

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Last Time Buy
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	17
Program Memory Size	8KB (8K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051t630-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

20.2. Driarity Crassbar Decador	111
20.3. Priority Crossbar Decoder	
20.4. Port I/O Initialization	
20.5. Port Match	
20.6. Special Function Registers for Accessing and Configuring Port I/O	
21. SMBus	
21.1. Supporting Documents	
21.2. SMBus Configuration	
21.3. SMBus Operation	
21.3.1. Transmitter Vs. Receiver	129
21.3.2. Arbitration	129
21.3.3. Clock Low Extension	129
21.3.4. SCL Low Timeout	129
21.3.5. SCL High (SMBus Free) Timeout	130
21.4. Using the SMBus	
21.4.1. SMBus Configuration Register	
21.4.2. SMB0CN Control Register	
21.4.2.1. Software ACK Generation	134
21.4.2.2. Hardware ACK Generation	
21.4.3. Hardware Slave Address Recognition	
21.4.4. Data Register	
21.5. SMBus Transfer Modes	
21.5.1. Write Sequence (Master)	
21.5.2. Read Sequence (Master)	
21.5.3. Write Sequence (Slave)	
21.5.4. Read Sequence (Slave)	
21.6. SMBus Status Decoding	
22. UARTO	
22.1. Enhanced Baud Rate Generation	
22.2. Operational Modes	
22.2. Operational Modes	
22.2.1. 8-Bit UART	
22.2.2. 9-Bit OART	
	-
23. Enhanced Serial Peripheral Interface (SPI0)	
23.1. Signal Descriptions	157
23.1.1. Master Out, Slave In (MOSI)	
23.1.2. Master In, Slave Out (MISO)	
23.1.3. Serial Clock (SCK)	
23.1.4. Slave Select (NSS)	
23.2. SPI0 Master Mode Operation	
23.3. SPI0 Slave Mode Operation	
23.4. SPI0 Interrupt Sources	
23.5. Serial Clock Phase and Polarity	
23.6. SPI Special Function Registers	
24. Timers	
24.1. Timer 0 and Timer 1	171

24.1.1. Mode 0: 13-bit Counter/Timer	
24.1.2. Mode 1: 16-bit Counter/Timer	
24.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload	
24.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)	
24.2. Timer 2	
24.2.1. 16-bit Timer with Auto-Reload	
24.2.2. 8-bit Timers with Auto-Reload	
24.2.3. Low-Frequency Oscillator (LFO) Capture Mode	
24.3. Timer 3	
24.3.1. 16-bit Timer with Auto-Reload	
24.3.2. 8-bit Timers with Auto-Reload	
24.3.3. Low-Frequency Oscillator (LFO) Capture Mode	187
25. Programmable Counter Array	
25.1. PCA Counter/Timer	
25.2. PCA0 Interrupt Sources	
25.3. Capture/Compare Modules	194
25.3.1. Edge-triggered Capture Mode	
25.3.2. Software Timer (Compare) Mode	
25.3.3. High-Speed Output Mode	
25.3.4. Frequency Output Mode	
25.3.5. 8-bit, 9-bit, 10-bit and 11-bit Pulse Width Modulator Modes	
25.3.5.1. 8-bit Pulse Width Modulator Mode	199
25.3.5.2. 9/10/11-bit Pulse Width Modulator Mode	200
25.3.6. 16-Bit Pulse Width Modulator Mode	201
25.4. Watchdog Timer Mode	202
25.4.1. Watchdog Timer Operation	
25.4.2. Watchdog Timer Usage	
25.5. Register Descriptions for PCA0	204
26. C2 Interface	210
26.1. C2 Interface Registers	
26.2. C2 Pin Sharing	
Document Change List	
Contact Information	220

