

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VQFN Exposed Pad
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st7fli15bf1u6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

-

_

57

10.4 UNUSED I/O PINS	52
10.5 LOW POWER MODES	52
10.6 INTERRUPTS	52
10.7 DEVICE-SPECIFIC I/O PORT CONFIGURATION	53
10.8 MULTIPLEXED INPUT/OUTPUT PORTS	54
11 ON-CHIP PERIPHERALS	55
11.1 WATCHDOG TIMER (WDG)	55
11.2 DUAL 12-BIT AUTORELOAD TIMER 4 (AT4)	57
11.3 LITE TIMER 2 (LT2)	79
11.4 SERIAL PERIPHERAL INTERFACE (SPI)	84
11.5 10-BIT A/D CONVERTER (ADC)	96
11.6 ANALOG COMPARATOR (CMP)	100
12 INSTRUCTION SET	104
12.1 ST7 ADDRESSING MODES	104
12.2 INSTRUCTION GROUPS	107
13 ELECTRICAL CHARACTERISTICS	110
13.1 PARAMETER CONDITIONS	110
13.2 ABSOLUTE MAXIMUM RATINGS	111
13.3 OPERATING CONDITIONS	112
13.4 SUPPLY CURRENT CHARACTERISTICS	121
13.5 CLOCK AND TIMING CHARACTERISTICS	124
13.6 MEMORY CHARACTERISTICS	126
13.7 EMC CHARACTERISTICS	127
13.8 I/O PORT PIN CHARACTERISTICS	129
13.9 CONTROL PIN CHARACTERISTICS	135
13.10 COMMUNICATION INTERFACE CHARACTERISTICS	137
13.11 10-BIT ADC CHARACTERISTICS	139
13.12 ANALOG COMPARATOR CHARACTERISTICS	143
13.13 PROGRAMMABLE INTERNAL VOLTAGE REFERENCE CHARACTERISTICS .	143
13.14 CURRENT BIAS CHARACTERISTICS (FOR COMPARATOR AND INTERNAL V REFERENCE) 143	OLTAGE
14 PACKAGE CHARACTERISTICS	144
14.1 PACKAGE MECHANICAL DATA	144
14.2 SOLDERING INFORMATION	148
15 DEVICE CONFIGURATION AND ORDERING INFORMATION	149
15.1 OPTION BYTES	149
15.2 DEVICE ORDERING INFORMATION	151
15.3 DEVELOPMENT TOOLS	153
15.4 ST7 APPLICATION NOTES	154
16 REVISION HISTORY	157

ST7LITE1xB

Р	in No) .			Le	evel		Po	rt/C	Cont	trol			
기20	0	P16	Pin Name	be		Ħ		Inp	out		Out	tput	Main Function	Alternate Eurotion
SO20/DF	QFN2	S016/DI	Fill Name	Ty	Input	Outpr	float	ndm	int	ana	ОD	РР	(after reset)	
														Main Clock Output or In Circuit Communication Clock or External BREAK
12	10	10	PA6 /MCO/ ICCCLK/BREAK	I/O	C	Ст	x	e	i1		х	x	Port A6	Caution: During normal operation this pin must be pulled- up, inter- nally or externally (external pull-up of 10k mandatory in noisy environ- ment). This is to avoid entering ICC mode unexpectedly during a reset. In the application, even if the pin is configured as output, any reset will put it back in input pull-up
13	11	11	PA5 /ICCDATA/ ATPWM3	I/O	С _Т	HS	х	e	i1		х	х	Port A5	In Circuit Communication Data or Auto-Reload Timer PWM3
14	12	12	PA4/ATPWM2	I/O	CT	HS	Х				Х	Х	Port A4	Auto-Reload Timer PWM2
15	13	-	PA3/ATPWM1	I/O	CT	HS	Х				Х	Х	Port A3	Auto-Reload Timer PWM1
16	14	13	PA2/ATPWM0	I/O	CT	HS	Х		iΟ		Х	Х	Port A2	Auto-Reload Timer PWM0
17	15	-	PA1/ATIC	I/O	CT	HS	х				Х	Х	Port A1	Auto-Reload Timer Input Capture
18	16	14	PA0/LTIC	I/O	CT	HS	х				Х	Х	Port A0	Lite Timer Input Capture
19	17	15	OSC2/PC1	I/O			x					х	Port C1 ³⁾	Resonator oscillator inverter out- put
20	18	16	OSC1/CLKIN/PC0	I/O			х					х	Port C0 ³⁾	Resonator oscillator inverter input or External clock input

Notes:

1. It is mandatory to connect all available V_{DD} and V_{DDA} pins to the supply voltage and all V_{SS} and V_{SSA} pins to ground.

2. When the pin is configured as analog input, positive and negative current injections are not allowed.

3. PCOR not implemented but p-transistor always active in output mode (refer to Figure 32 on page 50).

Address	Block	Register Label	Register Name	Reset Status	Remarks		
0002Fh	FLASH	FCSR	Flash Control/Status Register	00h	R/W		
00030h	EEPROM	EECSR	Data EEPROM Control/Status Register	00h	R/W		
0031h 0032h 0033h	SPI	SPIDR SPICR SPICSR	SPI Data I/O Register SPI Control Register SPI Control Status Register	xxh 0xh 00h	R/W R/W R/W		
0034h 0035h 0036h	ADC	ADCCSR ADCDRH ADCDRL	A/D Control Status Register A/D Data Register High A/D Amplifier Control/Data Low Register	00h xxh 0xh	R/W Read Only R/W		
0037h	ITC	EICR	External Interrupt Control Register	00h	R/W		
0038h	MCC	MCCSR	Main Clock Control/Status Register	00h	R/W		
0039h 003Ah	Clock and Reset	RCCR SICSR	RC oscillator Control Register System Integrity Control/Status Register	FFh 0110 0xx0b	R/W R/W		
003Bh	PLL clock select	PLLTST	PLL test register	00h	R/W		
003Ch	ITC	EISR	External Interrupt Selection Register	0Ch	R/W		
003Dh to 0048h			Reserved area (12 bytes)				
0049h 004Ah	AWU	AWUPR AWUCSR	AWU Prescaler Register AWU Control/Status Register	FFh 00h	R/W R/W		
004Bh 004Ch 004Dh 004Eh 004Fh 0050h 0051h	DM ³⁾	DMCR DMSR DMBK1H DMBK1L DMBK2H DMBK2L DMCR2	DM Control Register DM Status Register DM Breakpoint Register 1 High DM Breakpoint Register 1 Low DM Breakpoint Register 2 High DM Breakpoint Register 2 Low DM Control Register 2	00h 00h 00h 00h 00h 00h 00h	R/W R/W R/W R/W R/W R/W		
0052h to 007Fh	o Reserved area (46 bytes)						

Legend: x=undefined, R/W=read/write

Notes:

57

1. The contents of the I/O port DR registers are readable only in output configuration. In input configuration, the values of the I/O pins are returned instead of the DR register contents.

2. The bits associated with unavailable pins must always keep their reset value.

3. For a description of the Debug Module registers, see ICC protocol reference manual.

لرکا

RESET SEQUENCE MANAGER (Cont'd)

The RESET pin is an asynchronous signal which plays a major role in EMS performance. In a noisy environment, it is recommended to follow the guidelines mentioned in the electrical characteristics section.

7.5.3 External Power-On RESET

If the LVD is disabled by option byte, to start up the microcontroller correctly, the user must ensure by means of an external reset circuit that the reset signal is held low until V_{DD} is over the minimum level specified for the selected f_{OSC} frequency.

A proper reset signal for a slow rising V_{DD} supply can generally be provided by an external RC network connected to the RESET pin.

7.5.4 Internal Low Voltage Detector (LVD) RESET

Two different RESET sequences caused by the internal LVD circuitry can be distinguished:

- Power-On RESET
- Voltage Drop RESET

The device $\overline{\text{RESET}}$ pin acts as an output that is pulled low when $V_{DD}{<}V_{IT{+}}$ (rising edge) or $V_{DD}{<}V_{IT{-}}$ (falling edge) as shown in Figure 17.

The LVD filters spikes on V_{DD} larger than $t_{g(VDD)}$ to avoid parasitic resets.

7.5.5 Internal Watchdog RESET

The RESET sequence generated by a internal Watchdog counter overflow is shown in Figure 17.

Starting from the Watchdog counter underflow, the device RESET pin acts as an output that is pulled low during at least $t_{w(RSTL)out}$.

Figure 17. RESET Sequences

7.6 SYSTEM INTEGRITY MANAGEMENT (SI)

The System Integrity Management block contains the Low voltage Detector (LVD) and Auxiliary Voltage Detector (AVD) functions. It is managed by the SICSR register.

Note: A reset can also be triggered following the detection of an illegal opcode or prebyte code. Refer to section 12.2.1 on page 107 for further details.

7.6.1 Low Voltage Detector (LVD)

The Low Voltage Detector function (LVD) generates a static reset when the V_{DD} supply voltage is below a V_{IT-(LVD)} reference value. This means that it secures the power-up as well as the power-down keeping the ST7 in reset.

The V_{IT-(LVD)} reference value for a voltage drop is lower than the V_{IT+(LVD)} reference value for poweron in order to avoid a parasitic reset when the MCU starts running and sinks current on the supply (hysteresis).

The LVD Reset circuitry generates a reset when V_{DD} is below:

 $-V_{IT+(LVD)}$ when V_{DD} is rising

 $- V_{IT-(LVD)}$ when V_{DD} is falling

57/

The LVD function is illustrated in Figure 18.

The voltage threshold can be configured by option byte to be low, medium or high.

Provided the minimum V_{DD} value (guaranteed for the oscillator frequency) is above $V_{IT\mathchar`(LVD)},$ the MCU can only be in two modes:

- under full software control

- in static safe reset

In these conditions, secure operation is always ensured for the application without the need for external reset hardware.

During a Low Voltage Detector Reset, the RESET pin is held low, thus permitting the MCU to reset other devices.

Notes:

The LVD allows the device to be used without any external RESET circuitry.

The LVD is an optional function which can be selected by option byte.

Use of LVD with capacitive power supply: with this type of power supply, if power cuts occur in the application, it is recommended to pull V_{DD} down to 0V to ensure optimum restart conditions. Refer to circuit example in Figure 106 on page 136 and note 4.

It is recommended to make sure that the V_{DD} supply voltage rises monotonously when the device is exiting from Reset, to ensure the application functions properly.

SYSTEM INTEGRITY MANAGEMENT (Cont'd)

7.6.2 Auxiliary Voltage Detector (AVD)

The Voltage Detector function (AVD) is based on an analog comparison between a $V_{IT\text{-}(AVD)}$ and $V_{IT\text{+}(AVD)}$ reference value and the V_{DD} main supply voltage (V_{AVD}). The $V_{IT\text{-}(AVD)}$ reference value for falling voltage is lower than the $V_{IT\text{+}(AVD)}$ reference value for rising voltage in order to avoid parasitic detection (hysteresis).

The output of the AVD comparator is directly readable by the application software through a real time status bit (AVDF) in the SICSR register. This bit is read only.

Caution: The AVD functions only if the LVD is en-

Figure 20. Using the AVD to Monitor V_{DD}

57/

abled through the option byte.

7.6.2.1 Monitoring the $V_{\mbox{\scriptsize DD}}$ Main Supply

The AVD voltage threshold value is relative to the selected LVD threshold configured by option byte (see section 15.1 on page 149).

If the AVD interrupt is enabled, an interrupt is generated when the voltage crosses the $V_{IT+(LVD)}$ or $V_{IT-(AVD)}$ threshold (AVDF bit is set).

In the case of a drop in voltage, the AVD interrupt acts as an early warning, allowing software to shut down safely before the LVD resets the microcontroller. See Figure 20.

INTERRUPTS (cont'd)

Figure 21. Interrupt Processing Flowchart

Table 5. Interrupt Mapping

ل حک

N°	Source Block	Description	Register Label	Priority Order	Exit from HALT or AWUFH	Address Vector
	RESET	Reset	NI/A	Llighoot	yes	FFFEh-FFFFh
	TRAP	Software Interrupt	IN/A	Priority	no	FFFCh-FFFDh
0	AWU	Auto Wake Up Interrupt	AWUCSR		yes ¹⁾	FFFAh-FFFBh
1	ei0	External Interrupt 0				FFF8h-FFF9h
2	ei1	External Interrupt 1	N/A		1/00	FFF6h-FFF7h
3	ei2	External Interrupt 2			yes	FFF4h-FFF5h
4	ei3	External Interrupt 3				FFF2h-FFF3h
5	LITE TIMER	LITE TIMER RTC2 interrupt	LTCSR2		no	FFF0h-FFF1h
6	Comparator	Comparator Interrupt	CMPCR		no	FFEEh-FFEFh
7	SI	AVD interrupt	SICSR		no	FFECh-FFEDh
8	AT TIMER	AT TIMER Output Compare Interrupt or Input Capture Interrupt	PWMxCSR or ATCSR		no	FFEAh-FFEBh
9		AT TIMER Overflow Interrupt	ATCSR		yes ²⁾	FFE8h-FFE9h
10		LITE TIMER Input Capture Interrupt	LTCSR		no	FFE6h-FFE7h
11		LITE TIMER RTC1 Interrupt	LTCSR		yes ²⁾	FFE4h-FFE5h
12	SPI	SPI Peripheral Interrupts	SPICSR	Lowest	yes	FFE2h-FFE3h
13	AT TIMER	AT TIMER Overflow Interrupt	ATCSR2	THOMY	no	FFE0h-FFE1h

Note 1: This interrupt exits the MCU from "Auto Wake-up from Halt" mode only.

Note 2 : These interrupts exit the MCU from "ACTIVE-HALT" mode only.

10 I/O PORTS

10.1 INTRODUCTION

The I/O ports allow data transfer. An I/O port can contain up to 8 pins. Each pin can be programmed independently either as a digital input or digital output. In addition, specific pins may have several other functions. These functions can include external interrupt, alternate signal input/output for onchip peripherals or analog input.

10.2 FUNCTIONAL DESCRIPTION

A Data Register (DR) and a Data Direction Register (DDR) are always associated with each port. The Option Register (OR), which allows input/output options, may or may not be implemented. The following description takes into account the OR register. Refer to the Port Configuration table for device specific information.

An I/O pin is programmed using the corresponding bits in the DDR, DR and OR registers: bit x corresponding to pin x of the port.

Figure 32 shows the generic I/O block diagram.

10.2.1 Input Modes

Clearing the DDRx bit selects input mode. In this mode, reading its DR bit returns the digital value from that I/O pin.

If an OR bit is available, different input modes can be configured by software: floating or pull-up. Refer to I/O Port Implementation section for configuration.

Notes:

1. Writing to the DR modifies the latch value but does not change the state of the input pin.

2. Do not use read/modify/write instructions (BSET/BRES) to modify the DR register.

10.2.1.1 External Interrupt Function

Depending on the device, setting the ORx bit while in input mode can configure an I/O as an input with interrupt. In this configuration, a signal edge or level input on the I/O generates an interrupt request via the corresponding interrupt vector (eix).

Falling or rising edge sensitivity is programmed independently for each interrupt vector. The External Interrupt Control Register (EICR) or the Miscellaneous Register controls this sensitivity, depending on the device.

Each external interrupt vector is linked to a dedicated group of I/O port pins (see pinout description and interrupt section). If several I/O interrupt pins on the same interrupt vector are selected simultaneously, they are logically combined. For this reason if one of the interrupt pins is tied low, it may mask the others.

External interrupts are hardware interrupts. Fetching the corresponding interrupt vector automatically clears the request latch. Changing the sensitivity of a particular external interrupt clears this pending interrupt. This can be used to clear unwanted pending interrupts.

Spurious interrupts

When enabling/disabling an external interrupt by setting/resetting the related OR register bit, a spurious interrupt is generated if the pin level is low and its edge sensitivity includes falling/rising edge. This is due to the edge detector input which is switched to '1' when the external interrupt is disabled by the OR register.

To avoid this unwanted interrupt, a "safe" edge sensitivity (rising edge for enabling and falling edge for disabling) has to be selected before changing the OR register bit and configuring the appropriate sensitivity again.

Caution: In case a pin level change occurs during these operations (asynchronous signal input), as interrupts are generated according to the current sensitivity, it is advised to disable all interrupts before and to reenable them after the complete previous sequence in order to avoid an external interrupt occurring on the unwanted edge.

This corresponds to the following steps:

- 1. To enable an external interrupt:
 - set the interrupt mask with the SIM instruction (in cases where a pin level change could occur)
 - select rising edge
 - enable the external interrupt through the OR register
 - select the desired sensitivity if different from rising edge
 - reset the interrupt mask with the RIM instruction (in cases where a pin level change could occur)
- 2. To disable an external interrupt:
 - set the interrupt mask with the SIM instruction SIM (in cases where a pin level change could occur)
 - select falling edge
 - disable the external interrupt through the OR register

I/O PORTS (Cont'd)

10.7 DEVICE-SPECIFIC I/O PORT CONFIGURATION

The I/O port register configurations are summarised as follows.

Standard Ports

PA7:0, PB6:0

<u>ل</u>رك

MODE	DDR	OR
floating input	0	0
pull-up input	0	1
open drain output	1	0
push-pull output	1	1

PC1:0 (multiplexed with OSC1,OSC2)

MODE	DDR
floating input	0
push-pull output	1

The selection between OSC1 or PC0 and OSC2 or PC1 is done by option byte. Refer to section 15.1 on page 149. Interrupt capability is not available on PC1:0.

Note: PCOR not implemented but p-transistor always active in output mode (refer to Figure 32 on page 50)

Table 10. Port Configuration (Standard ports)

Port	Pin name	Ing	out	Output		
1 OIL	1 in name	OR = 0 0		OR = 0	OR = 1	
Port A	PA7:0	floating	pull-up	open drain	push-pull	
Port B	PB6:0	floating	pull-up	open drain	push-pull	

Note: On ports where the external interrupt capability is selected using the EISR register, the configuration will be as follows:

Port Pin name		Inj	out	Output		
1 OIL	i in name	OR = 0	OR = 1	OR = 0	OR = 1	
Port A	PA7:0	floating	pull-up interrupt	open drain	push-pull	
Port B	PB6:0	floating	pull-up interrupt	open drain	push-pull	

Table 11. I/O Port Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
0000h	PADR	MSB							LSB
000011	Reset Value	1	1	1	1	1	1	1	1
0001h	PADDR	MSB							LSB
000111	Reset Value	0	0	0	0	0	0	0	0

Interrupt Ports

Ports where the external interrupt capability is selected using the EISR register

MODE	DDR	OR
floating input	0	0
pull-up interrupt input	0	1
open drain output	1	0
push-pull output	1	1

WATCHDOG TIMER (Cont'd)

The application program must write in the CR register at regular intervals during normal operation to prevent an MCU reset. This downcounter is freerunning: it counts down even if the watchdog is disabled. The value to be stored in the CR register must be between FFh and C0h (see Table 12 .Watchdog Timing):

- The WDGA bit is set (watchdog enabled)
- The T6 bit is set to prevent generating an immediate reset
- The T[5:0] bits contain the number of increments which represents the time delay before the watchdog produces a reset.

Following a reset, the watchdog is disabled. Once activated it cannot be disabled, except by a reset.

The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is cleared).

If the watchdog is activated, the HALT instruction will generate a Reset.

Table 12.Watchdog Timing

f _{CPU} = 8MHz						
WDG Counter Code	max [ms]					
C0h	1	2				
FFh	127	128				

Notes:

1. The timing variation shown in Table 12 is due to the unknown status of the prescaler when writing to the CR register.

2. The number of CPU clock cycles applied during the RESET phase (256 or 4096) must be taken into account in addition to these timings.

11.1.4 Hardware Watchdog Option

If Hardware Watchdog is selected by option byte, the watchdog is always active and the WDGA bit in the CR is not used. Refer to the Option Byte description in section 15 on page 149.

11.1.4.1 Using Halt Mode with the WDG (WDGHALT option)

If Halt mode with Watchdog is enabled by option byte (No watchdog reset on HALT instruction), it is recommended before executing the HALT instruction to refresh the WDG counter, to avoid an unexpected WDG reset immediately after waking up the microcontroller. Same behaviour in active-halt mode.

11.1.5 Interrupts

None.

11.1.6 Register Description CONTROL REGISTER (WDGCR)

Read/Write

Reset Value: 0111 1111 (7Fh)

7							0
WDGA	Т6	T5	T4	Т3	T2	T1	то

Bit 7 = **WDGA** *Activation bit.*

This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the watchdog can generate a reset.

0: Watchdog disabled

1: Watchdog enabled

Note: This bit is not used if the hardware watchdog option is enabled by option byte.

Bit 6:0 = **T[6:0]** 7-bit timer (MSB to LSB).

These bits contain the decremented value. A reset is produced when it rolls over from 40h to 3Fh (T6 becomes cleared).

Table 13. Watchdog Timer Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
002Eh	WDGCR	WDGA	Т6	T5	T4	T3	T2	T1	Т0
	Reset Value	0	1	1	1	1	1	1	1

SERIAL PERIPHERAL INTERFACE (cont'd)

11.4.5 Error Flags

11.4.5.1 Master Mode Fault (MODF)

Master mode fault occurs when the master device's SS pin is pulled low.

When a Master mode fault occurs:

- The MODF bit is set and an SPI interrupt request is generated if the SPIE bit is set.
- The SPE bit is reset. This blocks all output from the device and disables the SPI peripheral.
- The MSTR bit is reset, thus forcing the device into slave mode.

Clearing the MODF bit is done through a software sequence:

1. A read access to the SPICSR register while the MODF bit is set.

2. A write to the SPICR register.

Notes: To avoid any conflicts in an application with multiple slaves, the SS pin must be pulled high during the MODF bit clearing sequence. The SPE and MSTR bits may be restored to their original state during or after this clearing sequence.

Hardware does not allow the user to set the SPE and MSTR bits while the MODF bit is set except in the MODF bit clearing sequence.

In a slave device, the MODF bit can not be set, but in a multimaster configuration the device can be in slave mode with the MODF bit set.

The MODF bit indicates that there might have been a multimaster conflict and allows software to handle this using an interrupt routine and either perform a reset or return to an application default state.

11.4.5.2 Overrun Condition (OVR)

An overrun condition occurs when the master device has sent a data byte and the slave device has not cleared the SPIF bit issued from the previously transmitted byte.

When an Overrun occurs:

- The OVR bit is set and an interrupt request is generated if the SPIE bit is set.

In this case, the receiver buffer contains the byte sent after the SPIF bit was last cleared. A read to the SPIDR register returns this byte. All other bytes are lost.

The OVR bit is cleared by reading the SPICSR register.

11.4.5.3 Write Collision Error (WCOL)

A write collision occurs when the software tries to write to the SPIDR register while a data transfer is taking place with an external device. When this happens, the transfer continues uninterrupted and the software write will be unsuccessful.

Write collisions can occur both in master and slave mode. See also Section 0.1.3.2 Slave Select Management.

Note: A "read collision" will never occur since the received data byte is placed in a buffer in which access is always synchronous with the CPU operation.

The WCOL bit in the SPICSR register is set if a write collision occurs.

No SPI interrupt is generated when the WCOL bit is set (the WCOL bit is a status flag only).

Clearing the WCOL bit is done through a software sequence (see Figure 6).

Figure 58. Clearing the WCOL Bit (Write Collision Flag) Software Sequence

SERIAL PERIPHERAL INTERFACE (Cont'd)

57

Table 17. SPI Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
0031h	SPIDR Reset Value	MSB x	x	x	x	x	x	x	LSB x
0032h	SPICR Reset Value	SPIE 0	SPE 0	SPR2 0	MSTR 0	CPOL x	CPHA x	SPR1 x	SPR0 x
0033h	SPICSR Reset Value	SPIF 0	WCOL 0	OVR 0	MODF 0	0	SOD 0	SSM 0	SSI 0

OPERATING CONDITIONS (Cont'd)

The RC oscillator and PLL characteristics are temperature-dependent and are grouped in four tables. 13.3.5.1 Devices with ""6" or "3"order code suffix (tested for $T_A = -40$ to +125°C) @ $V_{DD} = 5V$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	Internal RC oscillator fre-	RCCR = FF (reset value), T _A =25°C,V _{DD} =5V		700		レ니ㅋ
'RC	quency ¹⁾	RCCR = RCCR0 ² , T _A =25°C, V _{DD} =5V	992	1000	1008	κΠΖ
		T _A =25°C,V _{DD} =5V	-0.8		+0.8	%
		T _A =25°C, V _{DD} =4.5 to 5.5V ³⁾	-1		+1	%
ACC _{RC}	Accuracy of Internal RC	T _A =25°C to +85°C,V _{DD} =5V	-3		+3	%
	oscillator with	T _A =25°C to +85°C,V _{DD} =4.5 to 5.5V ³⁾	-3.5		+3.5	%
	RCCR=RCCR0 ²⁾	T _A =85°C to +125°C,V _{DD} =5V	-3.5		+5	%
		T _A =85°C to +125°C,V _{DD} =4.5 to 5.5V ³⁾	-3.5		+6	%
		T_{A} =-40 to +25°C, V_{DD} =5V ³⁾	-3		+7	%
I _{DD(RC)}	RC oscillator current con- sumption	$\Gamma_{A}=25^{\circ}\text{C}, V_{DD}=5V$		600 ³⁾		μA
t _{su(RC)}	RC oscillator setup time	T _A =25°C,V _{DD} =5V			10 ²⁾	μs
f _{PLL}	x8 PLL input clock			1 ³⁾		MHz
t _{LOCK}	PLL Lock time ⁵⁾			2		ms
t _{STAB}	PLL Stabilization time ⁵⁾			4		ms
ACC		f _{RC} = 1MHz@T _A =25°C,V _{DD} =4.5 to 5.5V		0.1 ⁴⁾		%
ACOPLL	XO FLL Accuracy	$f_{RC} = 1MHz@T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = 5V$		0.1 ⁴⁾		%
t _{w(JIT)}	PLL jitter period 6)	f _{RC} = 1MHz		120		μs
JIT _{PLL}	PLL jitter (∆f _{CPU} /f _{CPU})			1 ⁷⁾		%
I _{DD(PLL)}	PLL current consumption	T _A =25°C		600 ³⁾		μA

Notes:

5/

1. If the RC oscillator clock is selected, to improve clock stability and frequency accuracy, it is recommended to place a decoupling capacitor, typically 100nF, between the V_{DD} and V_{SS} pins as close as possible to the ST7 device.

2. See "INTERNAL RC OSCILLATOR ADJUSTMENT" on page 23

3. Data based on characterization results, not tested in production

4. Averaged over a 4ms period. After the LOCKED bit is set, a period of t_{STAB} is required to reach ACC_{PLL} accuracy.

- 5. After the LOCKED bit is set ACC_{PLL} is max. 10% until t_{STAB} has elapsed. See Figure 13 on page 24.
- 6. This period is the phase servo loop period. During this period, the frequency remains unchanged.

7. Guaranteed by design.

I/O PORT PIN CHARACTERISTICS (Cont'd)

Figure 81. Typical V_{OL} at V_{DD} =2.7V (standard)

Figure 82. Typical V_{OL} at V_{DD}=3.3V (standard)

Figure 83. Typical V_{OL} at V_{DD} =5V (standard)

57

Figure 84. Typical V_{OL} at V_{DD}=2.7V (Port C)

Figure 85. Typical V_{OL} at V_{DD}=3.3V (Port C)

Figure 86. Typical V_{OL} at V_{DD}=5V (Port C)

I/O PORT PIN CHARACTERISTICS (Cont'd)

Figure 99. Typical V_{DD}-V_{OH} at V_{DD}=2.7V (Port C)

Figure 101. Typical V_{DD}-V_{OH} at V_{DD}=5V (Port C)

Figure 102. Typical V_{DD}-V_{OH} vs. V_{DD} (Standard)

Figure 103. Typical $V_{DD}\text{-}V_{OH}$ vs. V_{DD} (High Sink)

<u>ل</u>حک

13.12 ANALOG COMPARATOR CHARACTERISTICS

Symbol	Parameter	Conditions	Min	Typ ¹⁾	Max	Unit
V _{DDA}	Supply range		4.5		5.5	V
V _{IN}	Comparator input voltage range		0		V_{DDA}	V
Temp	Temperature range		-40		125	°C
Voffset	Comparator offset error			20		mV
	Analog Comparator Consumption			120		μA
I _{DD(CMP)}	Analog Comparator Consumption during power-down			200		pА
t _{propag}	Comparator propagation delay			40		ns
t _{startup}	Startup filter duration			500 ²⁾		ns
t _{stab}	Stabilisation time			500		ns

13.13 PROGRAMMABLE INTERNAL VOLTAGE REFERENCE CHARACTERISTICS

Symbol	Parameter	Conditions	Min	Typ ¹⁾	Max	Unit
V _{DDA}	Supply range		4	5	5.5	V
Temp	Temperature range		-40	27	125	°C
	Internal Voltage Reference Consumption			50		μA
IDD(VOLTREF)	Internal Voltage Reference Consumption during power-down			200		pА
t _{startup}	Startup duration			1 ²⁾		μs

13.14 CURRENT BIAS CHARACTERISTICS (for Comparator and Internal Voltage Reference)

Symbol	Parameter	Conditions	Min	Typ ¹⁾	Max	Unit
V _{DDA}	Supply range		4.5	5	5.5	V
Temp	Temperature range		-40	27	125	°C
	Bias Consumption in run mode			50		μA
IDD (Bias)	Bias Consumption during power- down			36		pА
t _{startup}	Startup time			1 ²⁾		μs

Notes:

<u>(۲</u>

1. Unless otherwise specified, typical data are based on $T_A=25^{\circ}C$ and $V_{DD}-V_{SS}=5V$. They are given only as design guide-lines and are not tested.

2. Since startup time for internal voltage reference and bias is 1 μ s, comparator correct output should not be expected before 1 μ s during startup.

15 DEVICE CONFIGURATION AND ORDERING INFORMATION

Each device is available for production in user programmable versions (FLASH).

15.1 OPTION BYTES

The two option bytes allow the hardware configuration of the microcontroller to be selected.

The option bytes can be accessed only in programming mode (for example using a standard ST7 programming tool).

OPTION BYTE 0

5/

OPT7 = Reserved, must always be 1.

OPT6 = **PKG** *Package selection* 0: 16-pin package 1: 20-pin package

OPT5:4 = **CLKSEL** *Clock Source Selection*

When the internal RC oscillator is not selected (Option OSC=1), these option bits select the clock source: resonator oscillator or external clock

Clock Sou	urce	Port C	CLKSEL		
Resonator		Ext. Osc Disabled/ Port C Enabled	0	0	
Ext.	on PB4	Ext. Osc Enabled/	0	1	
Clock source: CLKIN	on PC0	Port C Disabled	1	1	
Reserve	ed		1	0	

Note: When the internal RC oscillator is selected, the CLKSEL option bits must be kept at their default value in order to select the 256 clock cycle delay (see Section 7.5).

ST7FLITE1xB devices are shipped to customers with a default program memory content (FFh). This implies that FLASH devices have to be configured by the customer using the Option Bytes.

OPT3:2 = SEC[1:0] Sector 0 size definition

These option bits indicate the size of sector 0 according to the following table.

Sector 0 Size	SEC1	SEC0
0.5k	0	0
1k	0	1
2k	1	0
4k	1	1

OPT1 = **FMP_R** Read-out protection

Readout protection, when selected provides a protection against program memory content extraction and against write access to Flash memory. Erasing the option bytes when the FMP_R option is selected will cause the whole memory to be erased first and the device can be reprogrammed. Refer to the ST7 Flash Programming Reference Manual and section 4.5 on page 14 for more details

0: Read-out protection off

1: Read-out protection on

OPT0 = FMP_W FLASH write protection

This option indicates if the FLASH program memory is write protected.

Warning: When this option is selected, the program memory (and the option bit itself) can never be erased or programmed again.

0: Write protection off

1: Write protection on

			0	PTION		0			OPTION BYTE 1							
	7							0	7							0
	Res.	PKG	CLK	SEL	SEC1	SEC0	FMP R	FMP W	PLL x4x8	PLL OFF	PLL32 OFF	osc	LVD1	LVD0	WDG SW	WDG HALT
Default Value	1	1	1	1	0	1	0	0	1	1	1	0	1	1	1	1

OPTION BYTES (Cont'd)

OPTION BYTE 1

OPT7 = **PLLx4x8** *PLL Factor selection.* 0: PLLx4 1: PLLx8

OPT6 = **PLLOFF** *PLL disable.* 0: PLL enabled 1: PLL disabled (by-passed)

OPT5 = **PLL32OFF** *32MHz PLL disable.* 0: PLL32 enabled 1: PLL32 disabled (by-passed)

OPT4 = **OSC** *RC Oscillator selection* 0: RC oscillator on 1: RC oscillator off

Notes:

- 1% RC oscillator available on ST7LITE15B and ST7LITE19B devices only
- If the RC oscillator is selected, then to improve clock stability and frequency accuracy, it is recommended to place a decoupling capacitor, typically 100nF, between the V_{DD} and V_{SS} pins as close as possible to the ST7 device.

OPT3:2 = **LVD[1:0]** Low voltage detection selection

These option bits enable the LVD block with a selected threshold as shown in Table 26.

Table 26. LVD Threshold Configuration

Configuration	LVD1	LVD0
LVD Off	1	1
Highest Voltage Threshold (~4.1V)	1	0
Medium Voltage Threshold (~3.5V)	0	1
Lowest Voltage Threshold (~2.8V)	0	0

OPT1 = **WDG SW** Hardware or Software Watchdog

This option bit selects the watchdog type.

0: Hardware (watchdog always enabled)

1: Software (watchdog to be enabled by software)

OPT0 = **WDG HALT** *Watchdog Reset on Halt* This option bit determines if a RESET is generated when entering HALT mode while the Watchdog is active.

