

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VQFN Exposed Pad
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st7fli19bf1u6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

-

_

57

10.4 UNUSED I/O PINS	52
10.5 LOW POWER MODES	52
10.6 INTERRUPTS	52
10.7 DEVICE-SPECIFIC I/O PORT CONFIGURATION	53
10.8 MULTIPLEXED INPUT/OUTPUT PORTS	54
11 ON-CHIP PERIPHERALS	55
11.1 WATCHDOG TIMER (WDG)	55
11.2 DUAL 12-BIT AUTORELOAD TIMER 4 (AT4)	57
11.3 LITE TIMER 2 (LT2)	79
11.4 SERIAL PERIPHERAL INTERFACE (SPI)	84
11.5 10-BIT A/D CONVERTER (ADC)	96
11.6 ANALOG COMPARATOR (CMP)	100
12 INSTRUCTION SET	104
12.1 ST7 ADDRESSING MODES	104
12.2 INSTRUCTION GROUPS	107
13 ELECTRICAL CHARACTERISTICS	110
13.1 PARAMETER CONDITIONS	110
13.2 ABSOLUTE MAXIMUM RATINGS	111
13.3 OPERATING CONDITIONS	112
13.4 SUPPLY CURRENT CHARACTERISTICS	121
13.5 CLOCK AND TIMING CHARACTERISTICS	124
13.6 MEMORY CHARACTERISTICS	126
13.7 EMC CHARACTERISTICS	127
13.8 I/O PORT PIN CHARACTERISTICS	129
13.9 CONTROL PIN CHARACTERISTICS	135
13.10 COMMUNICATION INTERFACE CHARACTERISTICS	137
13.11 10-BIT ADC CHARACTERISTICS	139
13.12 ANALOG COMPARATOR CHARACTERISTICS	143
13.13 PROGRAMMABLE INTERNAL VOLTAGE REFERENCE CHARACTERISTICS .	143
13.14 CURRENT BIAS CHARACTERISTICS (FOR COMPARATOR AND INTERNAL V REFERENCE) 143	OLTAGE
14 PACKAGE CHARACTERISTICS	144
14.1 PACKAGE MECHANICAL DATA	144
14.2 SOLDERING INFORMATION	148
15 DEVICE CONFIGURATION AND ORDERING INFORMATION	149
15.1 OPTION BYTES	149
15.2 DEVICE ORDERING INFORMATION	151
15.3 DEVELOPMENT TOOLS	153
15.4 ST7 APPLICATION NOTES	154
16 REVISION HISTORY	157

4 FLASH PROGRAM MEMORY

4.1 Introduction

The ST7 single voltage extended Flash (XFlash) is a non-volatile memory that can be electrically erased and programmed either on a byte-by-byte basis or up to 32 bytes in parallel.

The XFlash devices can be programmed off-board (plugged in a programming tool) or on-board using In-Circuit Programming or In-Application Programming.

The array matrix organisation allows each sector to be erased and reprogrammed without affecting other sectors.

4.2 Main Features

- ICP (In-Circuit Programming)
- IAP (In-Application Programming)
- ICT (In-Circuit Testing) for downloading and executing user application test patterns in RAM
- Sector 0 size configurable by option byte
- Read-out and write protection

4.3 PROGRAMMING MODES

The ST7 can be programmed in three different ways:

- Insertion in a programming tool. In this mode, FLASH sectors 0 and 1, option byte row and data EEPROM (if present) can be programmed or erased.
- In-Circuit Programming. In this mode, FLASH sectors 0 and 1, option byte row and data EEPROM (if present) can be programmed or erased without removing the device from the application board.
- In-Application Programming. In this mode, sector 1 and data EEPROM (if present) can be programmed or erased without removing the device from the application board and while the application is running.

4.3.1 In-Circuit Programming (ICP)

ICP uses a protocol called ICC (In-Circuit Communication) which allows an ST7 plugged on a printed circuit board (PCB) to communicate with an external programming device connected via cable. ICP is performed in three steps:

Switch the ST7 to ICC mode (In-Circuit Communications). This is done by driving a specific signal sequence on the ICCCLK/DATA pins while the RESET pin is pulled low. When the ST7 enters ICC mode, it fetches a specific RESET vector which points to the ST7 System Memory containing the ICC protocol routine. This routine enables the ST7 to receive bytes from the ICC interface.

- Download ICP Driver code in RAM from the ICCDATA pin
- Execute ICP Driver code in RAM to program the FLASH memory

Depending on the ICP Driver code downloaded in RAM, FLASH memory programming can be fully customized (number of bytes to program, program locations, or selection of the serial communication interface for downloading).