List of Registers

		ADC0CF: ADC0 Configuration	
		ADC0H: ADC0 Data Word MSB	
		ADC0L: ADC0 Data Word LSB	
		ADC0CN: ADC0 Control	
		ADC0GTH: ADC0 Greater-Than Data High Byte	
		ADC0GTL: ADC0 Greater-Than Data Low Byte	
		ADC0LTH: ADC0 Less-Than Data High Byte	
		ADC0LTL: ADC0 Less-Than Data Low Byte	
		AMX0P: AMUX0 Positive Channel Select	
		FOFFH: Temperature Offset Measurement High Byte	
		FOFFL: Temperature Offset Measurement Low Byte	
		DA0CN: IDA0 Control	
SFR	Definition 8.2. I	DA0H: IDA0 Data Word MSB	51
SFR	Definition 8.3. I	DA0L: IDA0 Data Word LSB	51
		REF0CN: Reference Control	
SFR	Definition 10.1.	REGOCN: Voltage Regulator Control	56
SFR	Definition 11.1.	CPT0CN: Comparator0 Control	59
		CPT0MD: Comparator0 Mode Selection	
		CPT0MX: Comparator0 MUX Selection	
SFR	Definition 12.1.	DPL: Data Pointer Low Byte	69
SFR	Definition 12.2.	DPH: Data Pointer High Byte	69
		SP: Stack Pointer	
SFR	Definition 12.4.	ACC: Accumulator	70
SFR	Definition 12.5.	B: B Register	70
SFR	Definition 12.6.	PSW: Program Status Word	71
SFR	Definition 13.1.	EMI0CN: External Memory Interface Control	75
SFR	Definition 15.1.	IE: Interrupt Enable	83
SFR	Definition 15.2.	IP: Interrupt Priority	84
		EIE1: Extended Interrupt Enable 1	
SFR	Definition 15.4.	EIP1: Extended Interrupt Priority 1	86
		IT01CF: INT0/INT1 Configuration	
		PCON: Power Control	
SFR	Definition 18.1.	VDM0CN: VDD Monitor Control	98
SFR	Definition 18.2.	RSTSRC: Reset Source 1	00
SFR	Definition 19.1.	CLKSEL: Clock Select 1	02
SFR	Definition 19.2.	OSCICL: Internal H-F Oscillator Calibration1	03
SFR	Definition 19.3.	OSCICN: Internal H-F Oscillator Control 1	04
SFR	Definition 19.4.	OSCLCN: Internal L-F Oscillator Control 1	05
		OSCXCN: External Oscillator Control 1	
		XBR0: Port I/O Crossbar Register 0 1	
		XBR1: Port I/O Crossbar Register 1 1	
		P0MASK: Port 0 Mask Register 1	
		P0MAT: Port 0 Match Register 1	
		5	

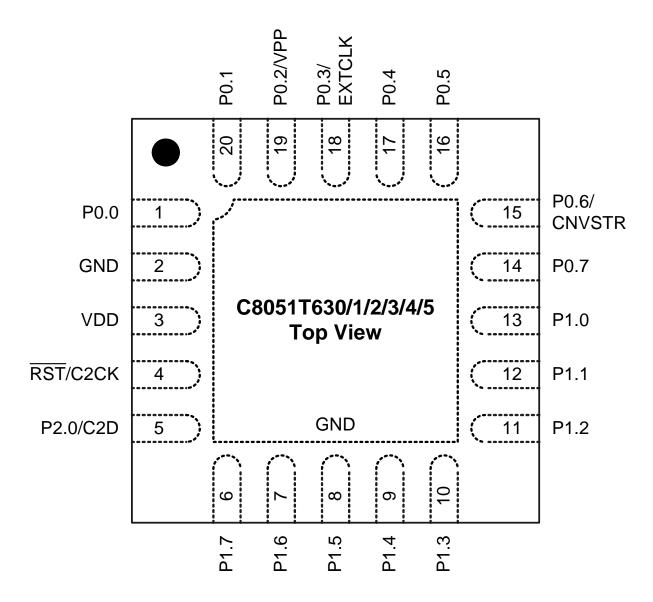
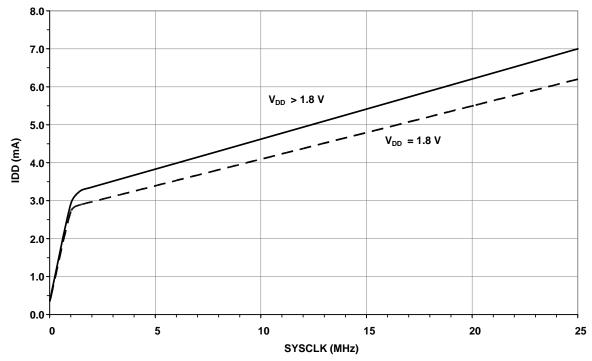



Figure 3.1. QFN-20 Pinout Diagram (Top View)