0: No Reset generation when entering Halt mode 1: Reset generation when entering Halt mode

	Operating conditions				Option Bits	5
V _{DD} range	Clock Source	PLL	Typ f _{CPU}	OSC	PLLOFF	PLLx4x8
		off	1MHz @3.3V	0	1	1
	Internal RC 1% ¹⁾	x4	4MHz @3.3V	0	0	0
271/-331/		x8	-	-	-	-
2.7 V - 3.3 V		off	0-4MHz	1	1	1
	External clock	x4	4MHz	1	0	0
		x8	-	-	-	-
		off	1MHz @5V	0	1	1
	Internal RC 1% ¹⁾	x4	-	-	-	-
3 31/ - 5 51/		x8	8MHz @5V	0	0	1
3.37 - 5.57		off	0-8MHz	1	1	1
	External clock	x4	-	-	-	-
		x8	8 MHz	1	0	1

Table 27. List of valid option combinations

Note 1: Configuration available on ST7LITE15B and ST7LITE19B devices only

Note: see Clock Management Block diagram in Figure 14

15.4 ST7 APPLICATION NOTES

Table 29. ST7 Application Notes

IDENTIFICATION	DESCRIPTION
APPLICATION EXAMPLES	
AN1658	SERIAL NUMBERING IMPLEMENTATION
AN1720	MANAGING THE READ-OUT PROTECTION IN FLASH MICROCONTROLLERS
AN1755	A HIGH RESOLUTION/PRECISION THERMOMETER USING ST7 AND NE555
AN1756	CHOOSING A DALI IMPLEMENTATION STRATEGY WITH ST7DALI
AN1812	A HIGH PRECISION, LOW COST, SINGLE SUPPLY ADC FOR POSITIVE AND NEGATIVE IN- PUT VOLTAGES
EXAMPLE DRIVERS	
AN 969	SCI COMMUNICATION BETWEEN ST7 AND PC
AN 970	SPI COMMUNICATION BETWEEN ST7 AND EEPROM
AN 971	I ² C COMMUNICATION BETWEEN ST7 AND M24CXX EEPROM
AN 972	ST7 SOFTWARE SPI MASTER COMMUNICATION
AN 973	SCI SOFTWARE COMMUNICATION WITH A PC USING ST72251 16-BIT TIMER
AN 974	REAL TIME CLOCK WITH ST7 TIMER OUTPUT COMPARE
AN 976	DRIVING A BUZZER THROUGH ST7 TIMER PWM FUNCTION
AN 979	DRIVING AN ANALOG KEYBOARD WITH THE ST7 ADC
AN 980	ST7 KEYPAD DECODING TECHNIQUES, IMPLEMENTING WAKE-UP ON KEYSTROKE
AN1017	USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER
AN1041	USING ST7 PWM SIGNAL TO GENERATE ANALOG OUTPUT (SINUSOÏD)
AN1042	ST7 ROUTINE FOR I ² C SLAVE MODE MANAGEMENT
AN1044	MULTIPLE INTERRUPT SOURCES MANAGEMENT FOR ST7 MCUS
AN1045	ST7 S/W IMPLEMENTATION OF I ² C BUS MASTER
AN1046	UART EMULATION SOFTWARE
AN1047	MANAGING RECEPTION ERRORS WITH THE ST7 SCI PERIPHERALS
AN1048	ST7 SOFTWARE LCD DRIVER
AN1078	PWM DUTY CYCLE SWITCH IMPLEMENTING TRUE 0% & 100% DUTY CYCLE
AN1082	DESCRIPTION OF THE ST72141 MOTOR CONTROL PERIPHERALS REGISTERS
AN1083	ST72141 BLDC MOTOR CONTROL SOFTWARE AND FLOWCHART EXAMPLE
AN1105	ST7 PCAN PERIPHERAL DRIVER
AN1129	PWM MANAGEMENT FOR BLDC MOTOR DRIVES USING THE ST72141
AN1130	AN INTRODUCTION TO SENSORLESS BRUSHLESS DC MOTOR DRIVE APPLICATIONS WITH THE ST72141
AN1148	USING THE ST7263 FOR DESIGNING A USB MOUSE
AN1149	HANDLING SUSPEND MODE ON A USB MOUSE
AN1180	USING THE ST7263 KIT TO IMPLEMENT A USB GAME PAD
AN1276	BLDC MOTOR START ROUTINE FOR THE ST72141 MICROCONTROLLER
AN1321	USING THE ST72141 MOTOR CONTROL MCU IN SENSOR MODE
AN1325	USING THE ST7 USB LOW-SPEED FIRMWARE V4.X
AN1445	EMULATED 16 BIT SLAVE SPI
AN1475	DEVELOPING AN ST7265X MASS STORAGE APPLICATION
AN1504	STARTING A PWM SIGNAL DIRECTLY AT HIGH LEVEL USING THE ST7 16-BIT TIMER
AN1602	16-BIT TIMING OPERATIONS USING ST7262 OR ST7263B ST7 USB MCUS
AN1633	DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 NON-USB APPLICATIONS
AN1712	GENERATING A HIGH RESOLUTION SINEWAVE USING ST7 PWMART
AN1713	SMBUS SLAVE DRIVER FOR ST7 I2C PERIPHERALS
AN1753	SOFTWARE UART USING 12-BIT ART

