

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are Embedded - System On Chip (SoC)?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

Product Status	Obsolete
Architecture	MCU, FPGA
Core Processor	Dual ARM® Cortex®-A9 MPCore [™] with CoreSight [™]
Flash Size	-
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, MMC/SD/SDIO, SPI, UART/USART, USB OTG
Speed	600MHz
Primary Attributes	FPGA - 110K Logic Elements
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	896-BGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5csxfc6d6f31c8nes

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

yclone V Device Datasheet	
Electrical Characteristics	
Operating Conditions	
Switching Characteristics	24
Transceiver Performance Specifications	
Core Performance Specifications	40
Periphery Performance	45
HPS Specifications	51
Configuration Specifications	67
POR Specifications	68
FPGA JTAG Configuration Timing	
FPP Configuration Timing	
Active Serial (AS) Configuration Timing	
DCLK Frequency Specification in the AS Configuration Scheme	
Passive Serial (PS) Configuration Timing	74
Initialization	
Configuration Files	76
Minimum Configuration Time Estimation	77
Remote System Upgrades	
User Watchdog Internal Oscillator Frequency Specifications	79
I/O Timing	
Programmable IOE Delay	
Programmable Output Buffer Delay	81
Glossary	
Document Revision History for Cyclone V Device Datasheet	

Transceiver Power Supply Operating Conditions

Table 5. Transceiver Power Supply Operating Conditions for Cyclone V GX, GT, SX, and ST Devices

Symbol	Description	Minimum ⁽⁸⁾	Typical	Maximum ⁽⁸⁾	Unit
V _{CCH_GXBL}	Transceiver high voltage power (left side)	2.375	2.5	2.625	V
V _{CCE_GXBL} ⁽⁹⁾⁽¹⁰⁾	Transmitter and receiver power (left side)	1.07/1.17	1.1/1.2	1.13/1.23	V
V _{CCL_GXBL} ⁽⁹⁾⁽¹⁰⁾	Clock network power (left side)	1.07/1.17	1.1/1.2	1.13/1.23	V

Related Information

• PCIe Supported Configurations and Placement Guidelines

Provides more information about the maximum full duplex channels recommended in Cyclone V GT and ST devices which require full compliance to the PCIe Gen2 transmit jitter specification.

6.144-Gbps Support Capability in Cyclone V GT Devices
 Provides more information about the maximum full duplex channels recommended in Cyclone V GT and ST devices for
 CPRI 6.144 Gbps.

⁽⁸⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽⁹⁾ Intel recommends increasing the V_{CCE_GXBL} and V_{CCL_GXBL} typical value from 1.1 V to 1.2 V for Cyclone V GT and ST FPGA systems which require full compliance to the PCIe Gen2 transmit jitter specification. For more information about the maximum full duplex channels recommended in Cyclone V GT and ST devices under this condition, refer to the *Transceiver Protocol Configurations in Cyclone V Devices* chapter.

⁽¹⁰⁾ Intel recommends increasing the V_{CCE_GXBL} and V_{CCL_GXBL} typical value from 1.1 V to 1.2 V for full compliance to CPRI transmit jitter specification at 4.9152 Gbps (Cyclone V GT and ST devices) and 6.144Gbps (Cyclone V GT and ST devices only). For more information about the maximum full duplex channels recommended in Cyclone V GT and ST devices for CPRI 6.144 Gbps, refer to the *Transceiver Protocol Configurations in Cyclone V Devices* chapter.

Table 9. OCT Calibration Accuracy Specifications for Cyclone V Devices

Calibration accuracy for the calibrated on-chip series termination (R_S OCT) and on-chip parallel termination (R_T OCT) are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.