4.3.2 In Application Programming (IAP)

This mode uses an IAP Driver program previously programmed in Sector 0 by the user (in ICP mode).

This mode is fully controlled by user software. This allows it to be adapted to the user application, (user-defined strategy for entering programming mode, choice of communications protocol used to fetch the data to be stored etc.)

IAP mode can be used to program any memory areas except Sector 0, which is write/erase protected to allow recovery in case errors occur during the programming operation.

47/

DATA EEPROM (Cont'd)

5.4 POWER SAVING MODES

Wait mode

The DATA EEPROM can enter WAIT mode on execution of the WFI instruction of the microcontroller or when the microcontroller enters Active-HALT mode. The DATA EEPROM will immediately enter this mode if there is no programming in progress, otherwise the DATA EEPROM will finish the cycle and then enter WAIT mode.

Active-Halt mode

Refer to Wait mode.

Halt mode

The DATA EEPROM immediately enters HALT mode if the microcontroller executes the HALT instruction. Therefore the EEPROM will stop the function in progress, and data may be corrupted.

5.5 ACCESS ERROR HANDLING

If a read access occurs while E2LAT=1, then the data bus will not be driven.

If a write access occurs while E2LAT=0, then the data on the bus will not be latched.

If a programming cycle is interrupted (by a RESET action), the integrity of the data in memory will not be guaranteed.

5.6 Data EEPROM Read-out Protection

The read-out protection is enabled through an option bit (see option byte section).

When this option is selected, the programs and data stored in the EEPROM memory are protected against read-out (including a re-write protection). In Flash devices, when this protection is removed by reprogramming the Option Byte, the entire Program memory and EEPROM is first automatically erased.

Note: Both Program Memory and data EEPROM are protected using the same option bit.

Figure 10. Data EEPROM Programming Cycle

6 CENTRAL PROCESSING UNIT

6.1 INTRODUCTION

This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-bit data manipulation.

6.2 MAIN FEATURES

- 63 basic instructions
- Fast 8-bit by 8-bit multiply
- 17 main addressing modes
- Two 8-bit index registers
- 16-bit stack pointer
- Low power modes
- Maskable hardware interrupts
- Non-maskable software interrupt

6.3 CPU REGISTERS

The six CPU registers shown in Figure 1 are not present in the memory mapping and are accessed by specific instructions.

Figure 11. CPU Registers

Accumulator (A)

The Accumulator is an 8-bit general purpose register used to hold operands and the results of the arithmetic and logic calculations and to manipulate data.

Index Registers (X and Y)

In indexed addressing modes, these 8-bit registers are used to create either effective addresses or temporary storage areas for data manipulation. (The Cross-Assembler generates a precede instruction (PRE) to indicate that the following instruction refers to the Y register.)

The Y register is not affected by the interrupt automatic procedures (not pushed to and popped from the stack).

Program Counter (PC)

The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is the LSB) and PCH (Program Counter High which is the MSB).

CPU REGISTERS (cont'd) CONDITION CODE REGISTER (CC)

Read/Write

Reset Value: 111x1xxx

7							0
1	1	1	н	Ι	Ν	Z	С

The 8-bit Condition Code register contains the interrupt mask and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP instructions.

These bits can be individually tested and/or controlled by specific instructions.

Bit 4 = H Half carry

This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instruction. It is reset by hardware during the same instructions.

0: No half carry has occurred.

1: A half carry has occurred.

This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD arithmetic subroutines.

Bit 3 = I Interrupt mask

This bit is set by hardware when entering in interrupt or by software to disable all interrupts except the TRAP software interrupt. This bit is cleared by software.

0: Interrupts are enabled.

57

1: Interrupts are disabled.

This bit is controlled by the RIM, SIM and IRET instructions and is tested by the JRM and JRNM instructions.

Note: Interrupts requested while I is set are latched and can be processed when I is cleared. By default an interrupt routine is not interruptible

because the I bit is set by hardware at the start of the routine and reset by the IRET instruction at the end of the routine. If the I bit is cleared by software in the interrupt routine, pending interrupts are serviced regardless of the priority level of the current interrupt routine.

Bit 2 = N Negative

This bit is set and cleared by hardware. It is representative of the result sign of the last arithmetic, logical or data manipulation. It is a copy of the 7th bit of the result.

0: The result of the last operation is positive or null.

1: The result of the last operation is negative (that is, the most significant bit is a logic 1).

This bit is accessed by the JRMI and JRPL instructions.

Bit 1 = Z Zero

This bit is set and cleared by hardware. This bit indicates that the result of the last arithmetic, logical or data manipulation is zero.

- 0: The result of the last operation is different from zero.
- 1: The result of the last operation is zero.

This bit is accessed by the JREQ and JRNE test instructions.

Bit 0 = C Carry/borrow

This bit is set and cleared by hardware and software. It indicates an overflow or an underflow has occurred during the last arithmetic operation. 0: No overflow or underflow has occurred.

1: An overflow or underflow has occurred.

This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC instructions. It is also affected by the "bit test and branch", shift and rotate instructions.

RESET SEQUENCE MANAGER (Cont'd)

The RESET pin is an asynchronous signal which plays a major role in EMS performance. In a noisy environment, it is recommended to follow the guidelines mentioned in the electrical characteristics section.

7.5.3 External Power-On RESET

If the LVD is disabled by option byte, to start up the microcontroller correctly, the user must ensure by means of an external reset circuit that the reset signal is held low until V_{DD} is over the minimum level specified for the selected f_{OSC} frequency.

A proper reset signal for a slow rising V_{DD} supply can generally be provided by an external RC network connected to the RESET pin.

7.5.4 Internal Low Voltage Detector (LVD) RESET

Two different RESET sequences caused by the internal LVD circuitry can be distinguished:

- Power-On RESET
- Voltage Drop RESET

The device $\overline{\text{RESET}}$ pin acts as an output that is pulled low when $V_{DD}{<}V_{IT{+}}$ (rising edge) or $V_{DD}{<}V_{IT{-}}$ (falling edge) as shown in Figure 17.

The LVD filters spikes on V_{DD} larger than $t_{g(VDD)}$ to avoid parasitic resets.

7.5.5 Internal Watchdog RESET

The RESET sequence generated by a internal Watchdog counter overflow is shown in Figure 17.

Starting from the Watchdog counter underflow, the device RESET pin acts as an output that is pulled low during at least $t_{w(RSTL)out}$.

Figure 17. RESET Sequences

POWER SAVING MODES (Cont'd)

Similarities with Halt mode

The following AWUFH mode behaviour is the same as normal Halt mode:

- The MCU can exit AWUFH mode by means of any interrupt with exit from Halt capability or a reset (see Section 9.4 HALT MODE).
- When entering AWUFH mode, the I bit in the CC register is forced to 0 to enable interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately.
- In AWUFH mode, the main oscillator is turned off causing all internal processing to be stopped, including the operation of the on-chip peripherals. None of the peripherals are clocked except those which get their clock supply from another clock generator (such as an external or auxiliary oscillator like the AWU oscillator).
- The compatibility of Watchdog operation with AWUFH mode is configured by the WDGHALT option bit in the option byte. Depending on this setting, the HALT instruction when executed while the Watchdog system is enabled, can generate a Watchdog RESET.

Figure 30. AWUF Halt Timing Diagram

57/

		◀	t _{AWU}	•	
	RUN MODE	HALT	MODE	256 OR 4096 t _{CPU}	RUN MODE
f _{CPU}					
f _{AWU_RC}	>			Π	Clear
AWUFH	interrupt			<u></u>	by software

I/O PORTS (Cont'd)

Analog alternate function

Configure the I/O as floating input to use an ADC input. The analog multiplexer (controlled by the ADC registers) switches the analog voltage present on the selected pin to the common analog rail, connected to the ADC input.

Analog Recommendations

Do not change the voltage level or loading on any I/O while conversion is in progress. Do not have clocking pins located close to a selected analog pin.

WARNING: The analog input voltage level must be within the limits stated in the absolute maximum ratings.

10.3 I/O PORT IMPLEMENTATION

The hardware implementation on each I/O port depends on the settings in the DDR and OR registers and specific I/O port features such as ADC input or open drain.

Switching these I/O ports from one state to another should be done in a sequence that prevents unwanted side effects. Recommended safe transitions are illustrated in Figure 33. Other transitions are potentially risky and should be avoided, since they may present unwanted side-effects such as spurious interrupt generation.

Figure 33. Interrupt I/O Port State Transitions

10.4 UNUSED I/O PINS

Unused I/O pins must be connected to fixed voltage levels. Refer to Section 13.8.

10.5 LOW POWER MODES

Mode	Description
WAIT	No effect on I/O ports. External interrupts cause the device to exit from WAIT mode.
HALT	No effect on I/O ports. External interrupts cause the device to exit from HALT mode.

10.6 INTERRUPTS

The external interrupt event generates an interrupt if the corresponding configuration is selected with DDR and OR registers and if the I bit in the CC register is cleared (RIM instruction).

Interrupt Event	Event Flag	Enable Control Bit	Exit from Wait	Exit from Halt	
External interrupt on selected external event	-	DDRx ORx	Yes	Yes	

Related Documentation

AN 970: SPI Communication between ST7 and EEPROM

AN1045: S/W implementation of I2C bus master AN1048: Software LCD driver

DUAL 12-BIT AUTORELOAD TIMER 4 (Cont'd)

11.2.3.3 Break Function

The break function can be used to perform an emergency shutdown of the application being driven by the PWM signals.

The break function is activated by the external BREAK pin or internal comparator output. This can be selected by using the BRSEL bit in BREAKCR Register. In order to use the break function it must be previously enabled by software setting the BPEN bit in the BREAKCR register.

The Break active level can be programmed by the BREDGE bit in the BREAKCR register. When an active level is detected on the BREAK pin, the BA bit is set and the break function is activated. In this case, the PWM signals are forced to BREAK value if respective OEx bit is set in PWMCR register.

Software can set the BA bit to activate the break function without using the BREAK pin. The BREN1 and BREN2 bits in the BREAKEN Register are used to enable the break activation on the 2 counters respectively. In Dual Timer Mode, the break for PWM2 and PWM3 is enabled by the BREN2 bit. In Single Timer Mode, the BREN1 bit enables the break for all PWM channels.

When a break function is activated (BA bit =1 and BREN1/BREN2 =1):

- The break pattern (PWM[3:0] bits in the BREAK-CR) is forced directly on the PWMx output pins if respective OEx is set. (after the inverter).
- The 12-bit PWM counter CNTR1 is put to its reset value, i.e. 00h (if BREN1 = 1).
- The 12-bit PWM counter CNTR2 is put to its reset value, i.e. 00h (if BREN2 = 1).
- ATR1, ATR2, Preload and Active DCRx are put to their reset values.
- Counters stop counting.

When the break function is deactivated after applying the break (BA bit goes from 1 to 0 by software), Timer takes the control of PWM ports.

Figure 41. Block Diagram of Break Function

DUAL 12-BIT AUTORELOAD TIMER 4 (Cont'd)

Bits 11:0 = ICR[11:0] Input Capture Data.

This is a 12-bit register which is readable by software and cleared by hardware after a reset. The ATICR register contains captured the value of the 12-bit CNTR1 register when a rising or falling edge occurs on the ATIC or LTIC pin (depending on

ICS). Capture will only be performed when the ICF flag is cleared.

BREAK ENABLE REGISTER (BREAKEN)

Read/Write

Reset Value: 0000 0011 (03h)

 7
 0

 0
 0
 0
 0
 BREN2
 BREN1

Bits 7:2 = Reserved, must be kept cleared.

Bit 1 = BREN2 Break Enable for Counter 2

This bit is read/write by software. It enables the break functionality for Counter2 if BA bit is set in BREAKCR. It controls PWM2/3 if ENCNTR2 bit is set.

0: No Break applied for CNTR2 1: Break applied for CNTR2

Bit 0 = BREN1 Break Enable for Counter 1

This bit is read/write by software. It enables the break functionality for Counter1. If BA bit is set, it controls PWM0/1 by default, and controls PWM2/3 also if ENCNTR2 bit is reset.

0: No Break applied for CNTR1

1: Break applied for CNTR1

TIMER CONTROL REGISTER2 (ATCSR2) Read/Write

Reset Value: 0000 0011 (03h)

5/

7							0
FORCE	FORCE 1	ICS	OVFIE2	OVF2	ENCNT R2	TRAN2	TRAN1

Bit 7 = FORCE2 Force Counter 2 Overflow

This bit is read/set by software. When set, it loads FFFh in the CNTR2 register. It is reset by hard-

ware one CPU clock cycle after counter 2 overflow has occurred.

0 : No effect on CNTR2

1: Loads FFFh in CNTR2

Note: This bit must not be reset by software

Bit 6 = FORCE1 Force Counter 1 Overflow

This bit is read/set by software. When set, it loads FFFh in CNTR1 register. It is reset by hardware one CPU clock cycle after counter 1 overflow has occurred.

0 : No effect on CNTR1

1 : Loads FFFh in CNTR1

Note: This bit must not be reset by software

Bit 5 = ICS Input Capture Shorted

This bit is read/write by software. It allows the ATtimer CNTR1 to use the LTIC pin for long input capture.

0 : ATIC for CNTR1 input capture

1 : LTIC for CNTR1 input capture

Bit 4 = **OVFIE2** Overflow interrupt 2 enable

This bit is read/write by software and controls the overflow interrupt of counter2.

0: Overflow interrupt disabled.

1: Overflow interrupt enabled.

Bit 3 = **OVF2** Overflow Flag.

