
Intel - 5CSXFC6C6U23I7NES Datasheet

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are Embedded - System On Chip (SoC)?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

Product Status	Obsolete
Architecture	MCU, FPGA
Core Processor	Dual ARM® Cortex®-A9 MPCore [™] with CoreSight [™]
Flash Size	-
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, MMC/SD/SDIO, SPI, UART/USART, USB OTG
Speed	800MHz
Primary Attributes	FPGA - 110K Logic Elements
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	672-FBGA
Supplier Device Package	672-UBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5csxfc6c6u23i7nes

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Transceiver Power Supply Operating Conditions

Table 5. Transceiver Power Supply Operating Conditions for Cyclone V GX, GT, SX, and ST Devices

Symbol	Description	Minimum ⁽⁸⁾	Typical	Maximum ⁽⁸⁾	Unit
V _{CCH_GXBL}	Transceiver high voltage power (left side)	2.375	2.5	2.625	V
V _{CCE_GXBL} ⁽⁹⁾⁽¹⁰⁾	Transmitter and receiver power (left side)	1.07/1.17	1.1/1.2	1.13/1.23	V
V _{CCL_GXBL} ⁽⁹⁾⁽¹⁰⁾	Clock network power (left side)	1.07/1.17	1.1/1.2	1.13/1.23	V

Related Information

• PCIe Supported Configurations and Placement Guidelines

Provides more information about the maximum full duplex channels recommended in Cyclone V GT and ST devices which require full compliance to the PCIe Gen2 transmit jitter specification.

6.144-Gbps Support Capability in Cyclone V GT Devices
 Provides more information about the maximum full duplex channels recommended in Cyclone V GT and ST devices for
 CPRI 6.144 Gbps.

⁽⁸⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽⁹⁾ Intel recommends increasing the V_{CCE_GXBL} and V_{CCL_GXBL} typical value from 1.1 V to 1.2 V for Cyclone V GT and ST FPGA systems which require full compliance to the PCIe Gen2 transmit jitter specification. For more information about the maximum full duplex channels recommended in Cyclone V GT and ST devices under this condition, refer to the *Transceiver Protocol Configurations in Cyclone V Devices* chapter.

⁽¹⁰⁾ Intel recommends increasing the V_{CCE_GXBL} and V_{CCL_GXBL} typical value from 1.1 V to 1.2 V for full compliance to CPRI transmit jitter specification at 4.9152 Gbps (Cyclone V GT and ST devices) and 6.144Gbps (Cyclone V GT and ST devices only). For more information about the maximum full duplex channels recommended in Cyclone V GT and ST devices for CPRI 6.144 Gbps, refer to the *Transceiver Protocol Configurations in Cyclone V Devices* chapter.

Symbol	Description	Condition	Minimum ⁽¹¹⁾	Typical	Maximum ⁽¹¹⁾	Unit
		1.8 V	1.71	1.8	1.89	V
V _{CCPLL_HPS}	HPS PLL analog voltage regulator power supply	—	2.375	2.5	2.625	V
V _{CC_AUX_SHARED} ⁽¹⁴⁾	HPS auxiliary power supply	_	2.375	2.5	2.625	V

Related Information

Recommended Operating Conditions on page 8 Provides the steady-state voltage values for the FPGA portion of the device.

DC Characteristics

Supply Current and Power Consumption

Intel offers two ways to estimate power for your design—the Excel-based EPE and the Intel[®] Quartus[®] Prime Power Analyzer feature.

Use the Excel-based EPE before you start your design to estimate the supply current for your design. The EPE provides a magnitude estimate of the device power because these currents vary greatly with the resources you use.

The Intel Quartus Prime Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

Related Information

- Early Power Estimator User Guide Provides more information about power estimation tools.
- Power Analysis chapter, Intel Quartus Prime Handbook Provides more information about power estimation tools.

⁽¹¹⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹⁴⁾ V_{CC_AUX_SHARED} must be powered by the same source as V_{CC_AUX} for Cyclone V SX C5, C6, D5, and D6 devices, and Cyclone V SE A5 and A6 devices.

Table 9. OCT Calibration Accuracy Specifications for Cyclone V Devices

Calibration accuracy for the calibrated on-chip series termination (R_S OCT) and on-chip parallel termination (R_T OCT) are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.