Symbol	Description	Condition (V)	C	alibration Accura	c y	Unit
			-C6	-I7, -C7	-C8, -A7	
25-Ω R _S	Internal series termination with calibration (25- Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%
50-Ω R _S	Internal series termination with calibration (50- Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%
34- Ω and 40- Ω R _S	Internal series termination with calibration (34- Ω and 40- Ω setting)	V _{CCIO} = 1.5, 1.35, 1.25, 1.2	±15	±15	±15	%
48-Ω, 60-Ω, and 80-Ω $\rm R_S$	Internal series termination with calibration (48- Ω , 60- Ω , and 80- Ω setting)	V _{CCI0} = 1.2	±15	±15	±15	%
50-Ω R _T	Internal parallel termination with calibration (50- Ω setting)	V _{CCIO} = 2.5, 1.8, 1.5, 1.2	-10 to +40	-10 to +40	-10 to +40	%
20- Ω , 30- Ω , 40- Ω ,60- Ω , and 120- Ω R _T	Internal parallel termination with calibration (20- Ω , 30- Ω , 40- Ω , 60- Ω , and 120- Ω setting)	V _{CCI0} = 1.5, 1.35, 1.25	-10 to +40	-10 to +40	-10 to +40	%
$60\text{-}\Omega$ and $120\text{-}\Omega$ R_{T}	Internal parallel termination with calibration ($60-\Omega$ and $120-\Omega$ setting)	V _{CCIO} = 1.2	-10 to +40	-10 to +40	-10 to +40	%
$25-\Omega R_{S_left_shift}$	Internal left shift series termination with calibration (25- Ω $R_{S_left_shift}$ setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%

Table 14. Internal Weak Pull-Up Resistor Values for Cyclone V Devices

Symbol	Description	Condition (V) ⁽¹⁶⁾	Value ⁽¹⁷⁾	Unit
R _{PU}	Value of the I/O pin pull-up resistor before and during configuration, as well	$V_{CCIO} = 3.3 \pm 5\%$	25	kΩ
	option.	$V_{CCIO} = 3.0 \pm 5\%$	25	kΩ
		$V_{CCIO} = 2.5 \pm 5\%$	25	kΩ
		$V_{CCIO} = 1.8 \pm 5\%$	25	kΩ
		$V_{CCIO} = 1.5 \pm 5\%$	25	kΩ
		V _{CCIO} = 1.35 ±5%	25	kΩ
		V _{CCIO} = 1.25 ±5%	25	kΩ
		$V_{CCIO} = 1.2 \pm 5\%$	25	kΩ

Related Information

Cyclone V Device Family Pin Connection Guidelines

Provides more information about the pins that support internal weak pull-up and internal weak pull-down features.

I/O Standard Specifications

Tables in this section list the input voltage (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}) for various I/O standards supported by Cyclone V devices.

You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.

 $^{^{(16)}}$ Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO}.

⁽¹⁷⁾ Valid with $\pm 10\%$ tolerances to cover changes over PVT.

I/O Standard		V _{CCIO} (V)			V _{ID} (mV) ⁽²¹⁾			V _{ICM(DC)} (V)		V	/ _{OD} (V) ⁽²²	2)	V _{OCM} (V) ⁽²²⁾⁽²³⁾		
	Min	Тур	Max	Min	Condition	Max	Min	Condition	Мах	Min	Тур	Max	Min	Тур	Max
LVPECL ⁽²⁹⁾	-	-	-	300	-	-	0.60	D _{MAX} ≤ 700 Mbps	1.80	-	-	-	-	-	-
							1.00	D _{MAX} > 700 Mbps	1.60						
SLVS	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.05	-	1.80	_	-	-	-	_	-
Sub-LVDS	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.05	_	1.80	_	-	-	-	_	-
HiSpi	2.375	2.5	2.625	100	V _{CM} = 1.25 V	-	0.05	_	1.80	—	-	-	-	—	-

Related Information

- AN522: Implementing Bus LVDS Interface in Supported Intel Device Families Provides more information about BLVDS interface support in Intel devices.
- Transceiver Specifications for Cyclone V GX, GT, SX, and ST Devices on page 25 Provides the specifications for transmitter, receiver, and reference clock I/O pin.

Switching Characteristics

This section provides performance characteristics of Cyclone V core and periphery blocks.

(29) For optimized LVPECL receiver performance, the receiver voltage input range must be within 0.85 V to 1.75 V for data rate above 700 Mbps and 0.45 V to 1.95 V for data rate below 700 Mbps.

 $^{^{(21)}}$ The minimum V_{ID} value is applicable over the entire common mode range, V_{CM}.

