Intel - <u>5CSXFC6D6F31I7NES Datasheet</u>

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are Embedded - System On Chip (SoC)?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

Dectano	
Product Status	Obsolete
Architecture	MCU, FPGA
Core Processor	Dual ARM [®] Cortex [®] -A9 MPCore [™] with CoreSight [™]
Flash Size	-
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, MMC/SD/SDIO, SPI, UART/USART, USB OTG
Speed	800MHz
Primary Attributes	FPGA - 110K Logic Elements
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	896-BGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5csxfc6d6f31i7nes

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

I/O Standard		V _{CCIO} (V)			V _{REF} (V)			V _{TT} (V)	
	Min	Тур	Мах	Min	Тур	Max	Min	Тур	Max
SSTL-15 Class I, II	1.425	1.5	1.575	0.49 × V _{CCIO}	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$
SSTL-135 Class I, II	1.283	1.35	1.418	0.49 × V _{CCIO}	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$
SSTL-125 Class I, II	1.19	1.25	1.26	0.49 × V _{CCIO}	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	0.49 × V _{CCIO}	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	_	V _{CCIO} /2	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.68	0.75	0.9	_	V _{CCIO} /2	_
HSTL-12 Class I, II	1.14	1.2	1.26	$0.47 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.53 \times V_{CCIO}$	-	V _{CCIO} /2	_
HSUL-12	1.14	1.2	1.3	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	_	-	_

Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications

Table 17. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Cyclone V Devices

I/O Standard	VIL	(DC) (V)	V _{IH(DC}	c) (V)	V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{OL} (V)	V _{он} (V)	I _{OL} ⁽¹⁹⁾	I _{OH} ⁽¹⁹⁾
	Min	Max	Min	Max	Max	Min	Max	Min	(mA)	(mA)
SSTL-2 Class I	-0.3	V _{REF} - 0.15	$V_{REF} + 0.15$	$V_{CCIO} + 0.3$	V _{REF} - 0.31	V _{REF} + 0.31	V _{TT} - 0.608	V _{TT} + 0.608	8.1	-8.1
SSTL-2 Class II	-0.3	V _{REF} - 0.15	V _{REF} + 0.15	V _{CCI0} + 0.3	V _{REF} - 0.31	V _{REF} + 0.31	V _{TT} - 0.81	V _{TT} + 0.81	16.2	-16.2
SSTL-18 Class I	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	V _{CCI0} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	V _{TT} – 0.603	V _{TT} + 0.603	6.7	-6.7
SSTL-18 Class II	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	V _{CCI0} + 0.3	V _{REF} - 0.25	V _{REF} + 0.25	0.28	V _{CCIO} – 0.28	13.4	-13.4
	•	•							со	ntinued

⁽¹⁹⁾ To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the SSTL15CI specification (8 mA), you should set the current strength settings to 8 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the datasheet.

Differential I/O Standard Specifications

Table 20. Differential I/O Standard Specifications for Cyclone V Devices

Differential inputs are powered by V_{CCPD} which requires 2.5 V.

I/O Standard	,	V _{CCIO} (V)		V _{ID} (mV) ⁽²¹⁾				V _{ICM(DC)} (V)		V	OD (V) ⁽²²	!)	Voc	м (V) ⁽²²⁾	(23)
	Min	Тур	Мах	Min	Condition	Мах	Min	Condition	Мах	Min	Тур	Мах	Min	Тур	Мах
PCML Transmitter, receiver, and input reference clock pins of high-speed transceivers use the PCML I/O standard. For transmitter, receiver, and reference clo I/O pin specifications, refer to <i>Transceiver Specifications for Cyclone V GX, GT, SX, and ST Devices</i> table.											ce clock				
2.5 V LVDS ⁽²⁴⁾	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.05	D _{MAX} ≤ 700 Mbps	1.80	0.247	_	0.6	1.125	1.25	1.375
							1.05	D _{MAX} > 700 Mbps	1.55						
BLVDS ⁽²⁵⁾⁽²⁶⁾	2.375	2.5	2.625	100	_	_	-	-	_	_	_	_	-	_	-
RSDS (HIO) ⁽²⁷⁾	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.25	_	1.45	0.1	0.2	0.6	0.5	1.2	1.4
Mini-LVDS (HIO) (28)	2.375	2.5	2.625	200	_	600	0.300	_	1.425	0.25	_	0.6	1	1.2	1.4
					•			•	•		•			cont	inued

 $^{(21)}$ The minimum V_{ID} value is applicable over the entire common mode range, V_{CM}.

⁽²²⁾ R_L range: $90 \le R_L \le 110 \Omega$.

- ⁽²³⁾ This applies to default pre-emphasis setting only.
- (24) For optimized LVDS receiver performance, the receiver voltage input range must be within 1.0 V to 1.6 V for data rate above 700 Mbps and 0.00 V to 1.85 V for data rate below 700 Mbps.
- (25) There are no fixed V_{ICM}, V_{OD}, and V_{OCM} specifications for BLVDS. They depend on the system topology.
- ⁽²⁶⁾ For more information about BLVDS interface support in Intel devices, refer to AN522: Implementing Bus LVDS Interface in Supported Intel Device Families.
- ⁽²⁷⁾ For optimized RSDS receiver performance, the receiver voltage input range must be within 0.25 V to 1.45 V.
- ⁽²⁸⁾ For optimized mini-LVDS receiver performance, the receiver voltage input range must be within 0.300 V to 1.425 V.

Symbol/Description	Condition	Transceiv	er Speed G	rade 5 ⁽³⁰⁾	Transce	iver Speed	Grade 6	Transce	iver Speed	Grade 7	Unit
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Minimum differential eye opening at the receiver serial input pins ⁽⁴⁰⁾	-	110	-	-	110	-	-	110	_	-	mV
Differential on-chip	85-Ω setting	-	85	-	-	85	-	-	85	-	Ω
termination resistors	100-Ω setting	-	100	_	_	100	_	-	100	_	Ω
	120-Ω setting	-	120	_	_	120	-	-	120	_	Ω
	150-Ω setting	-	150	_	_	150	_	-	150	_	Ω
V_{ICM} (AC coupled)	2.5 V PCML, LVPECL, and LVDS	V _{CCE} _	_{GXBL} supply	34)(35)	Vo	CCE_GXBL SUP	bly	Vo	_{CCE_GXBL} sup	ply	V
	1.5 V PCML				0.6	55/0.75/0.8	(41)				V
t _{LTR} ⁽⁴²⁾	_	-	-	10	_	_	10	-	-	10	μs
t _{LTD} ⁽⁴³⁾	-	-	-	4	_	-	4	-	-	4	μs
t _{LTD_manual} (44)	-	_	_	4	_	_	4	-	-	4	μs
t _{LTR_LTD_manual} (45)	_	15	-	_	15	_	_	15	-	_	μs
				•						со	ntinued

- $^{(43)}$ t_{LTD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.
- t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.

⁽⁴⁰⁾ The differential eye opening specification at the receiver input pins assumes that you have disabled the Receiver Equalization feature. If you enable the Receiver Equalization feature, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

⁽⁴¹⁾ The AC coupled V_{ICM} = 650 mV for Cyclone V GX and SX in PCIe mode only. The AC coupled V_{ICM} = 750mV for Cyclone V GT and ST in PCIe mode only.

 $^{^{(42)}}$ t_{LTR} is the time required for the receive clock data recovery (CDR) to lock to the input reference clock frequency after coming out of reset.

CV-51002 | 2018.05.07

Intel Quartus Prime 1st			Intel Qu	u <mark>artus Prime V_{OD}</mark>	Setting			Unit
Post Tap Pre-Emphasis Setting	10 (200 mV)	20 (400 mV)	30 (600 mV)	35 (700 mV)	40 (800 mV)	45 (900 mV)	50 (1000 mV)	
11	_	10.2	6.09	5.01	4.23	3.61	-	dB
12	_	11.56	6.74	5.51	4.68	3.97	_	dB
13	—	12.9	7.44	6.1	5.12	4.36	_	dB
14	—	14.44	8.12	6.64	5.57	4.76	_	dB
15	—	—	8.87	7.21	6.06	5.14	—	dB
16	_	-	9.56	7.73	6.49	_	_	dB
17	—	-	10.43	8.39	7.02	-	-	dB
18	_	-	11.23	9.03	7.52	_	_	dB
19	—	-	12.18	9.7	8.02	-	-	dB
20	—	_	13.17	10.34	8.59	—	—	dB
21	_	_	14.2	11.1	-	_	-	dB
22	_	_	15.38	11.87	_	—	_	dB
23	_	-	_	12.67	-	_	_	dB
24	—	-	-	13.48	-	-	-	dB
25	—	—	_	14.37	-	_	—	dB
26	_	-	_	-	_	_	_	dB
27	-	-	_	-	-	_	—	dB
28	-	-	_	-	-	_	—	dB
29	-	-	_	-	-	_	—	dB
30	-	-	_	-	-	_	—	dB
31	_	-	_	-	-	_	—	dB

Related Information

SPICE Models for Intel Devices

Provides the Cyclone V HSSI HSPICE models.

CV-51002 | 2018.05.07

Protocol	Sub-protocol	Data Rate (Mbps)
	CPRI E12LV	1,228.8
	CPRI E12HV	1,228.8
	CPRI E12LVII	1,228.8
	CPRI E24LV	2,457.6
	CPRI E24LVII	2,457.6
	CPRI E30LV	3,072
	CPRI E30LVII	3,072
	CPRI E48LVII ⁽⁵¹⁾	4,915.2
	CPRI E60LVII ⁽⁵¹⁾	6,144
Gbps Ethernet (GbE)	GbE 1250	1,250
OBSAI	OBSAI 768	768
	OBSAI 1536	1,536
	OBSAI 3072	3,072
Serial digital interface (SDI)	SDI 270 SD	270
	SDI 1485 HD	1,485
	SDI 2970 3G	2,970
VbyOne	VbyOne 3750	3,750
HiGig+	HIGIG 3750	3,750

Related Information

• PCIe Supported Configurations and Placement Guidelines

Provides more information about the maximum full duplex channels recommended in Cyclone V GT and ST devices which require full compliance to the PCIe Gen2 transmit jitter specification.

⁽⁵¹⁾ For CPRI E48LVII and E60LVII, Intel recommends increasing the V_{CCE_GXBL} and V_{CCL_GXBL} typical value from 1.1 V to 1.2 V for full compliance to CPRI transmit jitter specification at 4.9152 Gbps (Cyclone V GT and ST devices) and 6.144 Gbps (Cyclone V GT and ST devices only). For more information about the maximum full duplex channels recommended in Cyclone V GT and ST devices for CPRI 6.144 Gbps, refer to the *Transceiver Protocol Configurations in Cyclone V Devices* chapter.

6.144-Gbps Support Capability in Cyclone V GT Devices Provides more information about the maximum full duplex channels recommended in Cyclone V GT and ST devices for CPRI 6.144 Gbps.

Core Performance Specifications

Clock Tree Specifications

٠

Table 30. Clock Tree Specifications for Cyclone V Devices

Parameter		Performance		Unit
	-C6			
Global clock and Regional clock	550	550	460	MHz
Peripheral clock	155	155	155	MHz

PLL Specifications

Table 31. PLL Specifications for Cyclone V Devices

This table lists the Cyclone V PLL block specifications. Cyclone V PLL block does not include HPS PLL.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{IN}	Input clock frequency	-C6 speed grade	5	—	670 ⁽⁵²⁾	MHz
		-C7, -I7 speed grades	5	_	622 ⁽⁵²⁾	MHz
		-C8, -A7 speed grades	5	-	500 ⁽⁵²⁾	MHz
f _{INPFD}	Integer input clock frequency to the phase frequency detector (PFD)	-	5	_	325	MHz
f _{FINPFD}	Fractional input clock frequency to the PFD	-	50	_	160	MHz
f _{VCO} ⁽⁵³⁾	PLL voltage-controlled oscillator (VCO) operating range	-C6, -C7, -I7 speed grades	600	_	1600	MHz
						continued

⁽⁵²⁾ This specification is limited in the Intel Quartus Prime software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.

CV-51002 | 2018.05.07

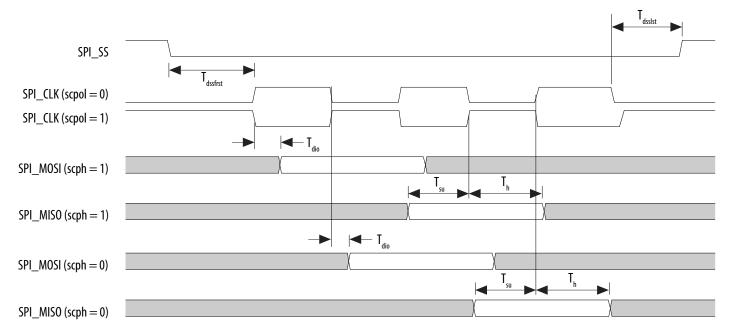
Memory	Mode	Resourc	es Used		Performance		Unit
		ALUTs	Memory	-C6	-C7, -I7	-C8, -A7	
	ROM, all supported width	0	1	420	350	300	MHz
M10K Block	Single-port, all supported widths	0	1	315	275	240	MHz
	Simple dual-port, all supported widths	0	1	315	275	240	MHz
	Simple dual-port with the read-during-write option set to Old Data , all supported widths	0	1	275	240	180	MHz
	True dual port, all supported widths	0	1	315	275	240	MHz
	ROM, all supported widths	0	1	315	275	240	MHz

Periphery Performance

This section describes the periphery performance, high-speed I/O, and external memory interface.

Actual achievable frequency depends on design and system specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

CV-51002 | 2018.05.07


Symbol	Condition		- C6			-C7, -I7			-C8, -A7		Unit
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
	SERDES factor J = 1 to 2, uses DDR registers	(65)	-	(66)	(65)	_	(66)	(65)	_	(66)	Mbps
Emulated Differential I/O Standards with Three External Output Resistor Networks- f _{HSDR} (data rate) ⁽⁶⁷⁾	SERDES factor J = 4 to 10	(65)	_	640	(65)	_	640	(65)	_	550	Mbps
Emulated Differential I/O Standards with One External Output Resistor Network - f _{HSDR} (data rate)	SERDES factor J = 4 to 10	(65)	_	170	(65)	_	170	(65)	_	170	Mbps
t _{x Jitter} -True Differential I/O Standards ⁽⁶⁷⁾	Total Jitterfor Data Rate, 600 Mbps – 840 Mbps	_	_	350	_	_	380	_	_	500	ps
	Total Jitter for Data Rate < 600Mbps	_	-	0.21	-	-	0.23	-	-	0.30	UI
t _{x Jitter} -Emulated Differential I/O Standards with Three External Output Resistor Networks	Total Jitter for Data Rate < 640Mbps	_	-	500	_	_	500	_	_	500	ps
t _{x Jitter} -Emulated Differential I/O Standards with One External Output Resistor Network	Total Jitter for Data Rate < 640Mbps	_	-	0.15	-	-	0.15	-	-	0.15	UI
t _{duty}	TX output clock duty cycle for both True and	45	50	55	45	50	55	45	50	55	%
1					1	1	1	1	1	cont	inued

⁽⁶⁶⁾ The maximum ideal data rate is the SERDES factor (J) × PLL max output frequency (f_{out}), provided you can close the design timing and the signal integrity simulation is clean. You can estimate the achievable maximum data rate by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported.

⁽⁶⁷⁾ You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine the leftover timing margin.

Figure 7. SPI Master Timing Diagram

Table 45. SPI Slave Timing Requirements for Cyclone V Devices

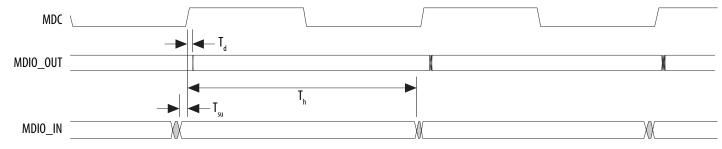
The setup and hold times can be used for Texas Instruments SSP mode and National Semiconductor Microwire mode.

Symbol	Description	Min	Мах	Unit
T _{clk}	CLK clock period	20	—	ns
T _s	MOSI Setup time	5	_	ns
T _h	MOSI Hold time	5	_	ns
T _{suss}	Setup time SPI_SS valid before first clock edge	8	—	ns
T _{hss}	Hold time SPI_SS valid after last clock edge	8	_	ns
T _d	MISO output delay	_	6	ns

SD/MMC Timing Characteristics

Table 46. Secure Digital (SD)/MultiMediaCard (MMC) Timing Requirements for Cyclone V Devices

After power up or cold reset, the Boot ROM uses drvsel = 3 and smplsel = 0 to execute the code. At the same time, the SD/MMC controller enters the Identification Phase followed by the Data Phase. During this time, the value of interface output clock SDMMC_CLK_OUT changes from a maximum of 400 kHz (Identification Phase) up to a maximum of 12.5 MHz (Data Phase), depending on the internal reference clock SDMMC_CLK and the CSEL setting. The value of SDMMC_CLK is based on the external oscillator frequency and has a maximum value of 50 MHz.


After the Boot ROM code exits and control is passed to the preloader, software can adjust the value of drvsel and smplsel via the system manager. drvsel can be set from 1 to 7 and smplsel can be set from 0 to 7. While the preloader is executing, the values for SDMMC_CLK and SDMMC_CLK_OUT increase to a maximum of 200 MHz and 50 MHz respectively.

Symbol	Description	Min	Мах	Unit
T _{sdmmc_clk} (internal reference clock)	SDMMC_CLK clock period (Identification mode)	20	_	ns
	SDMMC_CLK clock period (Default speed mode)	5	_	ns
	SDMMC_CLK clock period (High speed mode)	5	_	ns
T _{sdmmc_clk_out} (interface output clock)	SDMMC_CLK_OUT clock period (Identification mode)	2500	_	ns
	SDMMC_CLK_OUT clock period (Default speed mode)	40	_	ns
	SDMMC_CLK_OUT clock period (High speed mode)	20	_	ns
T _{dutycycle}	SDMMC_CLK_OUT duty cycle	45	55	%
T _d	SDMMC_CMD/SDMMC_D output delay	$(T_{sdmmc_clk} \times drvsel)/2 - 1.23$	(T _{sdmmc_clk} × drvsel)/2 + 1.69 ⁽⁷⁰⁾	ns
T _{su}	Input setup time	$1.05 - (T_{sdmmc_{(71)}} \times smplsel)/2$	_	ns
T _h	Input hold time	$(T_{sdmmc_{clk}} \times smplsel)/2$ (71)	_	ns

⁽⁷⁰⁾ drvsel is the drive clock phase shift select value.

⁽⁷¹⁾ smplsel is the sample clock phase shift select value.

Figure 13. MDIO Timing Diagram

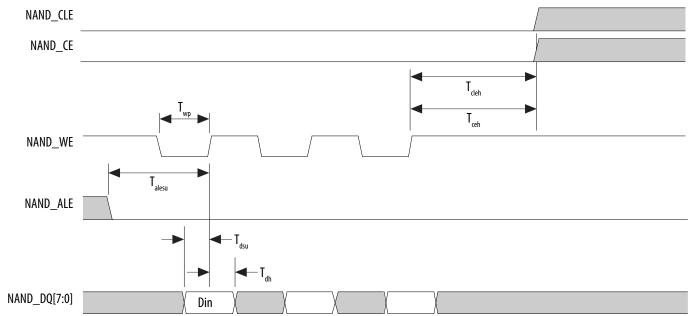

I²C Timing Characteristics

Table 51. I	² C Timing	Requirements for	Cyclone V Devices
-------------	-----------------------	-------------------------	-------------------

Symbol	Description	Standa	Standard Mode		Fast Mode	
		Min	Мах	Min	Мах	
T _{clk}	Serial clock (SCL) clock period	10	-	2.5	-	μs
T _{clkhigh}	SCL high time	4.7	-	0.6	-	μs
T _{clklow}	SCL low time	4	-	1.3	-	μs
Ts	Setup time for serial data line (SDA) data to SCL	0.25	-	0.1	-	μs
T _h	Hold time for SCL to SDA data	0	3.45	0	0.9	μs
T _d	SCL to SDA output data delay	-	0.2	-	0.2	μs
T _{su_start}	Setup time for a repeated start condition	4.7	-	0.6	-	μs
T _{hd_start}	Hold time for a repeated start condition	4	-	0.6	-	μs
T _{su_stop}	Setup time for a stop condition	4	-	0.6	_	μs

Figure 17. NAND Data Write Timing Diagram

POR Specifications

Table 55. Fast and Standard POR Delay Specification for Cyclone V Devices

POR Delay	Minimum	Maximum	Unit
Fast	4	12 ⁽⁷⁴⁾	ms
Standard	100	300	ms

Related Information

MSEL Pin Settings

Provides more information about POR delay based on MSEL pin settings for each configuration scheme.

FPGA JTAG Configuration Timing

Table 56. FPGA JTAG Timing Parameters and Values for Cyclone V Devices

Symbol	Description	Min	Max	Unit		
t _{JCP}	TCK clock period	30, 167 ⁽⁷⁵⁾	—	ns		
t _{JCH}	TCK clock high time	14	—	ns		
t _{JCL}	TCK clock low time	14	_	ns		
t _{JPSU (TDI)}	TDI JTAG port setup time	1	—	ns		
t _{JPSU (TMS)}	TMS JTAG port setup time	3	_	ns		
t _{JPH}	JTAG port hold time	5	_	ns		
	continued					

⁽⁷⁴⁾ The maximum pulse width of the fast POR delay is 12 ms, providing enough time for the PCIe hard IP to initialize after the POR trip.

⁽⁷⁵⁾ The minimum TCK clock period is 167 ns if V_{CCBAT} is within the range 1.2 V – 1.5 V when you perform the volatile key programming.

Configuration Scheme	Encryption	Compression	DCLK-to-DATA[] Ratio (r)
	On	Off	2
	Off	On	4
	On	On	4

FPP Configuration Timing when DCLK-to-DATA[] = 1

When you enable decompression or the design security feature, the DCLK-to-DATA[] ratio varies for FPP ×8 and FPP ×16. For the respective DCLK-to-DATA[] ratio, refer to the DCLK-to-DATA[] Ratio for Cyclone V Devices table.

 Table 58.
 FPP Timing Parameters When DCLK-to-DATA[] Ratio is 1 for Cyclone V Devices

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	-	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	-	600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μs
t _{STATUS}	nSTATUS low pulse width	268	1506 ⁽⁷⁷⁾	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	-	1506 ⁽⁷⁸⁾	μs
t _{CF2CK} ⁽⁷⁹⁾	nCONFIG high to first rising edge on DCLK	1506	—	μs
t _{ST2CK} ⁽⁷⁹⁾	nSTATUS high to first rising edge of DCLK	2	_	μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	—	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	_	ns
t _{CH}	DCLK high time	$0.45 \times 1/f_{MAX}$	_	S
		•		continued

⁽⁷⁷⁾ You can obtain this value if you do not delay configuration by extending the nCONFIG or the nSTATUS low pulse width.

⁽⁷⁸⁾ You can obtain this value if you do not delay configuration by externally holding the nSTATUS low.

⁽⁷⁹⁾ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

DCLK Frequency Specification in the AS Configuration Scheme

Table 61. DCLK Frequency Specification in the AS Configuration Scheme

This table lists the internal clock frequency specification for the AS configuration scheme. The DCLK frequency specification applies when you use the internal oscillator as the configuration clock source. The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz.

Parameter	Minimum	Typical	Maximum	Unit
DCLK frequency in AS configuration scheme	5.3	7.9	12.5	MHz
	10.6	15.7	25.0	MHz
	21.3	31.4	50.0	MHz
	42.6	62.9	100.0	MHz

Passive Serial (PS) Configuration Timing

Table 62. PS Timing Parameters for Cyclone V Devices

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	_	600	ns
t _{CFG}	nCONFIG low pulse width	2	-	μs
t _{STATUS}	nSTATUS low pulse width	268	1506 ⁽⁸⁹⁾	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	_	1506 ⁽⁹⁰⁾	μs
t _{CF2CK} ⁽⁹¹⁾	nCONFIG high to first rising edge on DCLK	1506	_	μs
t _{ST2CK} ⁽⁹¹⁾	nSTATUS high to first rising edge of DCLK	2	_	μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	-	ns
				continued

⁽⁸⁹⁾ You can obtain this value if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

⁽⁹⁰⁾ You can obtain this value if you do not delay configuration by externally holding nSTATUS low.

⁽⁹¹⁾ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

Configuration Files

Table 64. Uncompressed .rbf Sizes for Cyclone V Devices

Use this table to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal file (.hex) or tabular text file (.ttf) format, have different file sizes.

For the different types of configuration file and file sizes, refer to the Intel Quartus Prime software. However, for a specific version of the Intel Quartus Prime software, any design targeted for the same device has the same uncompressed configuration file size.

Variant	Member Code	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits)	Recommended EPCQ Serial Configuration Device ⁽⁹⁴⁾
Cyclone V E ⁽⁹⁵⁾	A2	21,061,280	275,608	EPCQ64
	A4	21,061,280	275,608	EPCQ64
	A5	33,958,560	322,072	EPCQ128
	Α7	56,167,552	435,288	EPCQ128
	A9	102,871,776	400,408	EPCQ256
Cyclone V GX	C3	14,510,912	320,280	EPCQ32
	C4	33,958,560	322,072	EPCQ128
	C5	33,958,560	322,072	EPCQ128
	C7	56,167,552	435,288	EPCQ128
	С9	102,871,776	400,408	EPCQ256
Cyclone V GT	D5	33,958,560	322,072	EPCQ128
	D7	56,167,552	435,288	EPCQ128
	D9	102,871,776	400,408	EPCQ256
Cyclone V SE ⁽⁹⁵⁾	A2	33,958,560	322,072	EPCQ128
		· ·		continue

The IOCSR raw binary file (.rbf) size is specifically for the Configuration via Protocol (CvP) feature.

⁽⁹⁴⁾ The recommended EPCQ serial configuration devices are able to store more than one image.

⁽⁹⁵⁾ No PCIe hard IP, configuration via protocol (CvP) is not supported in this family.

Variant	Member Code	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits)	Recommended EPCQ Serial Configuration Device ⁽⁹⁴⁾
	A4	33,958,560	322,072	EPCQ128
	A5	56,057,632	324,888	EPCQ128
	A6	56,057,632	324,888	EPCQ128
Cyclone V SX	C2	33,958,560	322,072	EPCQ128
	C4	33,958,560	322,072	EPCQ128
	C5	56,057,632	324,888	EPCQ128
	C6	56,057,632	324,888	EPCQ128
Cyclone V ST	D5	56,057,632	324,888	EPCQ128
	D6	56,057,632	324,888	EPCQ128

Minimum Configuration Time Estimation

Table 65. Minimum Configuration Time Estimation for Cyclone V Devices

The estimated values are based on the configuration .rbf sizes in Uncompressed .rbf Sizes for Cyclone V Devices table.

Variant	Member Code	Active Serial ⁽⁹⁶⁾			Fast Passive Parallel ⁽⁹⁷⁾		
		Width	DCLK (MHz)	Minimum Configuration Time (ms)	Width	DCLK (MHz)	Minimum Configuration Time (ms)
Cyclone V E	A2	4	100	53	16	125	11
	A4	4	100	53	16	125	11
	A5	4	100	85	16	125	17
	A7	4	100	140	16	125	28
	continued						

⁽⁹⁴⁾ The recommended EPCQ serial configuration devices are able to store more than one image.

- ⁽⁹⁶⁾ DCLK frequency of 100 MHz using external CLKUSR.
- ⁽⁹⁷⁾ Maximum FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis.

The Intel Quartus Prime Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

Related Information

Cyclone V I/O Timing Spreadsheet

Provides the Cyclone V Excel-based I/O timing spreadsheet.

Programmable IOE Delay

Parameter ⁽¹⁰⁰)	Available Settings	Minimum Offset ⁽¹⁰¹⁾	Fast Model		Slow Model					Unit
			Industrial	Commercial	-C6	-C7	-C8	-17	-A7	
D1	32	0	0.508	0.517	0.971	1.187	1.194	1.179	1.160	ns
D3	8	0	1.761	1.793	3.291	4.022	3.961	3.999	3.929	ns
D4	32	0	0.510	0.519	1.180	1.187	1.195	1.180	1.160	ns
D5	32	0	0.508	0.517	0.970	1.186	1.194	1.179	1.179	ns

Table 68. I/O element (IOE) Programmable Delay for Cyclone V Devices

⁽¹⁰¹ Minimum offset does not include the intrinsic delay.

 ⁽¹⁰⁰ You can set this value in the Intel Quartus Prime software by selecting D1, D3, D4, and D5 in the Assignment Name column of
) Assignment Editor.

⁾

Document Revision History for Cyclone V Device Datasheet

Document Version	Changes			
2018.05.07	 Added description about the low-power option ("L" suffix) for Cyclone V SE and SX devices. Added the <i>Cyclone V Devices Overshoot Duration</i> diagram. Removed the description on SD/MMC interface calibration support in the <i>Secure Digital (SD)/MultiMediaCard (MMC) Timing Requirements for Cyclone V Devices</i> table. This feature is currently supported in the preloader. Removed the note to Cyclone V SE A2 and A4 devices, and Cyclone V SX C2 and C4 devices in the <i>Uncompressed .rbf Sizes for Cyclone V Devices</i> table. These devices are currently supported in the Intel Quartus Prime software. Removed PowerPlay text from tool name. Updated the IP name from ALTREMOTE_UPDATE to Remote Update Intel FPGA IP. Rebranded as Intel. Added the Low Power Variants table and the estimating power consumption steps to the "Cyclone V Device Datasheet" Overview section. Updated the minimum value for t_{DH} to 2.5 for -6 speed grade/2.9 for -7 and -8 speed grade. 			

Date	Version	Changes
December 2016	2016.12.09	 Updated V_{ICM} (AC coupled) specifications for 1.5 V PCML in Receiver Specifications for Cyclone V GX, GT, SX, and ST Devices table. Added maximum specification for T_d in Management Data Input/Output (MDIO) Timing Requirements for Cyclone V Devices table. Updated T_{init} specifications in the following tables: FPP Timing Parameters When DCLK-to-DATA[] Ratio is 1 for Cyclone V Devices FPP Timing Parameters When DCLK-to-DATA[] Ratio is >1 for Cyclone V Devices AS Timing Parameters for AS ×1 and ×4 Configurations in Cyclone V Devices PS Timing Parameters for Cyclone V Devices
June 2016	2016.06.10	 Changed pin capacitance to maximum values. Updated SPI Master Timing Requirements for Cyclone V Devices table. Added T_{su} and T_h specifications. Removed T_{dinmax} specifications. Updated SPI Master Timing Diagram. Updated T_{clk} spec from maximum to minimum in I²C Timing Requirements for Cyclone V Devices table.
		continued

Date	Version	Changes		
June 2013	3.4	 Updated Table 20, Table 27, and Table 34. Updated "UART Interface" and "CAN Interface" sections. Removed the following tables: Table 45: UART Baud Rate for Cyclone V Devices Table 47: CAN Pulse Width for Cyclone V Devices 		
May 2013	3.3	 Added Table 33. Updated Figure 5, Figure 6, Figure 17, Figure 19, and Figure 20. Updated Table 1, Table 4, Table 5, Table 10, Table 13, Table 19, Table 20, Table 26, Table 32, Table 35, Table 36, Table 53, Table 54, Table 57, and Table 61. 		
March 2013	3.2	 Added HPS reset information in the "HPS Specifications" section. Added Table 57. Updated Table 1, Table 2, Table 17, Table 20, Table 52, and Table 56. Updated Figure 18. 		
January 2013	3.1	Updated Table 4, Table 20, and Table 56.		
November 2012	3.0	 Updated Table 1, Table 4, Table 5, Table 9, Table 14, Table 16, Table 17, Table 19, Table 20, Table 25, Table 28, Table 52, Table 55, Table 56, and Table 59. Removed table: Transceiver Block Jitter Specifications for Cyclone V GX Devices. Added HPS information: Added "HPS Specifications" section. Added Table 33, Table 34, Table 35, Table 36, Table 37, Table 38, Table 39, Table 40, Table 41, Table 42, Table 43, Table 44, Table 45, and Table 46. Added Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, and Figure 16. Updated Table 3. 		
 Restructured document. Removed "Power Consumption" section. Updated Table 1,Table 3, Table 19, Table 20, Ta Table 38, Table 39, Table 41, Table 43, and Table Added Table 22, Table 23, and Table 29. Added Figure 1 and Figure 2. 		 Removed "Power Consumption" section. Updated Table 1,Table 3, Table 19, Table 20, Table 25, Table 27, Table 28, Table 30, Table 31, Table 34, Table 36, Table 37, Table 38, Table 39, Table 41, Table 43, and Table 46. Added Table 22, Table 23, and Table 29. 		