5.3. Typical Performance Curves

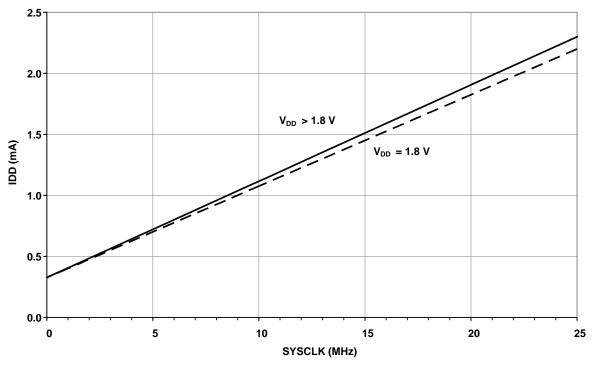


Figure 5.2. Idle Mode Digital Supply Current vs. Frequency (MPCE = 1)

6. 10-Bit ADC (ADC0, C8051T630/2/4 only)

ADC0 on the C8051T630/2/4 is a 500 ksps, 10-bit successive-approximation-register (SAR) ADC with integrated track-and-hold, a gain stage programmable to 1x or 0.5x, and a programmable window detector. The ADC is fully configurable under software control via Special Function Registers. The ADC may be configured to measure various different signals using the analog multiplexer described in Section "6.5. ADC0 Analog Multiplexer (C8051T630/2/4 only)" on page 43. The voltage reference for the ADC is selected as described in Section "9. Voltage Reference Options" on page 52. The ADC0 subsystem is enabled only when the AD0EN bit in the ADC0 Control register (ADC0CN) is set to logic 1. The ADC0 subsystem is in low power shutdown when this bit is logic 0.

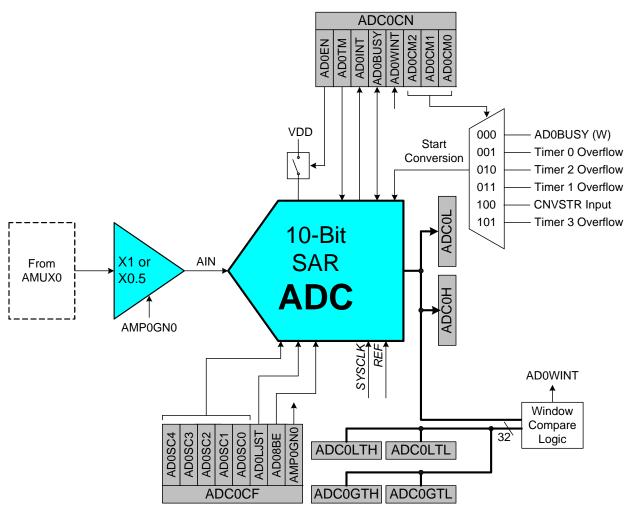


Figure 6.1. ADC0 Functional Block Diagram

SFR Definition 6.9. AMX0P: AMUX0 Positive Channel Select

Bit	7	6	5	4	3	2	1	0
Name				AMX0P[4:0]				
Туре	R	R	R	R/W				
Reset	0	0	0	1 1 1 1 1				

SFR Address = 0xBB

Bit	Name		Function
7:5	Unused	Unused. Read = 0	00b; Write = Don't Care.
4:0	AMX0P[4:0]	AMUX0 Positive I	nput Selection.
		00000:	P0.0
		00001:	P0.1
		00010:	P0.2
		00011:	P0.3
		00100:	P0.4
		00101:	P0.5
		00110:	P0.6
		00111:	P0.7
		01000:	P1.0
		01001:	P1.1
		01010:	P1.2
		01011:	P1.3
		01100:	P1.4
		01101:	P1.5
		01110:	P1.6
		01111:	P1.7
		10000:	Temp Sensor
		10001:	V _{DD}
		10010 – 11111:	no input selected

8.1.2. Update Output Based on Timer Overflow

Similar to the ADC operation, in which an ADC conversion can be initiated by a timer overflow independently of the processor, the IDAC outputs can use a Timer overflow to schedule an output update event. This feature is useful in systems where the IDAC is used to generate a waveform of a defined sampling rate by eliminating the effects of variable interrupt latency and instruction execution on the timing of the IDAC output. When the IDA0CM bits (IDA0CN.[6:4]) are set to 000, 001, 010 or 011, writes to both IDAC data registers (IDA0L and IDA0H) are held until an associated Timer overflow event (Timer 0, Timer 1, Timer 2 or Timer 3, respectively) occurs, at which time the IDA0H:IDA0L contents are copied to the IDAC input latches, allowing the IDAC output to change to the new value.

8.1.3. Update Output Based on CNVSTR Edge

The IDAC output can also be configured to update on a rising edge, falling edge, or both edges of the external CNVSTR signal. When the IDA0CM bits (IDA0CN.[6:4]) are set to 100, 101, or 110, writes to both IDAC data registers (IDA0L and IDA0H) are held until an edge occurs on the CNVSTR input pin. The particular setting of the IDA0CM bits determines whether IDAC outputs are updated on rising, falling, or both edges of CNVSTR. When a corresponding edge occurs, the IDA0H:IDA0L contents are copied to the IDAC input latches, allowing the IDAC output to change to the new value.

8.2. IDAC Output Mapping

The IDAC data registers (IDA0H and IDA0L) are left-justified, meaning that the eight MSBs of the IDAC output word are mapped to bits 7–0 of the IDA0H register, and the two LSBs of the IDAC output word are mapped to bits 7 and 6 of the IDA0L register. The data word mapping for the IDAC is shown in Figure 8.2.

IDA0H											١D	AOL			
B9 B8 B7		B6	B5	B4	B3	B2	B1	B0							
Input Data Word			Output Current					Out	put Cu	ırrent		Οι	itput (Curren	t
(IDA	109—IC	DA00)	10	IDA0OMD[1:0] = 1x				IDA0OMD[1:0] = 01			1	IDA0OMD[1:0] = 00			00
	0x000)		(0 mA				0 mA				0 m	A	
0x001		0x001 1/1024 x 2 mA 1/1024 x			1/1024 x 2 mA				024 x ′	1 mA		1/1	024 x	0.5 m	A
0x200			512/1024 x 2 mA				512/1024 x 1 mA			512/1024 x 0.5 m		nΑ			
0x3FF			1023/1024 x 2 mA				1023/1024 x 1 mA		\	1023/1024 x 0.5 m		mΑ			

Figure 8.2. IDA0 Data Word Mapping

The full-scale output current of the IDAC is selected using the IDA0OMD bits (IDA0CN[1:0]). By default, the IDAC is set to a full-scale output current of 2 mA. The IDA0OMD bits can also be configured to provide full-scale output currents of 1 mA or 0.5 mA, as shown in SFR Definition 8.1.

9. Voltage Reference Options

The Voltage reference multiplexer for the ADC is configurable to use an externally connected voltage reference, the on-chip reference voltage generator routed to the VREF pin, the unregulated power supply voltage (V_{DD}), or the regulated 1.8 V internal supply (see Figure 9.1). The REFSL bit in the Reference Control register (REF0CN, SFR Definition 9.1) selects the reference source for the ADC. For an external source or the on-chip reference, REFSL should be set to 0 to select the VREF pin. To use V_{DD} as the reference source, REFSL should be set to 1. To override this selection and use the internal regulator as the reference source, the REGOVR bit can be set to 1.

The BIASE bit enables the internal voltage bias generator, which is used by many of the analog peripherals on the device. This bias is automatically enabled when any peripheral which requires it is enabled, and it does not need to be enabled manually. The bias generator may be enabled manually by writing a 1 to the BIASE bit in register REFOCN. The electrical specifications for the voltage reference circuit are given in Table 5.11.

The C8051T630/2/4 devices also include an on-chip voltage reference circuit which consists of a 1.2 V, temperature stable bandgap voltage reference generator and a selectable-gain output buffer amplifier. The buffer is configured for 1x or 2x gain using the REFBGS bit in register REF0CN. On the 1x gain setting the output voltage is nominally 1.2 V, and on the 2x gain setting the output voltage is nominally 2.4 V. The on-chip voltage reference can be driven on the VREF pin by setting the REFBE bit in register REF0CN to a 1. The maximum load seen by the VREF pin must be less than 200 μ A to GND. Bypass capacitors of 0.1 μ F and 4.7 μ F are recommended from the VREF pin to GND, and a minimum of 0.1uF is required. If the on-chip reference is not used, the REFBE bit should be cleared to 0. Electrical specifications for the on-chip voltage reference are given in Table 5.11.

Important Note about the VREF Pin: When using either an external voltage reference or the on-chip reference circuitry, the VREF pin should be configured as an analog pin and skipped by the Digital Crossbar. Refer to Section "20. Port Input/Output" on page 109 for the location of the VREF pin, as well as details of how to configure the pin in analog mode and to be skipped by the crossbar.

SFR Definition 10.1. REG0CN: Voltage Regulator Control

Bit	7	6	5	4	3	2	1	0		
Nam	e STOPC	F BYPASS						MPCE		
Туре	e R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Rese	et O	0	0	0	0	0	0	0		
SFR A	Address = 0	kC7						<u> </u>		
Bit	Name				Function					
7	STOPCF	Stop Mode Co	onfiguratio	n.						
		This bit config	-							
		0: Regulator is device.	s still active	in STOP mod	de. Any enal	bled reset so	ource will res	set the		
		1: Regulator is	shut down	in STOP mo	de. Only the	RST pin or	power cycle	can reset		
		the device.				·	. ,			
6	BYPASS	Bypass Interr	nal Regulat	or.						
		This bit places	-	•••		ng off the reg	julator, and a	allowing the		
		core to run directly from the V _{DD} supply pin. 0: Normal Mode—Regulator is on.								
		1: Bypass Mod	•		the microco	ontroller core	operates d	irectly from		
		the V _{DD} supply	-	1						
		IMPORTANT: voltage only.								
		voltage is gre	ater than th	he specifica	tions given					
		may cause pe		-	e device.					
5:1 0	Reserved MPCE	Reserved. Mu								
Ŭ		Memory Pow			or at alower	aveter alaa	k froquonoio	a (about		
	This bit can help the system save power at slower system clock frequencies (about 2.0 MHz or less) by automatically shutting down the EPROM memory between clocks									
		when informat	ion is not be	eing fetched	from the EP	ROM memo	ry.			
		0: Normal Mod	•	•		•	•	•		
		1: Low Power as needed).	wode-wer	nory power (controller en	abied (EPRC	Jivi memory	turns on/off		
Note: If an external clock source is used with the Memory Power clock frequency changes from slow (<2.0 MHz) to fast (> will turn on, and up to 20 clocks may be "skipped" to ens stable before reading memory.				o fast (> 2.0 N	st (> 2.0 MHz), the EPROM power					

12. CIP-51 Microcontroller

The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the MCS-51[™] instruction set; standard 803x/805x assemblers and compilers can be used to develop software. The MCU family has a superset of all the peripherals included with a standard 8051. The CIP-51 also includes on-chip debug hardware (see description in Section 26), and interfaces directly with the analog and digital subsystems providing a complete data acquisition or control-system solution in a single integrated circuit.

The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as additional custom peripherals and functions to extend its capability (see Figure 12.1 for a block diagram). The CIP-51 includes the following features:

- Fully Compatible with MCS-51 Instruction Set
- 25 MIPS Peak Throughput with 25 MHz Clock
- 0 to 25 MHz Clock Frequency
- Extended Interrupt Handler

- Reset Input
- Power Management Modes
- On-chip Debug Logic
- Program and Data Memory Security

Performance

The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute, and usually have a maximum system clock of 12 MHz. By contrast, the CIP-51 core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more than eight system clock cycles.

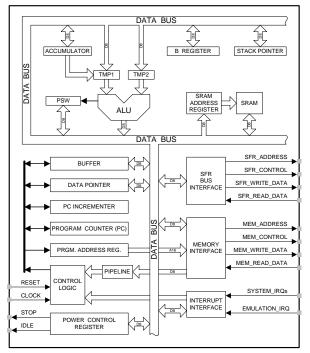


Figure 12.1. CIP-51 Block Diagram

SFR Definition 15.4. EIP1: Extended Interrupt Priority 1

Bit	7	6	5	4	3	2	1	0
Name	PT3	Reserved	PCP0	PPCA0	PADC0	PWADC0	PMAT	PSMB0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xF6

Bit	Name	Function
7	PT3	Timer 3 Interrupt Priority Control.This bit sets the priority of the Timer 3 interrupt.0: Timer 3 interrupts set to low priority level.1: Timer 3 interrupts set to high priority level.
6	Reserved	Reserved. Must Write 0.
5	PCP0	Comparator0 (CP0) Interrupt Priority Control. This bit sets the priority of the CP0 interrupt. 0: CP0 interrupt set to low priority level. 1: CP0 interrupt set to high priority level.
4	PPCA0	 Programmable Counter Array (PCA0) Interrupt Priority Control. This bit sets the priority of the PCA0 interrupt. 0: PCA0 interrupt set to low priority level. 1: PCA0 interrupt set to high priority level.
3	PADC0	 ADC0 Conversion Complete Interrupt Priority Control. This bit sets the priority of the ADC0 Conversion Complete interrupt. 0: ADC0 Conversion Complete interrupt set to low priority level. 1: ADC0 Conversion Complete interrupt set to high priority level.
2	PWADC0	 ADC0 Window Comparator Interrupt Priority Control. This bit sets the priority of the ADC0 Window interrupt. 0: ADC0 Window interrupt set to low priority level. 1: ADC0 Window interrupt set to high priority level.
1	PMAT	 Port Match Interrupt Priority Control. This bit sets the priority of the Port Match Event interrupt. 0: Port Match interrupt set to low priority level. 1: Port Match interrupt set to high priority level.
0	PSMB0	 SMBus (SMB0) Interrupt Priority Control. This bit sets the priority of the SMB0 interrupt. 0: SMB0 interrupt set to low priority level. 1: SMB0 interrupt set to high priority level.