⁽²²⁾ R_L range: 90 ≤ R_L ≤ 110 Ω.

⁽²³⁾ This applies to default pre-emphasis setting only.

Symbol/Description	Condition	Transceiv	er Speed G	rade 5 ⁽³⁰⁾	Transce	iver Speed	Grade 6	Transce	iver Speed	Grade 7	Unit
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Minimum differential eye opening at the receiver serial input pins ⁽⁴⁰⁾	-	110	-	-	110	-	-	110	-	_	mV
Differential on-chip	85-Ω setting	-	85	-	_	85	-	-	85	-	Ω
termination resistors	100-Ω setting	-	100	-	_	100	-	-	100	-	Ω
	120-Ω setting	-	120	-	_	120	-	-	120	-	Ω
	150-Ω setting	-	150	-	_	150	-	-	150	-	Ω
V _{ICM} (AC coupled)	2.5 V PCML, LVPECL, and LVDS	V _{CCE} _	_{GXBL} supply ⁽	34)(35)	Vo	_{CCE_GXBL} supp	oly	V	_{CCE_GXBL} sup	oly	V
	1.5 V PCML				0.6	65/0.75/0.8	(41)	•			V
t _{LTR} ⁽⁴²⁾	-	-	-	10	_	-	10	-	-	10	μs
t _{LTD} ⁽⁴³⁾	-	-	-	4	_	-	4	-	-	4	μs
t _{LTD_manual} (44)	_	-	_	4	_	-	4	-	-	4	μs
t _{LTR_LTD_manual} (45)	_	15	-	-	15	-	_	15	-	-	μs
										СО	ntinued

- $^{(43)}$ t_{LTD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.
- t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.

⁽⁴⁰⁾ The differential eye opening specification at the receiver input pins assumes that you have disabled the Receiver Equalization feature. If you enable the Receiver Equalization feature, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

⁽⁴¹⁾ The AC coupled V_{ICM} = 650 mV for Cyclone V GX and SX in PCIe mode only. The AC coupled V_{ICM} = 750mV for Cyclone V GT and ST in PCIe mode only.

 $^{^{(42)}}$ t_{LTR} is the time required for the receive clock data recovery (CDR) to lock to the input reference clock frequency after coming out of reset.

Symbol/Description	Condition	Transceiv	er Speed G	rade 5 ⁽³⁰⁾	Transce	iver Speed	Grade 6	Transce	iver Speed	Grade 7	Unit
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Intra-differential pair skew	TX $V_{CM} = 0.65$ V and slew rate of 15 ps	-	-	15	_	-	15	-	-	15	ps
Intra-transceiver block transmitter channel-to- channel skew	×6 PMA bonded mode	-	-	180	-	-	180	-	-	180	ps
Inter-transceiver block transmitter channel-to- channel skew	×N PMA bonded mode	-	-	500	-	-	500	-	-	500	ps

Table 25. CMU PLL Specifications for Cyclone V GX, GT, SX, and ST Devices

Symbol/Description	Condition	Transceiv	er Speed G	rade 5 ⁽³⁰⁾	Transce	iver Speed	Grade 6	Transce	Unit		
		Min	Тур	Мах	Min	Тур	Мах	Min	Тур	Мах	
Supported data range	_	614	_	5000/614 4 ⁽³⁵⁾	614	-	3125	614	_	2500	Mbps
fPLL supported data range	—	614	—	3125	614	—	3125	614	—	2500	Mbps

Table 26. Transceiver-FPGA Fabric Interface Specifications for Cyclone V GX, GT, SX, and ST Devices

Symbol/Description	Condition	Transceiv	er Speed G	rade 5 ⁽³⁰⁾	Transceiver Speed Grade 6			Transce	Unit		
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Interface speed (single- width mode)	_	25	_	187.5	25	-	187.5	25	-	163.84	MHz
Interface speed (double- width mode)	_	25	_	163.84	25	-	163.84	25	_	156.25	MHz

Related Information

- CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain on page 32
- CTLE Response at Data Rates \leq 3.25 Gbps across Supported AC Gain and DC Gain on page 33
- PCIe Supported Configurations and Placement Guidelines
 Provides more information about the maximum full duplex channels recommended in Cyclone V GT and ST devices
 which require full compliance to the PCIe Gen2 transmit jitter specification.

CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _{ARESET}	Minimum pulse width on the areset signal	_	10	-	-	ns
t _{INCCJ} ⁽⁵⁶⁾⁽⁵⁷⁾	Input clock cycle-to-cycle jitter	$F_{REF} \ge 100 \text{ MHz}$	—	_	0.15	UI (p-p)
		$F_{REF} < 100 \text{ MHz}$	—	_	±750	ps (p-p)
t _{outpj_dc} ⁽⁵⁸⁾	Period jitter for dedicated clock output in	$F_{OUT} \ge 100 \text{ MHz}$	—	-	300	ps (p-p)
	Integer PLL	F _{OUT} < 100 MHz	_	-	30	mUI (p-p)
t _{FOUTPJ_DC} ⁽⁵⁸⁾	Period jitter for dedicated clock output in	$F_{OUT} \ge 100 \text{ MHz}$	—	-	425 ⁽⁶¹⁾ , 300 ⁽⁵⁹⁾	ps (p-p)
		F _{OUT} < 100 MHz	—	-	42.5 ⁽⁶¹⁾ , 30 ⁽⁵⁹⁾	mUI (p-p)
t _{OUTCCJ_DC} ⁽⁵⁸⁾	Cycle-to-cycle jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$	—	-	300	ps (p-p)
	in integer PLL	F _{OUT} < 100 MHz	—	-	30	mUI (p-p)
t _{FOUTCCJ_DC} ⁽⁵⁸⁾	Cycle-to-cycle jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$	_	-	425 ⁽⁶¹⁾ , 300 ⁽⁵⁹⁾	ps (p-p)
		F _{OUT} < 100 MHz	—	-	42.5 ⁽⁶¹⁾ , 30 ⁽⁵⁹⁾	mUI (p-p)
t _{outpj_io} ⁽⁵⁸⁾⁽⁶⁰⁾	Period jitter for clock output on a regular I/O	$F_{OUT} \ge 100 \text{ MHz}$	—	-	650	ps (p-p)
	in integer PLL	F _{OUT} < 100 MHz	—	-	65	mUI (p-p)
t _{FOUTPJ_IO} ⁽⁵⁸⁾⁽⁶⁰⁾⁽⁶¹⁾	Period jitter for clock output on a regular I/O in fractional PLL	$F_{OUT} \ge 100 \text{ MHz}$	_	_	650	ps (p-p)
						continued

(56) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps.</p>

- ⁽⁵⁷⁾ F_{REF} is f_{IN}/N , specification applies when N = 1.
- (58) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.999999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in *Memory Output Clock Jitter Specification for Cyclone V Devices* table.
- ⁽⁵⁹⁾ This specification only covers fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.20–0.80 must be \geq 1200 MHz.
- ⁽⁶⁰⁾ External memory interface clock output jitter specifications use a different measurement method, which are available in *Memory Output Clock Jitter Specification for Cyclone V Devices* table.

Cyclone V Device Datasheet

CV-51002 | 2018.05.07

Memory	Mode	Resourc	es Used		Performance					
		ALUTs	Memory	-C6	-C7, -I7	-C8, -A7				
	ROM, all supported width	0	1	420	350	300	MHz			
M10K Block	Single-port, all supported widths	0	1	315	275	240	MHz			
	Simple dual-port, all supported widths	0	1	315	275	240	MHz			
	Simple dual-port with the read-during-write option set to Old Data , all supported widths	0	1	275	240	180	MHz			
	True dual port, all supported widths	0	1	315	275	240	MHz			
	ROM, all supported widths	0	1	315	275	240	MHz			

Periphery Performance

This section describes the periphery performance, high-speed I/O, and external memory interface.

Actual achievable frequency depends on design and system specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

HPS PLL Specifications

HPS PLL VCO Frequency Range

Table 41. HPS PLL VCO Frequency Range for Cyclone V Devices

Description	Speed Grade	d Grade Minimum Maximum		Unit	
VCO range	-C7, -I7, -A7, -C8	320	1,600	MHz	
	-C6	320	1,850	MHz	

HPS PLL Input Clock Range

The HPS PLL input clock range is 10 – 50 MHz. This clock range applies to both HPS_CLK1 and HPS_CLK2 inputs.