This bit is set by hardware and cleared by software by reading the ATCSR2 register. It indicates the transition of the counter2 from FFFh to ATR2 value.

0: No counter overflow occurred 1: Counter overflow occurred

Bit 2 = **ENCNTR2** Enable counter2 for PWM2/3

This bit is read/write by software and switches the PWM2/3 operation to the CNTR2 counter. If this bit is set, PWM2/3 will be generated using CNTR2. 0: PWM2/3 is generated using CNTR1. 1: PWM2/3 is generated using CNTR2.

Note: Counter 2 gets frozen when the ENCNTR2 bit is reset. When ENCNTR2 is set again, the counter will restart from the last value.

DUAL 12-BIT AUTORELOAD TIMER 4 (Cont'd)

Bit 1= TRAN2 Transfer enable2

This bit is read/write by software, cleared by hardware after each completed transfer and set by hardware after reset. It controls the transfers on CNTR2.

It allows the value of the Preload DCRx registers to be transferred to the Active DCRx registers after the next overflow event.

The OPx bits are transferred to the shadow OPx bits in the same way.

Notes:

1. DCR2/3 transfer will be controlled using this bit if ENCNTR2 bit is set.

2. This bit must not be reset by software

Bit 0 = TRAN1 Transfer enable 1

This bit is read/write by software, cleared by hardware after each completed transfer and set by hardware after reset. It controls the transfers on CNTR1. It allows the value of the Preload DCRx registers to be transferred to the Active DCRx registers after the next overflow event.

The OPx bits are transferred to the shadow OPx bits in the same way.

Notes:

15

1. DCR0,1 transfers are always controlled using this bit.

2. DCR2/3 transfer will be controlled using this bit if ENCNTR2 is reset.

3. This bit must not be reset by software

AUTORELOAD REGISTER2 (ATR2H)

Read / Write

Reset Value: 0000 0000 (00h)

15							0
0	0	0	0	ATR11	ATR10	ATR9	ATR8

AUTORELOAD REGISTER (ATR2L)

Read / Write

Reset Value: 0000 0000 (00h)

7							0	
ATR7	ATR6	ATR5	ATR4	ATR3	ATR2	ATR1	ATR0	

Bits 11:0 = ATR2[11:0] Autoreload Register 2.

This is a 12-bit register which is written by software. The ATR2 register value is automatically loaded into the upcounter CNTR2 when an overflow of CNTR2 occurs. The register value is used to set the PWM2/PWM3 frequency when ENCNTR2 is set.

DEAD TIME GENERATOR REGISTER (DTGR)

Read/Write

Reset Value: 0000 0000 (00h)

/							0
DTE	DT6	DT5	DT4	DT3	DT2	DT1	DT0

Bit 7 = **DTE** Dead Time Enable

This bit is read/write by software. It enables a dead time generation on PWM0/PWM1. 0: No Dead time insertion.

1: Dead time insertion enabled.

Bits 6:0 = DT[6:0] Dead Time Value

These bits are read/write by software. They define the dead time inserted between PWM0/PWM1. Dead time is calculated as follows:

Dead Time = DT[6:0] x Tcounter1

Note:

Q

1. If DTE is set and DT[6:0]=0, PWM output signals will be at their reset state.

10-BIT A/D CONVERTER (ADC) (Cont'd)

11.5.3.2 Input Voltage Amplifier

The input voltage can be amplified by a factor of 8 by enabling the AMPSEL bit in the ADCDRL register.

When the amplifier is enabled, the input range is 0V to $V_{\mbox{\scriptsize DD}}/8.$

For example, if $V_{DD} = 5V$, then the ADC can convert voltages in the range 0V to 430mV with an ideal resolution of 0.6mV (equivalent to 13-bit resolution with reference to a V_{SS} to V_{DD} range).

For more details, refer to the Electrical characteristics section.

Note: The amplifier is switched on by the ADON bit in the ADCCSR register, so no additional startup time is required when the amplifier is selected by the AMPSEL bit.

11.5.3.3 Digital A/D Conversion Result

The conversion is monotonic, meaning that the result never decreases if the analog input does not and never increases if the analog input does not.

If the input voltage (V_{AIN}) is greater than V_{DDA} (high-level voltage reference) then the conversion result is FFh in the ADCDRH register and 03h in the ADCDRL register (without overflow indication).

If the input voltage (V_{AIN}) is lower than V_{SSA} (low-level voltage reference) then the conversion result in the ADCDRH and ADCDRL registers is 00 00h.

The A/D converter is linear and the digital result of the conversion is stored in the ADCDRH and AD-CDRL registers. The accuracy of the conversion is described in the Electrical Characteristics Section.

 R_{AIN} is the maximum recommended impedance for an analog input signal. If the impedance is too high, this will result in a loss of accuracy due to leakage and sampling not being completed in the alloted time.

11.5.3.4 A/D Conversion

The analog input ports must be configured as input, no pull-up, no interrupt. Refer to the «I/O ports» chapter. Using these pins as analog inputs does not affect the ability of the port to be read as a logic input.

In the ADCCSR register:

57/

 Select the CH[2:0] bits to assign the analog channel to convert.

ADC Conversion mode

In the ADCCSR register:

Set the ADON bit to enable the A/D converter and to start the conversion. From this time on, the ADC performs a continuous conversion of the selected channel.

When a conversion is complete:

- The EOC bit is set by hardware.
- The result is in the ADCDR registers.

A read to the ADCDRH or a write to any bit of the ADCCSR register resets the EOC bit.

To read the 10 bits, perform the following steps:

- 1. Poll the EOC bit
- 2. Read ADCDRL
- 3. Read ADCDRH. This clears EOC automatically.

To read only 8 bits, perform the following steps:

- 1. Poll EOC bit
- 2. Read ADCDRH. This clears EOC automatically.

11.5.3.5 Changing the conversion channel

The application can change channels during conversion.

When software modifies the CH[2:0] bits in the ADCCSR register, the current conversion is stopped, the EOC bit is cleared, and the A/D converter starts converting the newly selected channel.

11.5.4 Low Power Modes

Note: The A/D converter may be disabled by resetting the ADON bit. This feature allows reduced power consumption when no conversion is needed and between single shot conversions.

Mode	Description
WAIT	No effect on A/D Converter
	A/D Converter disabled.
HALT	After wakeup from Halt mode, the A/D Converter requires a stabilization time t_{STAB} (see Electrical Characteristics) before accurate conversions can be performed.

11.5.5 Interrupts

None.

ANALOG COMPARATOR (Cont'd)

Bit 4 = CMPIF Comparator Interrupt Flag

This bit is set by hardware when interrupt is generated at the rising edge (CINV = 0) or falling edge (CINV = 1) of comparator output. This bit is cleared by reading the CMPCR register. Writing to this bit does not change the value.

0 : Comparator interrupt flag cleared

1 : Comparator interrupt flag set and can generate interrupt if CMPIE is set.

Bit 3 : CMPIE Comparator Interrupt Enable

This bit is set or reset by software and cleared by hardware reset. This bit enables or disables the interrupt generation depending on interrupt flag 0: Interrupt not generated

1: Interrupt generated if interrupt flag is set

Note:

57/

This bit should be set to enable interrupt only after the comparator has been switched ON, i.e. when CMPON is set.

Once CMPON bit is set, it is recommended to wait the specified stabilization time before setting CMPIE bit in order to avoid a spurious interrupt (see section 13.12 on page 143).

Bit 2 : CMP Comparator Output

This bit is set or reset by software and cleared by hardware reset. It stores the value of comparator output.

Bit 1 = COUT Comparator Output Enable on Port This bit is set or cleared by software. When this bit is set, the comparator output is available on PA7 port.

0 : Comparator output not connected to PA7

1 : Comparator output connected to PA7

Bit 0 : CMPON Comparator ON/OFF

This bit is set or cleared by software and reset by hardware reset. This bit is used to switch ON/OFF the comparator, internal voltage reference and current bias which provides 4μ A current to both. 0: Comparator, Internal Voltage Reference, Bias

- OFF (in power-down state).
- 1: Comparator, Internal Voltage Reference, Bias ON

Note: For the comparator interrupt generation, it takes 250ns delay from comparator output change to rising or falling edge of interrupt generated.

Table 21. Analog Comparator Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
002Ch	VREFCR Reset Value	VCEXT 0	VCBGR 0	VR3 0	VR2 0	VR1 0	VR0 0	- 0	- 0
002Dh	CMPCR Reset value	CHYST 1	- 0	CINV 0	CMPIF 0	CMPIE 0	CMP 0	COUT 0	CMPON 0

ST7 ADDRESSING MODES (cont'd)

12.1.1 Inherent

All Inherent instructions consist of a single byte. The opcode fully specifies all the required information for the CPU to process the operation.

Inherent Instruction	Function		
NOP	No operation		
TRAP	S/W Interrupt		
WFI	Wait For Interrupt (Low Powe Mode)		
HALT	Halt Oscillator (Lowest Powe Mode)		
RET	Subroutine Return		
IRET	Interrupt Subroutine Return		
SIM	Set Interrupt Mask		
RIM	Reset Interrupt Mask		
SCF	Set Carry Flag		
RCF	Reset Carry Flag		
RSP	Reset Stack Pointer		
LD	Load		
CLR	Clear		
PUSH/POP	Push/Pop to/from the stack		
INC/DEC	Increment/Decrement		
TNZ	Test Negative or Zero		
CPL, NEG	1 or 2 Complement		
MUL	Byte Multiplication		
SLL, SRL, SRA, RLC, RRC	Shift and Rotate Operations		
SWAP	Swap Nibbles		

12.1.2 Immediate

57

Immediate instructions have 2 bytes, the first byte contains the opcode, the second byte contains the operand value.

Immediate Instruction	Function	
LD	Load	
CP	Compare	
BCP	Bit Compare	
AND, OR, XOR	Logical Operations	
ADC, ADD, SUB, SBC	Arithmetic Operations	

12.1.3 Direct

In Direct instructions, the operands are referenced by their memory address.

The direct addressing mode consists of two submodes:

Direct (Short)

The address is a byte, thus requires only 1 byte after the opcode, but only allows 00 - FF addressing space.

Direct (Long)

The address is a word, thus allowing 64 Kbyte addressing space, but requires 2 bytes after the opcode.

12.1.4 Indexed (No Offset, Short, Long)

In this mode, the operand is referenced by its memory address, which is defined by the unsigned addition of an index register (X or Y) with an offset.

The indirect addressing mode consists of three submodes:

Indexed (No Offset)

There is no offset (no extra byte after the opcode), and allows 00 - FF addressing space.

Indexed (Short)

The offset is a byte, thus requires only 1 byte after the opcode and allows 00 - 1FE addressing space.

Indexed (Long)

The offset is a word, thus allowing 64 Kbyte addressing space and requires 2 bytes after the opcode.

12.1.5 Indirect (Short, Long)

The required data byte to do the operation is found by its memory address, located in memory (pointer).

The pointer address follows the opcode. The indirect addressing mode consists of two submodes:

Indirect (Short)

The pointer address is a byte, the pointer size is a byte, thus allowing 00 - FF addressing space, and requires 1 byte after the opcode.

Indirect (Long)

The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte addressing space, and requires 1 byte after the opcode.

Figure 66. Typical accuracy with RCCR=RCCR0 vs V_{DD}= 4.5-5.5V and Temperature

Figure 67. Typical RCCR0 vs V_{DD} and Temperature

51

13.4.2 On-chip peripherals

Symbol	Parameter	Conditions		Тур	Unit
I _{DD(AT)}	12-bit Auto-Reload Timer supply current ¹⁾	f _{CPU} =4MHz	V _{DD} =3.0V	150	
		f _{CPU} =8MHz	V _{DD} =5.0V	1000	
I _{DD(SPI)}	SPI supply current ²⁾	f _{CPU} =4MHz	V _{DD} =3.0V	50	
		f _{CPU} =8MHz	V _{DD} =5.0V	200	μΑ
I _{DD(ADC)}	ADC supply current when converting ³⁾	f _{ADC} =4MHz	V _{DD} =3.0V	250	
			V _{DD} =5.0V	1100	

Notes:

<u>ل</u>حک

1. Data based on a differential I_{DD} measurement between reset configuration (timer stopped) and a timer running in PWM mode at f_{cpu} =8MHz.

2. Data based on a differential I_{DD} measurement between reset configuration and a permanent SPI master communication (data sent equal to 55h).

3. Data based on a differential I_{DD} measurement between reset configuration and continuous A/D conversions with amplifier disabled.

I/O PORT PIN CHARACTERISTICS (Cont'd)

Figure 94. Typical V_{DD} - V_{OH} at V_{DD} =3.3V

Figure 95. Typical V_{DD}-V_{OH} at V_{DD}=5V

57

Figure 96. Typical V_{DD}-V_{OH} at V_{DD}=2.7V (HS)

Figure 97. Typical V_{DD} - V_{OH} at V_{DD} =3.3V (HS)

Figure 98. Typical V_{DD}-V_{OH} at V_{DD}=5V (HS)

I/O PORT PIN CHARACTERISTICS (Cont'd)

Figure 99. Typical V_{DD}-V_{OH} at V_{DD}=2.7V (Port C)

Figure 101. Typical V_{DD}-V_{OH} at V_{DD}=5V (Port C)

Figure 102. Typical V_{DD}-V_{OH} vs. V_{DD} (Standard)

Figure 103. Typical $V_{DD}\text{-}V_{OH}$ vs. V_{DD} (High Sink)

<u>ل</u>حک

13.10 COMMUNICATION INTERFACE CHARACTERISTICS

13.10.1 SPI - Serial Peripheral Interface

Subject to general operating conditions for $V_{DD}, f_{OSC},$ and T_A unless otherwise specified.