Symbol	Description	Condition (V)	Ca	alibration Accura	су	Unit
			-C6	-I7, -C7	-C8, -A7	
25-Ω R _S	Internal series termination with calibration (25-Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%
50-Ω R _S	Internal series termination with calibration (50-Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%
34- Ω and 40- Ω R_S	Internal series termination with calibration ($34-\Omega$ and $40-\Omega$ setting)	V _{CCIO} = 1.5, 1.35, 1.25, 1.2	±15	±15	±15	%
48- Ω , 60- Ω , and 80- Ω R _S	Internal series termination with calibration (48- Ω , 60- Ω , and 80- Ω setting)	V _{CCI0} = 1.2	±15	±15	±15	%
50-Ω R _T	Internal parallel termination with calibration (50-Ω setting)	V _{CCIO} = 2.5, 1.8, 1.5, 1.2	-10 to +40	-10 to +40	-10 to +40	%
20- Ω , 30- Ω , 40- Ω ,60- Ω , and 120- Ω R_T	Internal parallel termination with calibration (20- Ω , 30- Ω , 40- Ω , 60- Ω , and 120- Ω setting)	V _{CCIO} = 1.5, 1.35, 1.25	-10 to +40	-10 to +40	-10 to +40	%
60- Ω and 120- Ω R_T	Internal parallel termination with calibration ($60-\Omega$ and $120-\Omega$ setting)	V _{CCIO} = 1.2	-10 to +40	-10 to +40	-10 to +40	%
$25-\Omega R_{S_left_shift}$	Internal left shift series termination with calibration (25- $\Omega R_{S_left_shift}$ setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%

Cyclone V Device Datasheet

CV-51002 | 2018.05.07

Single-Ended I/O Standards

I/O Standard		V _{CCI0} (V)		N	/ _{IL} (V)	VIH	(V)	V _{OL} (V)	V _{он} (V)	I _{OL} ⁽¹⁸⁾	I _{OH} ⁽¹⁸⁾
	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mA)	(mA)
3.3-V LVTTL	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.45	2.4	4	-4
3.3-V LVCMOS	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.2	V _{CCIO} – 0.2	2	-2
3.0-V LVTTL	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.4	2.4	2	-2
3.0-V LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.2	V _{CCIO} – 0.2	0.1	-0.1
3.0-V PCI*	2.85	3	3.15	_	$0.3 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	V _{CCIO} + 0.3	$0.1 \times V_{CCIO}$	$0.9 \times V_{CCIO}$	1.5	-0.5
3.0-V PCI-X	2.85	3	3.15	—	$0.35 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	V _{CCIO} + 0.3	$0.1 \times V_{CCIO}$	0.9 × V _{CCIO}	1.5	-0.5
2.5 V	2.375	2.5	2.625	-0.3	0.7	1.7	3.6	0.4	2	1	-1
1.8 V	1.71	1.8	1.89	-0.3	$0.35 \times V_{CCIO}$	$0.65 \times V_{CCIO}$	V _{CCIO} + 0.3	0.45	V _{CCIO} - 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	$0.35 \times V_{CCIO}$	$0.65 \times V_{CCIO}$	$V_{CCIO} + 0.3$	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	2	-2
1.2 V	1.14	1.2	1.26	-0.3	$0.35 \times V_{CCIO}$	$0.65 \times V_{CCIO}$	V _{CCIO} + 0.3	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	2	-2

Table 15. Single-Ended I/O Standards for Cyclone V Devices

Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications

Table 16. Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications for Cyclone V Devices

I/O Standard		V _{CCIO} (V)			V _{REF} (V)			V _{TT} (V)	
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Мах
SSTL-2 Class I, II	2.375	2.5	2.625	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	V _{REF} - 0.04	V _{REF}	V _{REF} + 0.04
SSTL-18 Class I, II	1.71	1.8	1.89	0.833	0.9	0.969	V _{REF} - 0.04	V _{REF}	V _{REF} + 0.04
									continued

⁽¹⁸⁾ To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the 3.3-V LVTTL specification (4 mA), you should set the current strength settings to 4 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the datasheet.

Exceptions for PCIe Gen2 design:

- V_{OD} setting = 50 and pre-emphasis setting = 22 are allowed for PCIe Gen2 design with transmit de-emphasis -6dB setting (pipe_txdeemp = 1'b0) using Intel PCIe Hard IP and PIPE IP cores.
- V_{OD} setting = 50 and pre-emphasis setting = 12 are allowed for PCIe Gen2 design with transmit de-emphasis -3.5dB setting (pipe_txdeemp = 1'b1) using Intel PCIe Hard IP and PIPE IP cores.