Related Information

Clock Select, Booting and Configuration chapter

Provides more information about the clock range for different values of clock select (CSEL).

HPS PLL Input Jitter

Use the following equation to determine the maximum input jitter (peak-to-peak) the HPS PLLs can tolerate. The divide value (N) is the value programmed into the denominator field of the VCO register for each PLL. The PLL input reference clock is divided by this value. The range of the denominator is 1 to 64.

Maximum input jitter = Input clock period \times Divide value (N) \times 0.02

Table 42. Examples of Maximum Input Jitter

Input Reference Clock Period	Divide Value (N)	Maximum Jitter	Unit
40 ns	1	0.8	ns
40 ns	2	1.6	ns
40 ns	4	3.2	ns

Related Information

Quad SPI Flash Controller Chapter, Cyclone V Hard Processor System Technical Reference Manual Provides more information about R_{delay}.

SPI Timing Characteristics

Table 44. SPI Master Timing Requirements for Cyclone V Devices

The setup and hold times can be used for Texas Instruments SSP mode and National Semiconductor Microwire mode.

Symbol	Description	Min	Max	Unit
T _{clk}	CLK clock period	16.67	—	ns
T _{su}	SPI Master-in slave-out (MISO) setup time	8.35 ⁽⁶⁹⁾	_	ns
T _h	SPI MISO hold time	1	_	ns
T _{dutycycle}	SPI_CLK duty cycle	45	55	%
T _{dssfrst}	Output delay SPI_SS valid before first clock edge	8	_	ns
T _{dsslst}	Output delay SPI_SS valid after last clock edge	8	—	ns
T _{dio}	Master-out slave-in (MOSI) output delay	-1	1	ns

⁽⁶⁹⁾ This value is based on rx_sample_dly = 1 and spi_m_clk = 120 MHz. spi_m_clk is the internal clock that is used by SPI Master to derive it's SCLK_OUT. These timings are based on rx_sample_dly of 1. This delay can be adjusted as needed to accommodate slower response times from the slave. Note that a delay of 0 is not allowed. The setup time can be used as a reference starting point. It is very crucial to do a calibration to get the correct rx_sample_dly value because each SPI slave device may have different output delay and each application board may have different path delay. For more information about rx_sample_delay, refer to the SPI Controller chapter in the Hard Processor System Technical Reference Manual.

SD/MMC Timing Characteristics

Table 46. Secure Digital (SD)/MultiMediaCard (MMC) Timing Requirements for Cyclone V Devices

After power up or cold reset, the Boot ROM uses drvsel = 3 and smplsel = 0 to execute the code. At the same time, the SD/MMC controller enters the Identification Phase followed by the Data Phase. During this time, the value of interface output clock SDMMC_CLK_OUT changes from a maximum of 400 kHz (Identification Phase) up to a maximum of 12.5 MHz (Data Phase), depending on the internal reference clock SDMMC_CLK and the CSEL setting. The value of SDMMC_CLK is based on the external oscillator frequency and has a maximum value of 50 MHz.

After the Boot ROM code exits and control is passed to the preloader, software can adjust the value of drvsel and smplsel via the system manager. drvsel can be set from 1 to 7 and smplsel can be set from 0 to 7. While the preloader is executing, the values for SDMMC_CLK and SDMMC_CLK_OUT increase to a maximum of 200 MHz and 50 MHz respectively.

Symbol	Description	Min	Мах	Unit
T _{sdmmc_clk} (internal reference clock)	SDMMC_CLK clock period (Identification mode)	20	_	ns
	SDMMC_CLK clock period (Default speed mode)	5	_	ns
	SDMMC_CLK clock period (High speed mode)	5	_	ns
T _{sdmmc_clk_out} (interface output clock)	SDMMC_CLK_OUT clock period (Identification mode)	2500	_	ns
	SDMMC_CLK_OUT clock period (Default speed mode)	40	_	ns
	SDMMC_CLK_OUT clock period (High speed mode)	20	_	ns
T _{dutycycle}	SDMMC_CLK_OUT duty cycle	45	55	%
T _d	SDMMC_CMD/SDMMC_D output delay	$(T_{sdmmc_clk} \times drvsel)/2 - 1.23$ (70)	(T _{sdmmc_clk} × drvsel)/2 + 1.69 ⁽⁷⁰⁾	ns
T _{su}	Input setup time	$1.05 - (T_{sdmmc_clk} \times smplsel)/2$	_	ns
T _h	Input hold time	$(T_{sdmmc_{clk}} \times smplsel)/2$ (71)	_	ns

⁽⁷⁰⁾ drvsel is the drive clock phase shift select value.

⁽⁷¹⁾ smplsel is the sample clock phase shift select value.

Figure 17. NAND Data Write Timing Diagram

POR Specifications

Table 55. Fast and Standard POR Delay Specification for Cyclone V Devices

POR Delay	Minimum	Maximum	Unit
Fast	4	12 ⁽⁷⁴⁾	ms
Standard	100	300	ms

Related Information

MSEL Pin Settings

Provides more information about POR delay based on MSEL pin settings for each configuration scheme.

FPGA JTAG Configuration Timing

Table 56. FPGA JTAG Timing Parameters and Values for Cyclone V Devices

Symbol	Description	Min	Мах	Unit
t _{JCP}	TCK clock period	30, 167 ⁽⁷⁵⁾	_	ns
t _{JCH}	TCK clock high time	14	—	ns
t _{JCL}	TCK clock low time	14	_	ns
t _{JPSU (TDI)}	TDI JTAG port setup time	1	—	ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3	-	ns
t _{JPH}	JTAG port hold time	5	_	ns
	•			continued

⁽⁷⁴⁾ The maximum pulse width of the fast POR delay is 12 ms, providing enough time for the PCIe hard IP to initialize after the POR trip.

⁽⁷⁵⁾ The minimum TCK clock period is 167 ns if V_{CCBAT} is within the range 1.2 V – 1.5 V when you perform the volatile key programming.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CL}	DCLK low time	$0.45 \times 1/f_{MAX}$	_	s
t _{CLK}	DCLK period	1/f _{MAX}	_	S
f _{MAX}	DCLK frequency (FPP ×8/ ×16)	_	125	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽⁸⁰⁾	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4× maximum DCLK period	-	—
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (T _{init} × CLKUSR period)	_	_
T _{init}	Number of clock cycles required for device initialization	8,576	—	Cycles

Related Information

- FPP Configuration Timing Provides the FPP configuration timing waveforms.
- DCLK-to-DATA[] Ratio (r) for FPP Configuration on page 69

FPP Configuration Timing when DCLK-to-DATA[] >1

Table 59. FPP Timing Parameters When DCLK-to-DATA[] Ratio is >1 for Cyclone V Devices

Use these timing parameters when you use the decompression and design security features.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	_	600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μs
t _{STATUS}	nSTATUS low pulse width	268	1506 ⁽⁸¹⁾	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	-	1506 ⁽⁸²⁾	μs
continued				

⁽⁸⁰⁾ The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

⁽⁸¹⁾ This value can be obtained if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

Active Serial (AS) Configuration Timing

Table 60.AS Timing Parameters for AS ×1 and ×4 Configurations in Cyclone V Devices

The minimum and maximum numbers apply to both the internal oscillator and CLKUSR when either one is used as the clock source for device configuration.

The t_{CF2CD} , t_{CF2ST0} , t_{CFG} , t_{STATUS} , and t_{CF2ST1} timing parameters are identical to the timing parameters for passive serial (PS) mode listed in *PS Timing Parameters for Cyclone V Devices* table. You can obtain the t_{CF2ST1} value if you do not delay configuration by externally holding nSTATUS low.

Symbol	Parameter	Minimum	Maximum	Unit
t _{co}	DCLK falling edge to the AS_DATA0/ASDO output	_	2	ns
t _{SU}	Data setup time before the falling edge on DCLK	1.5	_	ns
t _{DH} ⁽⁸⁶⁾	Data hold time after the falling edge on DCLK	2.5 ⁽⁸⁷⁾ /2.9 ⁽⁸⁸⁾	_	ns
t _{CD2UM}	CONF_DONE high to user mode	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (T _{init} × CLKUSR period)	_	-
T _{init}	Number of clock cycles required for device initialization	8,576	—	Cycles

Related Information

- Passive Serial (PS) Configuration Timing on page 74
- AS Configuration Timing Provides the AS configuration timing waveform.
- AN822: Intel FPGA Configuration Device Migration Guideline

 $^(^{86})$ Note: To evaluate the data setup (t_{SU}) and data hold time (t_{DH}) slack on your board in order to ensure you are meeting the t_{SU} and t_{DH} requirement, you are recommended to follow the guideline in the "Evaluating Data Setup and Hold Timing Slack" chapter in AN822: Intel FPGA Configuration Device Migration Guideline.

⁽⁸⁷⁾ Specification for -6 speed grade

⁽⁸⁸⁾ Specification for -7 and -8 speed grade

Configuration Files

Table 64. Uncompressed .rbf Sizes for Cyclone V Devices

Use this table to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal file (.hex) or tabular text file (.ttf) format, have different file sizes.

For the different types of configuration file and file sizes, refer to the Intel Quartus Prime software. However, for a specific version of the Intel Quartus Prime software, any design targeted for the same device has the same uncompressed configuration file size.

Variant	Member Code	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits)	Recommended EPCQ Serial Configuration Device ⁽⁹⁴⁾
Cyclone V E ⁽⁹⁵⁾	A2	21,061,280	275,608	EPCQ64
	A4	21,061,280	275,608	EPCQ64
	A5	33,958,560	322,072	EPCQ128
	A7	56,167,552	435,288	EPCQ128
	A9	102,871,776	400,408	EPCQ256
Cyclone V GX	C3	14,510,912	320,280	EPCQ32
·	C4	33,958,560	322,072	EPCQ128
	C5	33,958,560	322,072	EPCQ128
	C7	56,167,552	435,288	EPCQ128
	С9	102,871,776	400,408	EPCQ256
Cyclone V GT	D5	33,958,560	322,072	EPCQ128
	D7	56,167,552	435,288	EPCQ128
	D9	102,871,776	400,408	EPCQ256
Cyclone V SE ⁽⁹⁵⁾	A2	33,958,560	322,072	EPCQ128
	A second s		•	continued

The IOCSR raw binary file (.rbf) size is specifically for the Configuration via Protocol (CvP) feature.

⁽⁹⁴⁾ The recommended EPCQ serial configuration devices are able to store more than one image.

⁽⁹⁵⁾ No PCIe hard IP, configuration via protocol (CvP) is not supported in this family.

Cyclone V Device Datasheet

CV-51002 | 2018.05.07

Term	Definition
t _{outpj_io}	Period jitter on the GPIO driven by a PLL
t _{outpj_dc}	Period jitter on the dedicated clock output driven by a PLL
t _{RISE}	Signal low-to-high transition time (20-80%)
Timing Unit Interval (TUI)	The timing budget allowed for skew, propagation delays, and the data sampling window. (TUI = $1/(\text{Receiver Input Clock Frequency Multiplication Factor}) = t_C/w)$
V _{CM(DC)}	DC common mode input voltage.
V _{ICM}	Input common mode voltage—The common mode of the differential signal at the receiver.
V _{ID}	Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
V _{DIF(AC)}	AC differential input voltage—Minimum AC input differential voltage required for switching.
V _{DIF(DC)}	DC differential input voltage— Minimum DC input differential voltage required for switching.
V _{IH}	Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high.
V _{IH(AC)}	High-level AC input voltage
V _{IH(DC)}	High-level DC input voltage
V _{IL}	Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low.
V _{IL(AC)}	Low-level AC input voltage
V _{IL(DC)}	Low-level DC input voltage
V _{OCM}	Output common mode voltage—The common mode of the differential signal at the transmitter.
V _{OD}	Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission line at the transmitter.
V _{SWING}	Differential input voltage
V _X	Input differential cross point voltage
V _{OX}	Output differential cross point voltage
W	High-speed I/O block—Clock boost factor