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Master f _{CPU} =8MHz	f _{CPU} /128 0.0625	f _{CPU} /4 2	– MHz
		Slave f _{CPU} =8MHz	0	f _{CPU} /2 4	
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time		see I/O port pin description		n
t _{su(SS)} 1)	SS setup time ⁴⁾	Slave	(4 x T _{CPU}) + 50		
t _{h(SS)} 1)	SS hold time	Slave	120		
t _{w(SCKH)} ¹⁾ t _{w(SCKL)} ¹⁾	SCK high and low time	Master Slave	100 90		
t _{su(MI)} 1) t _{su(SI)} 1)	Data input setup time	Master Slave	100 100		
t _{h(MI)} 1) t _{h(SI)} 1)	Data input hold time	Master Slave	100 100		ns
t _{a(SO)} ¹⁾	Data output access time	Slave	0	120	
t _{dis(SO)} ¹⁾	Data output disable time	Slave		240	
t _{v(SO)} ¹⁾	Data output valid time	Slave (after enable edge)		120	
t _{h(SO)} ¹⁾	Data output hold time	Slave (allel ellable euge)	0		
t _{v(MO)} ¹⁾	Data output valid time	Master (after enable		120	1
t _{h(MO)} ¹⁾	Data output hold time	edge)	0		1

Figure 107. SPI Slave Timing Diagram with CPHA=0 3)

Notes:

1. Data based on design simulation, not tested in production.

2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has its alternate function capability released. In this case, the pin status depends on the I/O port configuration.

- 3. Measurement points are done at CMOS levels: $0.3xV_{DD}$ and $0.7xV_{DD}$.
- **4.** Depends on f_{CPU} . For example, if f_{CPU} =8MHz, then T_{CPU} = 1/ f_{CPU} =125ns and $t_{su(\overline{SS})}$ =550ns

ST7LITE1xB FASTROM microcontroller option list					
Customer Address Contact Phone No Reference/FASTROM Code*: *FASTROM code name is ass FASTROM code must be sent	igned by STMicroelect in .S19 formatHex e	ronics. extension cannot b	ne processed.	· · · · · · · · · · · · · · · · · · ·	
Device Type/Memory Size/Pa	ckage (check only one	option):			
FASTROM DEVICE:	2K		4K		
VFQFPN20: SO20: PDIP20: SO16: PDIP16:	[] ST7PLIT19BF0Ux [] ST7PLIT19BF0Mx [] ST7PLIT19BF0Bx [] ST7PLIT19BY0Mx [] ST7PLIT19BY0Bx	[]ST []ST []ST []ST []ST	7PLIT19BF1Ux 7PLIT19BF1Mx 7PLIT19BF1Bx 7PLIT19BY1Mx 7PLIT19BY1Bx	 	
Warning: Addresses DEE0h and RCCR1 (see section 7.1	, DEE1h, DEE2h and on page 23).	DEE3h are rese	rved areas for	ST to program RCCR0	
Conditioning (check only one option, do not specify for DIP package) : VFQFPN [] Tape & Reel [] Tray SO [] Tape & Reel [] Tube					
Special marking: [] No [] Yes "" Authorized characters are letters, digits, '.', '-', '/' and spaces only. Maximum character count: 8 char. max					
Temperature range:	[]-40°C to	o +85°C	[] -40°C to -	+125°C	
Watchdog selection (WDG_S	SW): [] Softwar	[] Software activation		[] Hardware activation	
Watchdog reset on Halt (WDG_HALT): [] Re			[] No Reset		
LVD reset (LVD):	[] Disable	d	[] Enabled [] Highe [] Mediu [] Lowe	est threshold um threshold st threshold	
Sector 0 size (SEC):	[]0.5K	[]1K	[]2K	[]4K	
Readout protection (FMP_R)	: [] Disabled	[] Enabled			
Flash write protection (FMP_	W): [] Disabled	[] Enabled			
RC oscillator (OSC) :	[] Disabled	[] Enabled			
Clock source selection (CKSEL): (if OSC disabled) [] External crystal / ceramic resonator: [] External Clock on PB4 [] External Clock on PC0					
PLL (PLLOFF):	[] Disabled	[] Enabled			
PLL factor (PLLx4x8):	[] PLLx4	[] PLLx8			
PLL32 (PLL32OFF):	[] Disabled	[] Enabled			
Comments : Supply operating range in the Notes Date : Signature : Important note : Not all conf combination	application : igurations are available	e. See Table 27 c	on page 150 for	authorized option byte	