For example, when V_{OD} = 800 mV, the corresponding V_{OD} value setting is 40. The following conditions show that the 1st post tap pre-emphasis setting = 2 is valid:

- $|B| + |C| \le 60 \rightarrow 40 + 2 = 42$
- |B| |C| > 5→ 40 2 = 38
- $(V_{MAX}/V_{MIN} 1)\% < 600\% \rightarrow (42/38 1)\% = 10.52\%$

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Cyclone V HSSI HSPICE models.

Intel Quartus Prime 1st			Intel Qu	u <mark>artus Prime V_{OD}</mark>	Setting			Unit
Post Tap Pre-Emphasis Setting	10 (200 mV)	20 (400 mV)	30 (600 mV)	35 (700 mV)	40 (800 mV)	45 (900 mV)	50 (1000 mV)	
0	0	0	0	0	0	0	0	dB
1	1.97	0.88	0.43	0.32	0.24	0.19	0.13	dB
2	3.58	1.67	0.95	0.76	0.61	0.5	0.41	dB
3	5.35	2.48	1.49	1.2	1	0.83	0.69	dB
4	7.27	3.31	2	1.63	1.36	1.14	0.96	dB
5	_	4.19	2.55	2.1	1.76	1.49	1.26	dB
6	_	5.08	3.11	2.56	2.17	1.83	1.56	dB
7	_	5.99	3.71	3.06	2.58	2.18	1.87	dB
8	_	6.92	4.22	3.47	2.93	2.48	2.11	dB
9	_	7.92	4.86	4	3.38	2.87	2.46	dB
10	_	9.04	5.46	4.51	3.79	3.23	2.77	dB
			•			•		continue

Table 28. Transmitter Pre-Emphasis Levels for Cyclone V Devices

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _{ARESET}	Minimum pulse width on the areset signal	_	10	-	_	ns
t _{INCCJ} ⁽⁵⁶⁾⁽⁵⁷⁾	Input clock cycle-to-cycle jitter	$F_{REF} \ge 100 \text{ MHz}$	-	-	0.15	UI (p-p)
		$F_{REF} < 100 \text{ MHz}$	_	_	±750	ps (p-p)
t _{OUTPJ_DC} ⁽⁵⁸⁾	Period jitter for dedicated clock output in	$F_{OUT} \ge 100 \text{ MHz}$	_	-	300	ps (p-p)
	integer PLL	F _{OUT} < 100 MHz	_	-	30	mUI (p-p)
t _{FOUTPJ_DC} ⁽⁵⁸⁾	Period jitter for dedicated clock output in	$F_{OUT} \ge 100 \text{ MHz}$	_	-	425 ⁽⁶¹⁾ , 300 ⁽⁵⁹⁾	ps (p-p)
	fractional PLL	F _{OUT} < 100 MHz	-	-	42.5 ⁽⁶¹⁾ , 30 ⁽⁵⁹⁾	mUI (p-p)
t _{OUTCCJ_DC} ⁽⁵⁸⁾	Cycle-to-cycle jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps (p-p)
	in integer PLL	F _{OUT} < 100 MHz	_	-	30	mUI (p-p)
t _{FOUTCCJ_DC} ⁽⁵⁸⁾	Cycle-to-cycle jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$	-	-	425 ⁽⁶¹⁾ , 300 ⁽⁵⁹⁾	ps (p-p)
	in fractional PLL	F _{OUT} < 100 MHz	_	-	42.5 ⁽⁶¹⁾ , 30 ⁽⁵⁹⁾	mUI (p-p)
t _{OUTPJ_IO} ⁽⁵⁸⁾⁽⁶⁰⁾	Period jitter for clock output on a regular I/O	$F_{OUT} \ge 100 \text{ MHz}$	-	-	650	ps (p-p)
	in integer PLL	F _{OUT} < 100 MHz	_	_	65	mUI (p-p)
t _{FOUTPJ_IO} ⁽⁵⁸⁾⁽⁶⁰⁾⁽⁶¹⁾	Period jitter for clock output on a regular I/O in fractional PLL	$F_{OUT} \ge 100 \text{ MHz}$	-	-	650	ps (p-p)
	· ·		I	1		continued

(56) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps.</p>

- ⁽⁵⁷⁾ F_{REF} is f_{IN}/N , specification applies when N = 1.
- (58) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.999999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in *Memory Output Clock Jitter Specification for Cyclone V Devices* table.
- ⁽⁵⁹⁾ This specification only covers fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.20–0.80 must be \geq 1200 MHz.
- ⁽⁶⁰⁾ External memory interface clock output jitter specifications use a different measurement method, which are available in *Memory Output Clock Jitter Specification for Cyclone V Devices* table.

Cyclone V Device Datasheet

CV-51002 | 2018.05.07

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		F_{OUT} < 100 MHz	-	-	65	mUI (p-p)
t _{OUTCCJ_IO} ⁽⁵⁸⁾⁽⁶⁰⁾	Cycle-to-cycle jitter for clock output on	$F_{OUT} \ge 100 \text{ MHz}$	—	—	650	ps (p-p)
	regular I/O in integer PLL	$F_{OUT} < 100 \text{ MHz}$	_	—	65	mUI (p-p)
t _{FOUTCCJ_IO} ⁽⁵⁸⁾⁽⁶⁰⁾⁽⁶¹⁾	Cycle-to-cycle jitter for clock output on	$F_{OUT} \ge 100 \text{ MHz}$	-	-	650	ps (p-p)
	regular I/O in fractional PLL	F_{OUT} < 100 MHz	-	-	65	mUI (p-p)
t _{CASC_OUTPJ_DC} ⁽⁵⁸⁾⁽⁶²⁾	Period jitter for dedicated clock output in	$F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps (p-p)
	cascaded PLLs	F _{OUT} < 100 MHz	_	_	30	mUI (p-p)
t _{DRIFT}	Frequency drift after PFDENA is disabled for a duration of 100 μs	_	_	_	±10	%
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)	_	8	24	32	Bits
kvalue	Numerator of fraction	_	128	8388608	2147483648	_
f _{RES}	Resolution of VCO frequency	$f_{INPFD} = 100 \text{ MHz}$	390625	5.96	0.023	Hz

Related Information

Memory Output Clock Jitter Specifications on page 49

Provides more information about the external memory interface clock output jitter specifications.

- Upstream PLL: 0.59 MHz \leq Upstream PLL BW < 1 MHz
- Downstream PLL: Downstream PLL BW > 2 MHz

⁽⁶¹⁾ This specification only covers fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05–0.95 must be \geq 1000 MHz.

⁽⁶²⁾ The cascaded PLL specification is only applicable with the following conditions:

High-Speed I/O Specifications

Table 34. High-Speed I/O Specifications for Cyclone V Devices

When J = 1 or 2, bypass the serializer/deserializer (SERDES) block.

For LVDS applications, you must use the PLLs in integer PLL mode. This is achieved by using the LVDS clock network.

The Cyclone V devices support the following output standards using true LVDS output buffer types on all I/O banks.

- True RSDS output standard with data rates of up to 360 Mbps
- True mini-LVDS output standard with data rates of up to 400 Mbps

	Symbol	Condition		- C6			-C7, -I7			-C8, -A7		
			Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	
f _{HSCLK_in} (input o Standards	clock frequency) True Differential I/O	Clock boost factor W = 1 to $40^{(63)}$	5	-	437.5	5	-	420	5	-	320	MHz
f _{HSCLK_in} (input o Standards	$f_{\mbox{HSCLK_in}}$ (input clock frequency) Single-Ended I/O Standards		5	_	320	5	_	320	5	_	275	MHz
f _{HSCLK_OUT} (outp	out clock frequency)	_	5	_	420	5	_	370	5	_	320	MHz
Transmitter True Differential I/O Standards - f _{HSDR} (data rate)		SERDES factor J =4 to $10^{(64)}$	(65)	_	840	(65)	_	740	(65)	-	640	Mbps
		<u>.</u>						,			cont	inued

⁽⁶⁵⁾ The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.

⁽⁶³⁾ Clock boost factor (W) is the ratio between the input data rate and the input clock rate.

⁽⁶⁴⁾ The F_{max} specification is based on the fast clock used for serial data. The interface F_{max} is also dependent on the parallel clock domain which is design dependent and requires timing analysis.

	Symbol	Condition		-C6			-C7, -I7			-C8, -A7		Unit
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
		Emulated Differential I/O Standards										
	t _{RISE} and t _{FALL}	True Differential I/O Standards	-	-	200	_	-	200	_	-	200	ps
		Emulated Differential I/O Standards with Three External Output Resistor Networks	_	_	250	_	_	250	_	_	300	ps
		Emulated Differential I/O Standards with One External Output Resistor Network	_	_	300	_	_	300	_	_	300	ps
	TCCS	True Differential I/O Standards	-	-	200	_	-	250	_	-	250	ps
		Emulated Differential I/O Standards with Three External Output Resistor Networks	_	_	300	_	_	300	_	_	300	ps
		Emulated Differential I/O Standards with One External Output Resistor Network	_	_	300	_	_	300	_	_	300	ps
Receiver	f _{HSDR} (data rate)	SERDES factor J =4 to $10^{(64)}$	(65)	-	875 ⁽⁶⁷⁾	(65)	-	840 ⁽⁶⁷⁾	(65)	-	640 ⁽⁶⁷⁾	Mbps
		SERDES factor J = 1 to 2, uses DDR registers	(65)	-	(66)	(65)	-	(66)	(65)	-	(66)	Mbps
Sampling Window		_	-	_	350	_	-	350	_	-	350	ps

Duty Cycle Distortion (DCD) Specifications

Table 39. Worst-Case DCD on Cyclone V I/O Pins

The output DCD cycle only applies to the I/O buffer. It does not cover the system DCD.

Symbol	-0	6	-C7,	-17	-C8,	Unit	
	Min	Мах	x Min Max		Min	Мах	
Output Duty Cycle	45 55		45 55		45	55	%

HPS Specifications

This section provides HPS specifications and timing for Cyclone V devices.

For HPS reset, the minimum reset pulse widths for the HPS cold and warm reset signals (HPS_nRST and HPS_nPOR) are six clock cycles of HPS_CLK1.

HPS Clock Performance

Table 40. HPS Clock Performance for Cyclone V Devices

Symbol/Description	-C6	-C7, -I7	-A7	-C8	Unit
mpu_base_clk (microprocessor unit clock)	925	800	700	600	MHz
main_base_clk (L3/L4 interconnect clock)	400	400	350	300	MHz
h2f_user0_clk	100	100	100	100	MHz
h2f_user1_clk	100	100	100	100	MHz
h2f_user2_clk	200	200	160	160	MHz

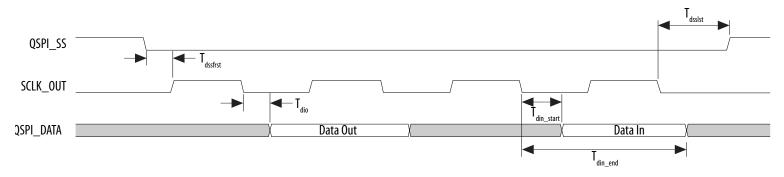
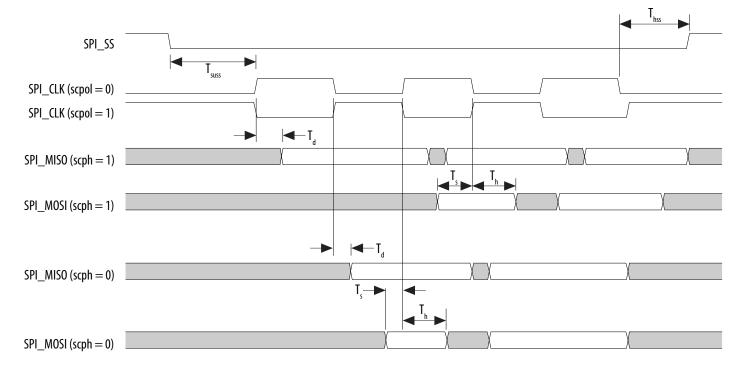

Quad SPI Flash Timing Characteristics

Table 43. Quad Serial Peripheral Interface (SPI) Flash Timing Requirements for Cyclone V Devices

Symbol	Description	Min	Тур	Мах	Unit
F _{clk}	SCLK_OUT clock frequency (External clock)	-	_	108	MHz
T _{qspi_clk}	QSPI_CLK clock period (Internal reference clock)	2.32	-	—	ns
T _{dutycycle}	SCLK_OUT duty cycle	45	_	55	%
T _{dssfrst}	Output delay QSPI_SS valid before first clock edge	-	1/2 cycle of SCLK_OUT	_	ns
T _{dsslst}	Output delay QSPI_SS valid after last clock edge	-1	_	1	ns
T _{dio}	I/O data output delay	-1	-	1	ns
T _{din_start}	art Input data valid start		_	(2 + R _{delay}) × T _{qspi_clk} - 7.52 ⁽⁶⁸⁾	ns
T _{din_end}	_end Input data valid end		_	_	ns

Figure 6. Quad SPI Flash Timing Diagram


This timing diagram illustrates clock polarity mode 0 and clock phase mode 0.

⁽⁶⁸⁾ R_{delay} is set by programming the register gspiregs.rddatacap. For the SoC EDS software version 13.1 and later, Intel provides automatic Quad SPI calibration in the preloader. For more information about R_{delay}, refer to the Quad SPI Flash Controller chapter in the Cyclone V Hard Processor System Technical Reference Manual.

Figure 8. SPI Slave Timing Diagram

Related Information

SPI Controller, Cyclone V Hard Processor System Technical Reference Manual Provides more information about rx_sample_delay.

Configuration Scheme	Encryption	Compression	DCLK-to-DATA[] Ratio (r)
	On	Off	2
	Off	On	4
	On	On	4

FPP Configuration Timing when DCLK-to-DATA[] = 1

When you enable decompression or the design security feature, the DCLK-to-DATA[] ratio varies for FPP ×8 and FPP ×16. For the respective DCLK-to-DATA[] ratio, refer to the DCLK-to-DATA[] Ratio for Cyclone V Devices table.

 Table 58.
 FPP Timing Parameters When DCLK-to-DATA[] Ratio is 1 for Cyclone V Devices

Symbol	Parameter	Maximum	Unit	
t _{CF2CD}	nCONFIG low to CONF_DONE low	-	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	_	600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μs
t _{STATUS}	nSTATUS low pulse width	268	1506 ⁽⁷⁷⁾	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	-	1506 ⁽⁷⁸⁾	μs
t _{CF2CK} ⁽⁷⁹⁾	nCONFIG high to first rising edge on DCLK	1506	—	μs
t _{ST2CK} ⁽⁷⁹⁾	nSTATUS high to first rising edge of DCLK	2	_	μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	—	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	_	ns
t _{CH}	DCLK high time	$0.45 \times 1/f_{MAX}$	_	S
	•	•		continued

⁽⁷⁷⁾ You can obtain this value if you do not delay configuration by extending the nCONFIG or the nSTATUS low pulse width.

⁽⁷⁸⁾ You can obtain this value if you do not delay configuration by externally holding the nSTATUS low.

⁽⁷⁹⁾ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CK} ⁽⁸³⁾	nCONFIG high to first rising edge on DCLK	1506	-	μs
t _{ST2CK} ⁽⁸³⁾	nSTATUS high to first rising edge of DCLK	2	_	μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	—	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	N - 1/f _{DCLK} ⁽⁸⁴⁾	-	S
t _{CH}	DCLK high time	$0.45 \times 1/f_{MAX}$	—	S
t _{CL}	DCLK low time	$0.45 \times 1/f_{MAX}$	-	S
t _{CLK}	DCLK period	1/f _{MAX}	—	S
f _{MAX}	DCLK frequency (FPP ×8/ ×16)	-	125	MHz
t _R	Input rise time	-	40	ns
t _F	Input fall time	-	40	ns
t _{CD2UM}	CONF_DONE high to user mode ⁽⁸⁵⁾	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (T _{init} × CLKUSR period)	_	_
T _{init}	Number of clock cycles required for device initialization	8,576	_	Cycles

Related Information

FPP Configuration Timing Provides the FPP configuration timing waveforms.

⁽⁸⁵⁾ The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

⁽⁸²⁾ This value can be obtained if you do not delay configuration by externally holding nSTATUS low.

⁽⁸³⁾ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

⁽⁸⁴⁾ N is the DCLK-to-DATA[] ratio and f_{DCLK} is the DCLK frequency of the system.

Active Serial (AS) Configuration Timing

Table 60.AS Timing Parameters for AS ×1 and ×4 Configurations in Cyclone V Devices

The minimum and maximum numbers apply to both the internal oscillator and CLKUSR when either one is used as the clock source for device configuration.

The t_{CF2CD} , t_{CF2ST0} , t_{CFG} , t_{STATUS} , and t_{CF2ST1} timing parameters are identical to the timing parameters for passive serial (PS) mode listed in *PS Timing Parameters for Cyclone V Devices* table. You can obtain the t_{CF2ST1} value if you do not delay configuration by externally holding nSTATUS low.

