | EPCQ128                                                         |
|                              | A7          | 56,167,552                     | 435,288                | EPCQ128                                                         |
|                              | A9          | 102,871,776                    | 400,408                | EPCQ256                                                         |
| Cyclone V GX                 | C3          | 14,510,912                     | 320,280                | EPCQ32                                                          |
|                              | C4          | 33,958,560                     | 322,072                | EPCQ128                                                         |
|                              | C5          | 33,958,560                     | 322,072                | EPCQ128                                                         |
|                              | C7          | 56,167,552                     | 435,288                | EPCQ128                                                         |
|                              | C9          | 102,871,776                    | 400,408                | EPCQ256                                                         |
| Cyclone V GT                 | D5          | 33,958,560                     | 322,072                | EPCQ128                                                         |
|                              | D7          | 56,167,552                     | 435,288                | EPCQ128                                                         |
|                              | D9          | 102,871,776                    | 400,408                | EPCQ256                                                         |
| Cyclone V SE <sup>(95)</sup> | A2          | 33,958,560                     | 322,072                | EPCQ128                                                         |
|                              |             |                                | •                      | continued                                                       |

The IOCSR raw binary file (.rbf) size is specifically for the Configuration via Protocol (CvP) feature.

<sup>(94)</sup> The recommended EPCQ serial configuration devices are able to store more than one image.

<sup>(95)</sup> No PCIe hard IP, configuration via protocol (CvP) is not supported in this family.



| Variant      | Member Code | Active Serial <sup>(96)</sup> |            |                                    |       | Fast Passive Parallel <sup>(97)</sup> |                                    |  |
|--------------|-------------|-------------------------------|------------|------------------------------------|-------|---------------------------------------|------------------------------------|--|
|              |             | Width                         | DCLK (MHz) | Minimum Configuration<br>Time (ms) | Width | DCLK (MHz)                            | Minimum Configuration<br>Time (ms) |  |
|              | A9          | 4                             | 100        | 257                                | 16    | 125                                   | 51                                 |  |
| Cyclone V GX | C3          | 4                             | 100        | 36                                 | 16    | 125                                   | 7                                  |  |
|              | C4          | 4                             | 100        | 85                                 | 16    | 125                                   | 17                                 |  |
|              | C5          | 4                             | 100        | 85                                 | 16    | 125                                   | 17                                 |  |
|              | C7          | 4                             | 100        | 140                                | 16    | 125                                   | 28                                 |  |
|              | C9          | 4                             | 100        | 257                                | 16    | 125                                   | 51                                 |  |
| Cyclone V GT | D5          | 4                             | 100        | 85                                 | 16    | 125                                   | 17                                 |  |
|              | D7          | 4                             | 100        | 140                                | 16    | 125                                   | 28                                 |  |
|              | D9          | 4                             | 100        | 257                                | 16    | 125                                   | 51                                 |  |
| Cyclone V SE | A2          | 4                             | 100        | 85                                 | 16    | 125                                   | 17                                 |  |
|              | A4          | 4                             | 100        | 85                                 | 16    | 125                                   | 17                                 |  |
|              | A5          | 4                             | 100        | 140                                | 16    | 125                                   | 28                                 |  |
|              | A6          | 4                             | 100        | 140                                | 16    | 125                                   | 28                                 |  |
| Cyclone V SX | C2          | 4                             | 100        | 85                                 | 16    | 125                                   | 17                                 |  |
|              | C4          | 4                             | 100        | 85                                 | 16    | 125                                   | 17                                 |  |
|              | C5          | 4                             | 100        | 140                                | 16    | 125                                   | 28                                 |  |
|              | C6          | 4                             | 100        | 140                                | 16    | 125                                   | 28                                 |  |
| Cyclone V ST | D5          | 4                             | 100        | 140                                | 16    | 125                                   | 28                                 |  |
|              | D6          | 4                             | 100        | 140                                | 16    | 125                                   | 28                                 |  |

<sup>(96)</sup> DCLK frequency of 100 MHz using external CLKUSR.

<sup>(97)</sup> Maximum FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic.







| Term                 | Definition                                                                                                                                                                                                         |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | CLKOUT Pins<br>CLKOUT Pins<br>four_EXT<br>Core Clock<br>Legend<br>Reconfigurable in User Mode<br>External Feedback<br>Note:<br>(1) Core Clock can only be fed by dedicated clock input pins or PLL outputs.        |
| RL                   | Receiver differential input discrete resistor (external to the Cyclone V device).                                                                                                                                  |
| Sampling window (SW) | Timing diagram—The period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position in the sampling window, as shown:<br>Bit Time |
|                      | 0.5 x TCCS RSKM Sampling Window RSKM 0.5 x TCCS (SW)                                                                                                                                                               |



# **Document Revision History for Cyclone V Device Datasheet**

| Document<br>Version | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2018.05.07          | <ul> <li>Added description about the low-power option ("L" suffix) for Cyclone V SE and SX devices.</li> <li>Added the <i>Cyclone V Devices Overshoot Duration</i> diagram.</li> <li>Removed the description on SD/MMC interface calibration support in the <i>Secure Digital (SD)/MultiMediaCard (MMC) Timing Requirements for Cyclone V Devices</i> table. This feature is currently supported in the preloader.</li> <li>Removed the note to Cyclone V SE A2 and A4 devices, and Cyclone V SX C2 and C4 devices in the <i>Uncompressed .rbf Sizes for Cyclone V Devices</i> table. These devices are currently supported in the Intel Quartus Prime software.</li> <li>Removed PowerPlay text from tool name.</li> <li>Updated the IP name from ALTREMOTE_UPDATE to Remote Update Intel FPGA IP.</li> <li>Rebranded as Intel.</li> <li>Added the Low Power Variants table and the estimating power consumption steps to the "Cyclone V Device Datasheet" Overview section.</li> <li>Updated the minimum value for t<sub>DH</sub> to 2.5 for -6 speed grade/2.9 for -7 and -8 speed grade.</li> </ul> |

| Date          | Version    | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| December 2016 | 2016.12.09 | <ul> <li>Updated V<sub>ICM</sub> (AC coupled) specifications for 1.5 V PCML in Receiver Specifications for Cyclone V GX, GT, SX, and ST Devices table.</li> <li>Added maximum specification for T<sub>d</sub> in Management Data Input/Output (MDIO) Timing Requirements for Cyclone V Devices table.</li> <li>Updated T<sub>init</sub> specifications in the following tables:         <ul> <li>FPP Timing Parameters When DCLK-to-DATA[] Ratio is 1 for Cyclone V Devices</li> <li>FPP Timing Parameters When DCLK-to-DATA[] Ratio is &gt;1 for Cyclone V Devices</li> <li>AS Timing Parameters for AS ×1 and ×4 Configurations in Cyclone V Devices</li> <li>PS Timing Parameters for Cyclone V Devices</li> </ul> </li> </ul> |
| June 2016     | 2016.06.10 | <ul> <li>Changed pin capacitance to maximum values.</li> <li>Updated SPI Master Timing Requirements for Cyclone V Devices table.         <ul> <li>Added T<sub>su</sub> and T<sub>h</sub> specifications.</li> <li>Removed T<sub>dinmax</sub> specifications.</li> </ul> </li> <li>Updated SPI Master Timing Diagram.</li> <li>Updated T<sub>clk</sub> spec from maximum to minimum in I<sup>2</sup>C Timing Requirements for Cyclone V Devices table.</li> </ul>                                                                                                                                                                                                                                                                  |
|               |            | continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |