

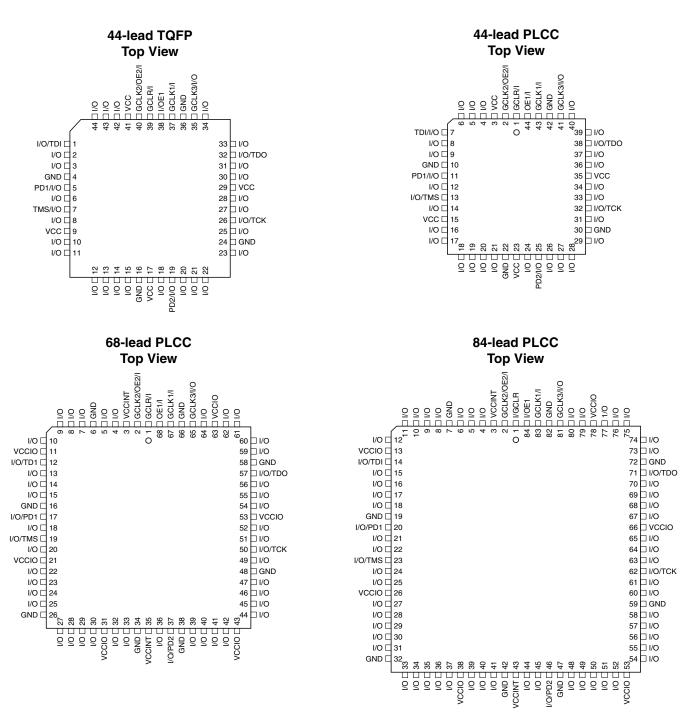
Welcome to E-XFL.COM

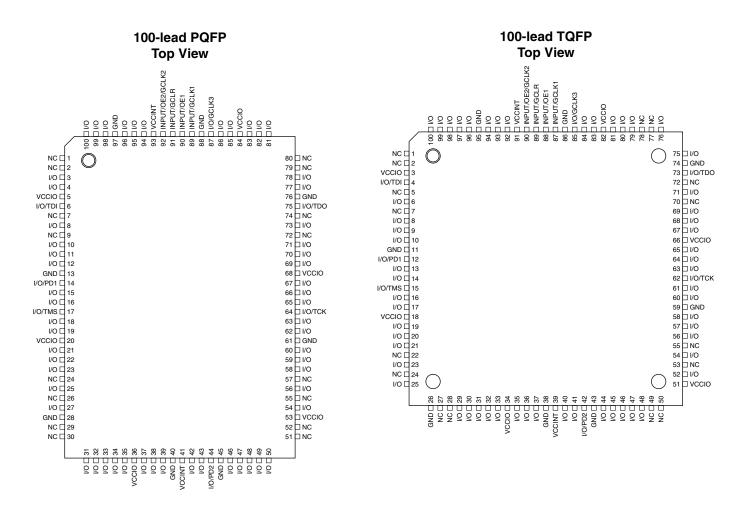
Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

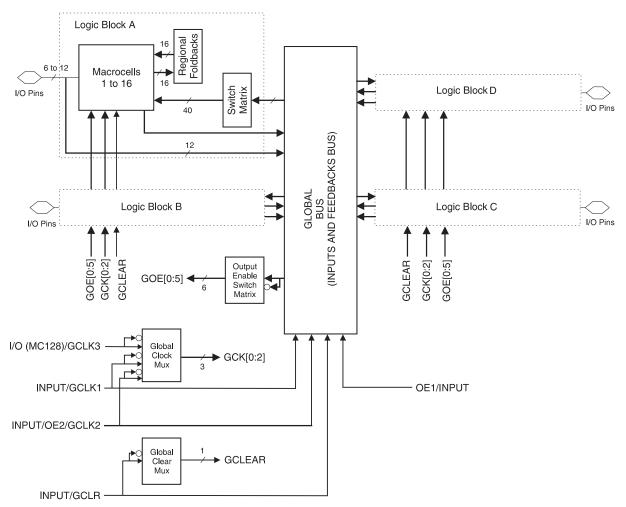

E·XFI


Product Status	Active
Programmable Type	In System Programmable (min 10K program/erase cycles)
Delay Time tpd(1) Max	15 ns
Voltage Supply - Internal	3V ~ 3.6V
Number of Logic Elements/Blocks	-
Number of Macrocells	64
Number of Gates	-
Number of I/O	32
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atf1504asv-15au44

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Description


The ATF1504ASV(L) is a high-performance, high-density complex programmable logic device (CPLD) that utilizes Atmel's proven electrically-erasable memory technology. With 64 logic macrocells and up to 68 inputs, it easily integrates logic from several TTL, SSI, MSI, LSI and classic PLDs. The ATF1504ASV(L)'s enhanced routing switch matrices increase usable gate count and the odds of successful pin-locked design modifications.

The ATF1504ASV(L) has up to 68 bi-directional I/O pins and four dedicated input pins, depending on the type of device package selected. Each dedicated pin can also serve as a global control signal, register clock, register reset or output enable. Each of these control signals can be selected for use individually within each macrocell.

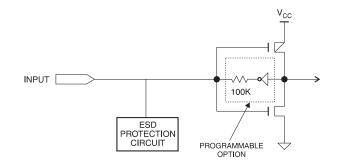
Each of the 64 macrocells generates a buried feedback that goes to the global bus. Each input and I/O pin also feeds into the global bus. The switch matrix in each logic block then selects 40 individual signals from the global bus. Each macrocell also generates a foldback logic term that goes to a regional bus. Cascade logic between macrocells in the ATF1504ASV(L) allows fast, efficient generation of complex logic functions. The ATF1504ASV(L) contains four such logic chains, each capable of creating sum term logic with a fan-in of up to 40 product terms.

The ATF1504ASV(L) macrocell, shown in Figure 1, is flexible enough to support highlycomplex logic functions operating at high speed. The macrocell consists of five sections: product terms and product term select multiplexer, OR/XOR/CASCADE logic, a flip-flop, output select and enable, and logic array inputs.

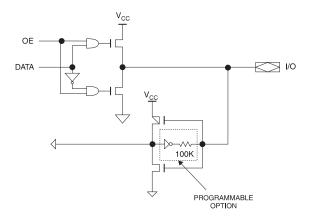
Block Diagram

Unused product terms are automatically disabled by the compiler to decrease power consumption. A security fuse, when programmed, protects the contents of the ATF1504ASV(L). Two bytes (16 bits) of User Signature are accessible to the user for purposes such as storing project name, part number, revision or date. The User Signature is accessible regardless of the state of the security fuse.

The ATF1504ASV(L) device is an in-system programmable (ISP) device. It uses the industry-standard 4-pin JTAG interface (IEEE Std. 1149.1), and is fully-compliant with JTAG's Boundary-scan Description Language (BSDL). ISP allows the device to be programmed without removing it from the printed circuit board. In addition to simplifying the manufacturing flow, ISP also allows design modifications to be made in the field via software.


Product Terms and SelectEach ATF1504ASV(L) macrocell has five product terms. Each product term receives as
its inputs all signals from both the global bus and regional bus.

The product term select multiplexer (PTMUX) allocates the five product terms as needed to the macrocell logic gates and control signals. The PTMUX programming is determined by the design compiler, which selects the optimum macrocell configuration.



Input Diagram

I/O Diagram

Speed/Power Management

The ATF1504ASV(L) has several built-in speed and power management features. The ATF1504ASV(L) contains circuitry that automatically puts the device into a low power standby mode when no logic transitions are occurring. This not only reduces power consumption during inactive periods, but also provides proportional power savings for most applications running at system speeds below 5 MHz. This feature may be selected as a device option.

To further reduce power, each ATF1504ASV(L) macrocell has a reduced-power bit feature. This feature allows individual macrocells to be configured for maximum power savings. This feature may be selected as a design option.

All ATF1504ASV(L) also have an optional power-down mode. In this mode, current drops to below 5 mA. When the power-down option is selected, either PD1 or PD2 pins (or both) can be used to power down the part. The power-down option is selected in the design source file. When enabled, the device goes into power down when either PD1 or PD2 is high. In the power-down mode, all internal logic signals are latched and held, as are any enabled outputs.

All pin transitions are ignored until the PD pin is brought low. When the power-down feature is enabled, the PD1 or PD2 pin cannot be used as a logic input or output. However, the pin's macrocell may still be used to generate buried foldback and cascade logic signals.

	R

Programming	ATF1504ASV(L) devices are in-system programmable (ISP) devices utilizing the 4-pin JTAG protocol. This capability eliminates package handling normally required for pro- gramming and facilitates rapid design iterations and field changes.							
	Atmel provides ISP hardware and software to allow programming of the ATF1504ASV(L) via the PC. ISP is performed by using either a download cable, a comparable board tester or a simple microprocessor interface.							
	To facilitate ISP programming by the Automated Test Equipment (ATE) vendors. Serial Vector Format (SVF) files can be created by Atmel provided software utilities.							
	ATF1504ASV(L) devices can also be programmed using standard third-party program- mers. With third-party programmer the JTAG ISP port can be disabled thereby allowing four additional I/O pins to be used for logic.							
	Contact your local Atmel representatives or Atmel PLD applications for details.							
ISP Programming Protection	The ATF1504ASV(L) has a special feature that locks the device and prevents the inputs and I/O from driving if the programming process is interrupted for any reason. The inputs and I/O default to high-Z state during such a condition. In addition the pin keeper option preserves the former state during device programming, if this circuit were previ- ously programmed on the device. This prevents disturbing the operation of other circuits in the system while the ATF1504ASV(L) is being programmed via ISP.							
	All ATF1504ASV(L) devices are initially shipped in the erased state thereby making them ready to use for ISP.							
	Note: For more information refer to the "Designing for In-System Programmability with Atmel CPLDs" application note.							

DC and AC Operating Conditions

	Commercial	Industrial
Operating Temperature (Ambient))	0°C - 70°C	-40°C - 85°C
V _{CC} (3.3V) Power Supply	3.0V - 3.6V	3.0V - 3.6V

DC Characteristics

Symbol	Parameter	Condition			Min	Тур	Max	Units
I _{IL}	Input or I/O Low Leakage Current	$V_{IN} = V_{CC}$				-2	-10	μA
I _{IH}	Input or I/O High Leakage Current					2	10	
I _{OZ}	Tri-State Output Off-State Current	$V_{O} = V_{CC}$ or G	ND		-40		40	μA
			Obd Maida	Com.		60		mA
	Power Supply Current,	V _{CC} = Max	Std Mode	Ind.		75		mA
I _{CC1}	Standby	$V_{IN} = 0, V_{CC}$	((1.2) N A - - 1 -	Com.		5		μA
			"L" Mode	Ind.		5		μA
I _{CC2}	Power Supply Current, Power-down Mode	$V_{CC} = Max$ $V_{IN} = 0, V_{CC}$	"PD" Mode			0.1	5	mA
. (2)	Reduced-power Mode	V _{CC} = Max	0.15	Com		40		ma
I _{CC3} ⁽²⁾	Supply Current, Standby	$V_{IN} = 0, V_{CC}$	Std Power	Ind		55		
V _{IL}	Input Low Voltage				-0.3		0.8	V
V _{IH}	Input High Voltage				1.7		V _{CCIO} + 0.3	V
		$V_{IN} = V_{IH} \text{ or } V_{I}$	1	Com.			0.45	V
	Output Low Voltage (TTL)	$V_{\rm CCIO} = Min, I_{\rm C}$	_{DL} = 8 mA	Ind.			0.45	
V _{OL}		$V_{IN} = V_{IH} \text{ or } V_{I}$	I	Com.			0.2	V
	Output Low Voltage (CMOS)		$V_{\rm CC} = Min, I_{\rm OL} = 0.1 \text{ mA}$ Ind.				0.2	V
.,	Output High Voltage - 3.3V (TTL)		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CCIO} = \text{Min}, I_{OH} = -2.0 \text{ mA}$					V
V _{OH}	Output High Voltage - 3.3V (CMOS)	$V_{IN} = V_{IH} \text{ or } V_{I}$ $V_{CCIO} = Min, I_{O}$			V _{CCIO} - 0.2			V

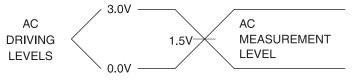
Notes: 1. Not more than one output at a time should be shorted. Duration of short circuit test should not exceed 30 sec. 2. When microcell reduced-power feature is enabled.

Pin Capacitance

	Тур	Max	Units	Conditions
C _{IN}		8	pF	V _{IN} = 0V; f = 1.0 MHz
C _{I/O}		8	pF	$V_{OUT} = 0V$; f = 1.0 MHz

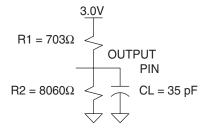
Note: Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested. The OGI pin (high-voltage pin during programming) has a maximum capacitance of 12 pF.

AC Characteristics (Continued)


		-	15	-2	20	
Symbol	Parameter	Min	Max	Min	Max	Units
t _{ZX2}	Output Buffer Enable Delay (Slow slew rate = OFF; V_{CCIO} = 3.3V; C_L = 35 pF)		7		9	ns
t _{ZX3}	Output Buffer Enable Delay (Slow slew rate = ON; $V_{CCIO} = 5.0V/3.3V$; $C_L = 35 \text{ pF}$)		10		11	ns
t _{xz}	Output Buffer Disable Delay ($C_L = 5 \text{ pF}$)		6		7	ns
t _{SU}	Register Setup Time	5		6		ns
t _H	Register Hold Time	4		5		ns
t _{FSU}	Register Setup Time of Fast Input	2		2		ns
t _{FH}	Register Hold Time of Fast Input	2		2		ns
t _{RD}	Register Delay		2		2.5	ns
t _{COMB}	Combinatorial Delay		2		3	ns
t _{IC}	Array Clock Delay		6		7	ns
t _{EN}	Register Enable Time		6		7	ns
t _{GLOB}	Global Control Delay		2		3	ns
t _{PRE}	Register Preset Time		4		5	ns
t _{CLR}	Register Clear Time		4		5	ns
t _{UIM}	Switch Matrix Delay		2		2.5	ns
t _{RPA}	Reduced-power Adder ⁽²⁾		10		13	ns

Notes: 1. See ordering information for valid part numbers.

2. The t_{RPA} parameter must be added to the t_{LAD}, t_{LAC},t_{TIC}, t_{ACL}, and t_{SEXP} parameters for macrocells running in the reducedpower mode.


3. See ordering information for valid part numbers.

Input Test Waveforms and Measurement Levels

 t_R , t_F = 1.5 ns typical

Output AC Test Loads

Power-down Mode

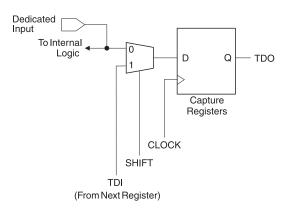
The ATF1504ASV(L) includes an optional pin-controlled power-down feature. When this mode is enabled, the PD pin acts as the power-down pin. When the PD pin is high, the device supply current is reduced to less than 3 mA. During power down, all output data and internal logic states are latched internally and held. Therefore, all registered and combinatorial output data remain valid. Any outputs that were in a High-Z state at the onset will remain at High-Z. During power down, all input signals except the power-down pin are blocked. Input and I/O hold latches remain active to ensure that pins do not float to indeterminate levels, further reducing system power. The power-down mode feature is enabled in the logic design file or as a fitted or translated s/w option. Designs using the power-down pin may not use the PD pin as a logic array input. However, all other PD pin macrocell resources may still be used, including the buried feedback and foldback product term array inputs.

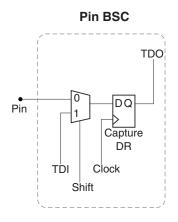
		-	-:			
Symbol	Parameter	Min	Max	Min	Max	Units
t _{IVDH}	Valid I, I/O before PD High	15		20		ns
t _{GVDH}	Valid OE ⁽²⁾ before PD High	15		20		ns
t _{CVDH}	Valid Clock ⁽²⁾ before PD High	15		20		ns
t _{DHIX}	I, I/O Don't Care after PD High		25		30	ns
t _{DHGX}	OE ⁽²⁾ Don't Care after PD High		25		30	ns
t _{DHCX}	Clock ⁽²⁾ Don't Care after PD High		25		30	ns
t _{DLIV}	PD Low to Valid I, I/O		1		1	μs
t _{DLGV}	PD Low to Valid OE (Pin or Term)		1		1	μs
t _{DLCV}	PD Low to Valid Clock (Pin or Term)		1		1	μs
t _{DLOV}	PD Low to Valid Output		1		1	μs

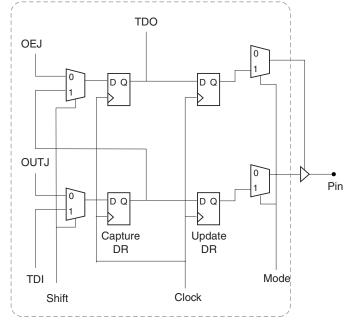
Power Down AC Characteristics⁽¹⁾⁽²⁾

Notes: 1. For slow slew outputs, add t_{SSO}.

2. Pin or product term.


3. Includes t_{RPA} for reduced-power bit enabled.


JTAG-BST/ISP Overview	The JTAG boundary-scan testing is controlled by the Test Access Port (TAP) controller in the ATF1504ASV(L). The boundary-scan technique involves the inclusion of a shift- register stage (contained in a boundary-scan cell) adjacent to each component so that signals at component boundaries can be controlled and observed using scan testing principles. Each input pin and I/O pin has its own boundary-scan cell (BSC) in order to support boundary-scan testing. The ATF1504ASV(L) does not currently include a Test Reset (TRST) input pin because the TAP controller is automatically reset at power-up. The five JTAG modes supported include: SAMPLE/PRELOAD, EXTEST, BYPASS, IDCODE and HIGHZ. The ATF1504ASV(L)'s ISP can be fully described using JTAG's BSDL as described in IEEE Standard 1149.1b. This allows ATF1504ASV(L) program- ming to be described and implemented using any one of the third-party development tools supporting this standard.
	The ATF1504ASV(L) has the option of using four JTAG-standard I/O pins for boundary- scan testing (BST) and in-system programming (ISP) purposes. The ATF1504ASV(L) is programmable through the four JTAG pins using the IEEE standard JTAG programming protocol established by IEEE Standard 1149.1 using 5V TTL-level programming signals from the ISP interface for in-system programming. The JTAG feature is a programmable option. If JTAG (BST or ISP) is not needed, then the four JTAG control pins are avail- able as I/O pins.
JTAG Boundary-scan Cell (BSC) Testing	The ATF1504ASV(L) contains up to 68 I/O pins and four input pins, depending on the device type and package type selected. Each input pin and I/O pin has its own bound- ary-scan cell (BSC) in order to support boundary-scan testing as described in detail by IEEE Standard 1149.1. A typical BSC consists of three capture registers or scan regis- ters and up to two update registers. There are two types of BSCs, one for input or I/O pin, and one for the macrocells. The BSCs in the device are chained together through the capture registers. Input to the capture register chain is fed in from the TDI pin while the output is directed to the TDO pin. Capture registers are used to capture active device data signals, to shift data in and out of the device and to load data into the update registers. Control signals are generated internally by the JTAG TAP controller. The BSC configuration for the input and I/O pins and macrocells are shown below.


BSC Configuration for Input and I/O Pins (Except JTAG TAP Pins)

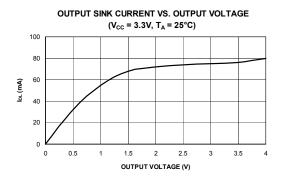
Note: The ATF1504ASV(L) has pull-up option on TMS and TDI pins. This feature is selected as a design option.

BSC Configuration for Macrocell

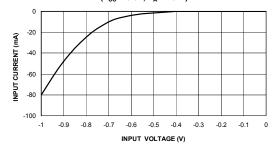
Macrocell BSC

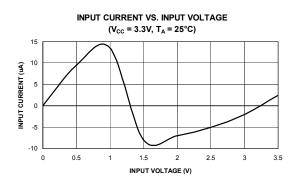
ATF1504ASV Dedicated Pinouts

44-lead TQFP	44-lead J-lead	68-lead J-lead	84-lead J-lead	100-lead PQFP	100-lead TQFP
40	2	2	2	92	90
39	1	1	1	91	89
38	44	68	84	90	88
37	43	67	83	89	87
35	41	65	81	87	85
5, 19	11, 25	17, 37	20, 46	14, 44	12, 42
1	7	12	14	6	4
7	13	19	23	17	15
26	32	50	62	64	62
32	38	57	71	75	73
4, 16, 24, 36	10, 22, 30, 42	6, 16, 26, 34, 38, 48, 58, 66	7, 19, 32, 42, 47, 59, 72, 82	13, 28, 40, 45, 61, 76, 88, 97	11, 26, 38, 43, 59, 74, 86, 95
9, 17, 29, 41	3, 15, 23, 35	3, 11, 21, 31, 35, 43, 53, 63	3,13, 26, 38, 43, 53, 66, 78	5, 20, 36, 41, 53, 68, 84, 93	3, 18, 34, 39, 51, 66, 82, 91
_	_	_	_	1, 2, 7, 9, 24, 26, 29, 30, 51, 52, 55, 57, 72, 74, 79, 80	1, 2, 5, 7, 22, 24, 27, 28, 49, 50, 53, 55, 70, 72, 77, 78
36	36	52	68	68	68
32	32	48	64	64	64
Global	OE pins		I		I
Global	Clear pin				
Global	Clock pins				
Power-o	down pins				
JTAG p	ins used for bour	dary-scan testing	g or in-system pro	ogramming	
Ground	pins				
	TQFP 40 39 38 37 35 5, 19 1 7 26 32 4, 16, 24, 36 9, 17, 29, 41 - 36 32 Global G Global G JTAG p	TQFP J-lead 40 2 39 1 38 44 37 43 35 41 5, 19 11, 25 1 7 7 13 26 32 32 38 4, 16, 24, 36 10, 22, 30, 42 9, 17, 29, 41 3, 15, 23, 35 - - 36 36 32 32 36 36 32 32 32 32 36 36 32 32 32 32 32 32 32 32 Global ∪E pins Global ∪ex pin Global ∪ex pins Power-wn pins	TQFP J-lead J-lead 40 2 2 39 1 1 38 44 68 37 43 67 35 41 65 5, 19 11, 25 17, 37 1 7 12 7 13 19 26 32 50 32 38 57 4, 16, 24, 36 10, 22, 30, 42 6, 16, 26, 34, 38, 48, 58, 66 9, 17, 29, 41 3, 15, 23, 35 3, 11, 21, 31, 35, 43, 53, 63 - - - - 36 36 52 32 32 48 Global OE pins Global Clear pin Global Clear pin Global Clock pins Power-down pins JTAG pins used for boundary-scan testing	TQFP J-lead J-lead J-lead 40 2 2 2 39 1 1 1 38 44 68 84 37 43 67 83 35 41 65 81 5, 19 11, 25 17, 37 20, 46 1 7 12 14 7 13 19 23 26 32 50 62 32 38 57 71 4, 16, 24, 36 10, 22, 30, 42 6, 16, 26, 34, 3, 47, 59, 72, 82 3, 13, 26, 38, 35, 43, 53, 63 9, 17, 29, 41 3, 15, 23, 35 3, 11, 21, 31, 3, 13, 26, 38, 43, 53, 66, 78 36 36 36 52 68 32 32 48 64 Global Clear pin Global Clear pin Global Cleck pins Global Cleck pins Power-down pins JTAG pins used for boundary-scan testing or in-system protect 48	TOFP J-lead J-lead J-lead PQFP 40 2 2 2 92 39 1 1 1 91 38 44 68 84 90 37 43 67 83 89 35 41 65 81 87 5, 19 11, 25 17, 37 20, 46 14, 44 1 7 12 14 6 7 13 19 23 17 26 32 50 62 64 32 38 57 71 75 4, 16, 24, 36 10, 22, 30, 42 6, 16, 26, 34, 3, 53, 63 47, 59, 72, 82 61, 76, 88, 97 9, 17, 29, 41 3, 15, 23, 35 3, 11, 21, 31, 35, 43, 53, 66, 78 53, 68, 84, 93 53, 68, 84, 93 - - - - - - 1, 2, 7, 9, 24, 26, 29, 30, 51, 52, 55, 57, 72, 72, 74, 79, 80 36 36 52 68 68


VCC

VCC pins for the device


ATF1504ASV I/O Pinouts


		44-lead				100- lead	100- lead			44-lead		68-lead		100- lead	100- lead
MC	PLC	PLCC	TQFP	PLCC	PLCC	PQFP	TQFP	MC	PLC	PLCC	TQFP	PLCC	PLCC	PQFP	TQFP
1	A	12	6	18	22	16	14	33	С	24	18	36	44	42	40
2	A	-	-	-	21	15	13	34	С	-	-	-	45	43	41
3	A/ PD1	11	5	17	20	14	12	35	C/ PD2	25	19	37	46	44	42
4	Α	9	3	15	18	12	10	36	С	26	20	39	48	46	44
5	А	8	2	14	17	11	9	37	С	27	21	40	49	47	45
6	А	-	-	13	16	10	8	38	С	-	-	41	50	48	46
7	А	-	-	-	15	8	6	39	С	-	-	-	51	49	47
8/ TDI	А	7	1	12	14	6	4	40	С	28	22	42	52	50	48
9	А	-	-	10	12	4	100	41	С	29	23	44	54	54	52
10	А	-	-	-	11	3	99	42	С	-	-	-	55	56	54
11	А	6	44	9	10	100	98	43	С	-	-	45	56	58	56
12	А	-	-	8	9	99	97	44	С	-	-	46	57	59	57
13	А	-	-	7	8	98	96	45	С	-	-	47	58	60	58
14	А	5	43	5	6	96	94	46	С	31	25	49	60	62	60
15	А	-	-	-	5	95	93	47	С	-	-	-	61	63	61
16	А	4	42	4	4	94	92	48/ TCK	С	32	26	50	62	64	62
17	В	21	15	33	41	39	37	49	D	33	27	51	63	65	63
18	В	-	-	-	40	38	36	50	D	-	-	-	64	66	64
19	В	20	14	32	39	37	35	51	D	34	28	52	65	67	65
20	В	19	13	30	37	35	33	52	D	36	30	54	67	69	67
21	В	18	12	29	36	34	32	53	D	37	31	55	68	70	68
22	В	-	-	28	35	33	31	54	D	-	-	56	69	71	69
23	В	-	-	-	34	32	30	55	D	-	-	-	70	73	71
24	В	17	11	27	33	31	29	56/ TDO	D	38	32	57	71	75	73
25	В	16	10	25	31	27	25	57	D	39	33	59	73	77	75
26	В	-	-	-	30	25	23	58	D	-	-	-	74	78	76
27	В	-	-	24	29	23	21	59	D	-	-	60	75	81	79
28	В	-	-	23	28	22	20	60	D	-	-	61	76	82	80
29	В	-	-	22	27	21	19	61	D	-	-	62	77	83	81
30	В	14	8	20	25	19	17	62	D	40	34	64	79	85	83
31	В	-	-	-	24	18	16	63	D	-	-	-	80	86	84
32/ TMS	В	13	7	19	23	17	15	64	D/ GCLK3	41	35	65	81	87	85

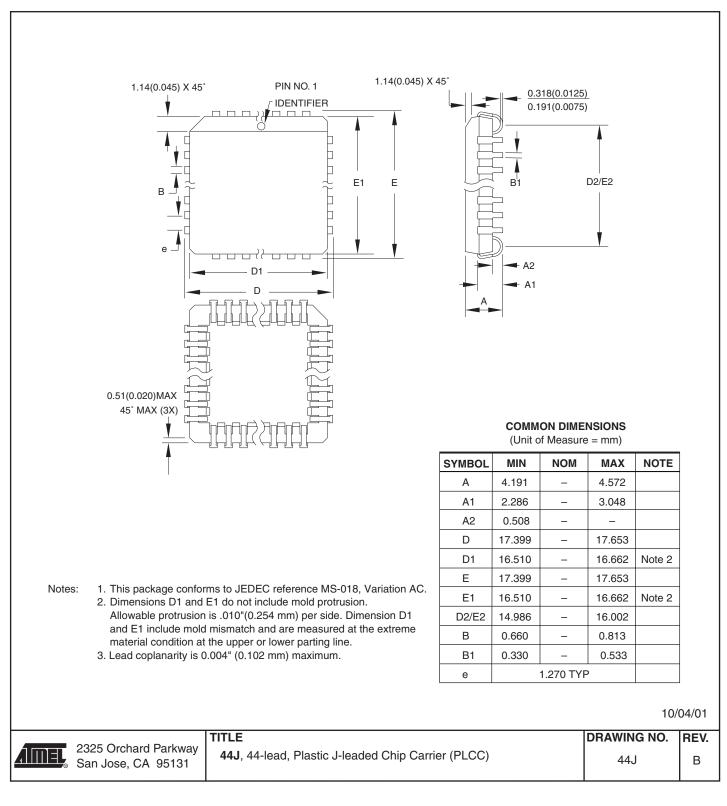
INPUT CLAMP CURRENT VS. INPUT VOLTAGE (V_{CC} = 3.3V, T_A = 25°C)

Ordering Information

t _{PD} (ns)	t _{CO1} (ns)	f _{MAX} (MHz)	Ordering Code	Package	Operation Range		
			ATF1504ASV-15 AC44	44A			
		100	100	100	ATF1504ASV-15 JC44	44J	
15	8				100	ATF1504ASV-15 JC68 ⁽²⁾	68J
15	8	100	ATF1504ASV-15 JC84 ⁽³⁾	84J	(0°C to 70°C)		
			ATF1504ASV-15 QC100 ⁽²⁾	100Q1			
			ATF1500ASV-15 AC100	100A			
			ATF1504ASV-15 AI44	44A			
			ATF1504ASV-15 JI44	44J			
15	8	100	ATF1504ASV-15 JI68	68J	Industrial		
10	0	100	ATF1504ASV-15 JI84	84J	(-40°C to +85°C)		
			ATF1504ASV-15 QI100	100Q1			
			ATF1504ASV-15 AI100	100A			
			ATF1504ASVL-20 AC44	44A			
			ATF1504ASVL-20 JC44	44J			
20	12	83.3	ATF1504ASVL-20 JC68 ⁽²⁾	68J	Commercial		
20	12	03.3	ATF1504ASVL-20 JC84 ⁽³⁾	84J	(0°C to 70°C)		
			ATF1504ASVL-20 QC100 ⁽²⁾	100Q1			
			ATF1504ASVL-20 AC100	100A			
			ATF1504ASVL-20 AI44	44A			
			ATF1504ASVL-20 JI44	44J			
20	12	83.3	ATF1504ASVL-20 JI68	68J	Industrial		
20	12	00.0	ATF1504ASVL-20 JI84	84J	(-40°C to +85°C)		
			ATF1504ASVL-20 QI100	100Q1			
			ATF1504ASVL-20 AI100	100A			

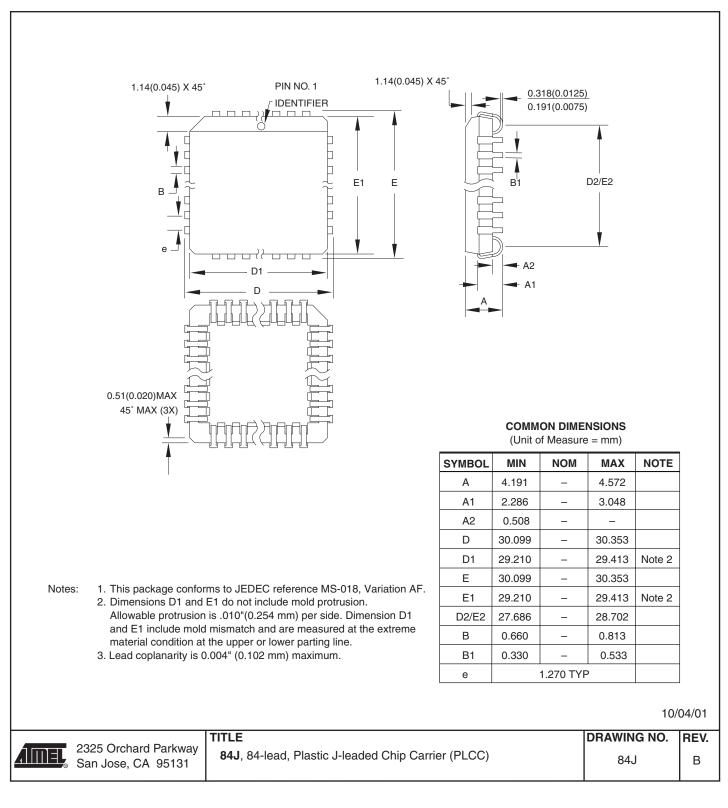
ATF1504ASV(L) Standard Package Options

Note: 1. The last time buy is Sept. 30, 2005 for shaded parts.

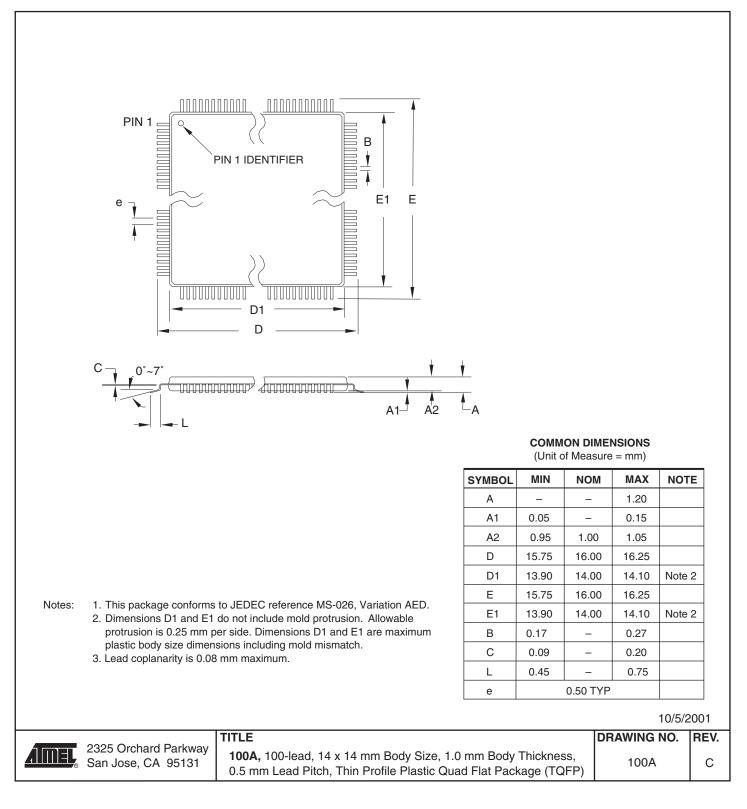

2. The recommended migration for QC100 or JC68 packages is the AU100 or the smaller JU44 packages.

3. The recommended migration for the JC84 package is the ATF1508ASV-15JU84

Using "C" Product for Industrial


There is very little risk in using "C" devices for industrial applications because the V_{CC} conditions for 3.3V products are the same for commercial and industrial (there is only 15°C difference at the high end of the temperature range). To use commercial product for industrial temperature ranges, de-rate I_{CC} by 15%.

44J – PLCC



84J – PLCC

100A – TQFP

Revision History

Revision	Comments
1409J	Green package options added.

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

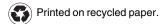
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759


Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNTIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2005. All rights reserved. Atmel[®], logo and combinations thereof, Everywhere You Are[®] and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