Symbol	Parameter	Minimum	Maximum	Unit
t _{co}	DCLK falling edge to the AS_DATA0/ASDO output	_	2	ns
t _{SU}	Data setup time before the falling edge on DCLK	1.5	_	ns
t _{DH} ⁽⁸⁶⁾	Data hold time after the falling edge on DCLK	2.5 ⁽⁸⁷⁾ /2.9 ⁽⁸⁸⁾	_	ns
t _{CD2UM}	CONF_DONE high to user mode	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (T _{init} × CLKUSR period)	_	_
T _{init}	Number of clock cycles required for device initialization	8,576	_	Cycles

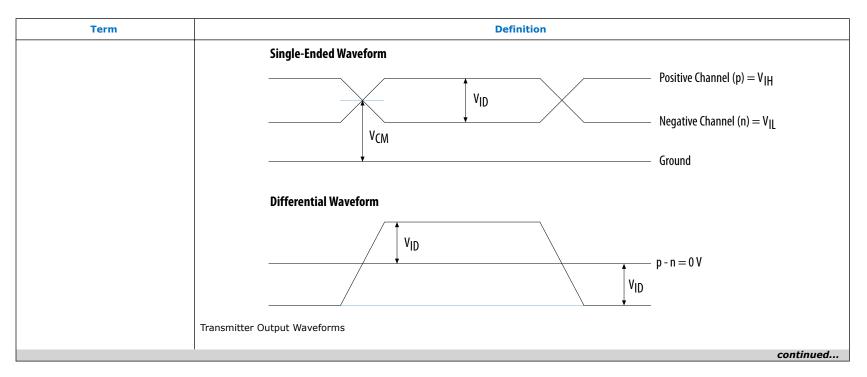
Related Information

- Passive Serial (PS) Configuration Timing on page 74
- AS Configuration Timing Provides the AS configuration timing waveform.
- AN822: Intel FPGA Configuration Device Migration Guideline

 $^(^{86})$ Note: To evaluate the data setup (t_{SU}) and data hold time (t_{DH}) slack on your board in order to ensure you are meeting the t_{SU} and t_{DH} requirement, you are recommended to follow the guideline in the "Evaluating Data Setup and Hold Timing Slack" chapter in AN822: Intel FPGA Configuration Device Migration Guideline.

⁽⁸⁷⁾ Specification for -6 speed grade

⁽⁸⁸⁾ Specification for -7 and -8 speed grade



Variant	Member Code		Active Serial ⁽⁹⁶⁾		Fast Passive Parallel ⁽⁹⁷⁾		
		Width	DCLK (MHz)	Minimum Configuration Time (ms)	Width	DCLK (MHz)	Minimum Configuration Time (ms)
	A9	4	100	257	16	125	51
Cyclone V GX	C3	4	100	36	16	125	7
	C4	4	100	85	16	125	17
	C5	4	100	85	16	125	17
	C7	4	100	140	16	125	28
	C9	4	100	257	16	125	51
Cyclone V GT	D5	4	100	85	16	125	17
	D7	4	100	140	16	125	28
	D9	4	100	257	16	125	51
Cyclone V SE	A2	4	100	85	16	125	17
	A4	4	100	85	16	125	17
	A5	4	100	140	16	125	28
	A6	4	100	140	16	125	28
Cyclone V SX	C2	4	100	85	16	125	17
	C4	4	100	85	16	125	17
	C5	4	100	140	16	125	28
	C6	4	100	140	16	125	28
Cyclone V ST	D5	4	100	140	16	125	28
	D6	4	100	140	16	125	28

⁽⁹⁶⁾ DCLK frequency of 100 MHz using external CLKUSR.

⁽⁹⁷⁾ Maximum FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic.

Term	Definition
	CLKOUT Pins CLKOUT Pins four_Ext CLKOUT Pins CLKOUT Pins four_Ext Core Clock Legend Reconfigurable in User Mode External Feedback Note: (1) Core Clock can only be fed by dedicated clock input pins or PLL outputs.
RL	Receiver differential input discrete resistor (external to the Cyclone V device).
Sampling window (SW)	Timing diagram—The period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position in the sampling window, as shown: Bit Time 0.5 x TCCS RSKM Sampling Window RSKM 0.5 x TCCS
	continued

Document Revision History for Cyclone V Device Datasheet

Document Version	Changes
2018.05.07	 Added description about the low-power option ("L" suffix) for Cyclone V SE and SX devices. Added the <i>Cyclone V Devices Overshoot Duration</i> diagram. Removed the description on SD/MMC interface calibration support in the <i>Secure Digital (SD)/MultiMediaCard (MMC) Timing Requirements for Cyclone V Devices</i> table. This feature is currently supported in the preloader. Removed the note to Cyclone V SE A2 and A4 devices, and Cyclone V SX C2 and C4 devices in the <i>Uncompressed .rbf Sizes for Cyclone V Devices</i> table. These devices are currently supported in the Intel Quartus Prime software. Removed PowerPlay text from tool name. Updated the IP name from ALTREMOTE_UPDATE to Remote Update Intel FPGA IP. Rebranded as Intel. Added the Low Power Variants table and the estimating power consumption steps to the "Cyclone V Device Datasheet" Overview section. Updated the minimum value for t_{DH} to 2.5 for -6 speed grade/2.9 for -7 and -8 speed grade.

Date	Version	Changes
December 2016	2016.12.09	 Updated V_{ICM} (AC coupled) specifications for 1.5 V PCML in Receiver Specifications for Cyclone V GX, GT, SX, and ST Devices table. Added maximum specification for T_d in Management Data Input/Output (MDIO) Timing Requirements for Cyclone V Devices table. Updated T_{init} specifications in the following tables: FPP Timing Parameters When DCLK-to-DATA[] Ratio is 1 for Cyclone V Devices FPP Timing Parameters When DCLK-to-DATA[] Ratio is >1 for Cyclone V Devices AS Timing Parameters for AS ×1 and ×4 Configurations in Cyclone V Devices PS Timing Parameters for Cyclone V Devices
June 2016	2016.06.10	 Changed pin capacitance to maximum values. Updated SPI Master Timing Requirements for Cyclone V Devices table. Added T_{su} and T_h specifications. Removed T_{dinmax} specifications. Updated SPI Master Timing Diagram. Updated T_{clk} spec from maximum to minimum in I²C Timing Requirements for Cyclone V Devices table.
		continued

Cyclone V Device Datasheet

CV-51002 | 2018.05.07

Date	Version	Changes
July 2014	3.9	 Added a note in Table 3, Table 4, and Table 5: The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.
		• Added a note in Table 19: Differential inputs are powered by V_{CCPD} which requires 2.5 V.
		• Updated "Minimum differential eye opening at the receiver serial input pins" specification in Table 20.
		• Updated h2f_user2_clk specification for -C6, -C7, and -I7 speed grades in Table 34.
		Updated description in "HPS PLL Specifications" section.
		Updated VCO range maximum specification in Table 35.
		• Updated T_d and T_h specifications in Table 41.
		Added T _h specification in Table 43 and Figure 10.
		• Updated a note in Figure 17, Figure 18, and Figure 20 as follows: Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required.
		Removed "Remote update only in AS mode" specification in Table 54.
		Added DCLK device initialization clock source specification in Table 56.
		• Added description in "Configuration Files" section: The IOCSR .rbf size is specifically for the Configuration via Protocol (CvP) feature.
		Added "Recommended EPCQ Serial Configuration Device" values in Table 57.
		Removed f _{MAX_RU_CLK} specification in Table 59.
February 2014	3.8	Updated V _{CCRSTCLK_HPS} maximum specification in Table 1.
		Added V _{CC_AUX_SHARED} specification in Table 1.
December 2013	3.7	Updated Table 1, Table 3, Table 19, Table 20, Table 23, Table 25, Table 27, Table 34, Table 44, Table 51, Table 52, Table 55, and Table 61.
		• Removed Preliminary tags for Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 9, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, Table 19, Table 20, Table 24, Table 25, Table 26, Table 27, Table 28, Table 32, Table 33, Table 49, Table 50, Table 51, Table 52, Table 53, Table 54, Table 55, Table 57, Table 58, Table 59, Table 60, and Table 62.
November 2013	3.6	Updated Table 23, Table 30, and Table 31.
October 2013	3.5	Added "HPS PLL Specifications".
		Added Table 23, Table 35, and Table 36.
		• Updated Table 1, Table 5, Table 11, Table 19, Table 20, Table 21, Table 22, Table 25, Table 28, Table 34, Table 37, Table 38, Table 39, Table 40, Table 41, Table 42, Table 43, Table 44, Table 45, Table 46, Table 47, and Table 53.
		• Updated Figure 1, Figure 2, Figure 4, Figure 10, Figure 12, Figure 13, and Figure 16.
		Removed table: GPIO Pulse Width for Cyclone V Devices.
		continued