software prior to entering the idle mode if the WDT was initially configured to allow this operation. This provides the opportunity for additional power savings, allowing the system to remain in the idle mode indefinitely, waiting for an external stimulus to wake up the system. Refer to Section "18.6. PCA Watchdog Timer Reset" on page 99 for more information on the use and configuration of the WDT.

17.2. Stop Mode

Setting the Stop Mode Select bit (PCON.1) causes the controller core to enter stop mode as soon as the instruction that sets the bit completes execution. In stop mode the internal oscillator, CPU, and all digital peripherals are stopped; the state of the external oscillator circuit is not affected. Each analog peripheral (including the external oscillator circuit) may be shut down individually prior to entering stop mode. Stop mode can only be terminated by an internal or external reset. On reset, the device performs the normal reset sequence and begins program execution at address 0x0000.

If enabled, the missing clock detector will cause an internal reset and thereby terminate the stop mode. The missing clock detector should be disabled if the CPU is to be put to in stop mode for longer than the MCD timeout.

By default, when in stop mode the internal regulator is still active. However, the regulator can be configured to shut down while in stop mode to save power. To shut down the regulator in stop mode, the STOPCF bit in register REGOCN should be set to 1 prior to setting the STOP bit (see SFR Definition 10.1). If the regulator is shut down using the STOPCF bit, only the RST pin or a full power cycle are capable of resetting the device.

17.3. Suspend Mode

Setting the SUSPEND bit (OSCICN.5) causes the hardware to halt the CPU and the high-frequency internal oscillator, and go into suspend mode as soon as the instruction that sets the bit completes execution. All internal registers and memory maintain their original data. Most digital peripherals are not active in suspend mode. The exception to this is the Port Match feature and Timer 3, when it is run from an external oscillator source or the internal low-frequency oscillator.

Suspend mode can be terminated by four types of events, a port match (described in Section "20.5. Port Match" on page 118), a Timer 3 overflow (described in Section "24.3. Timer 3" on page 185), a comparator low output (if enabled), or a device reset event. To run Timer 3 in suspend mode, the timer must be configured to clock from either the external clock source or the internal low-frequency oscillator source. When suspend mode is terminated, the device will continue execution on the instruction following the one that set the SUSPEND bit. If the wake event (port match or Timer 3 overflow) was configured to generate an interrupt, the interrupt will be serviced upon waking the device. If suspend mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0x0000.

SFR Definition 18.2. RSTSRC: Reset Source

Bit	7	6	5	4	3	2	1	0
Name		MEMERR	CORSEF	SWRSF	WDTRSF	MCDRSF	PORSF	PINRSF
Туре	R	R	R/W	R/W	R	R/W	R/W	R
Reset	0	Varies						

SFR Address = 0xEF

Name	Description	Write	Read
Unused	Unused.	Don't care.	0
MEMERR	EPROM Error Reset Flag.	N/A	Set to 1 if EPROM read/write error caused the last reset.
CORSEF	Comparator0 Reset Enable and Flag.	Writing a 1 enables Comparator0 as a reset source (active-low).	Set to 1 if Comparator0 caused the last reset.
SWRSF	Software Reset Force and Flag.	Writing a 1 forces a sys- tem reset.	Set to 1 if last reset was caused by a write to SWRSF.
WDTRSF	Watchdog Timer Reset Flag.	N/A	Set to 1 if Watchdog Timer overflow caused the last reset.
MCDRSF	Missing Clock Detector Enable and Flag.	Writing a 1 enables the Missing Clock Detector. The MCD triggers a reset if a missing clock condition is detected.	Set to 1 if Missing Clock Detector timeout caused the last reset.
PORSF	Power-On/V _{DD} Monitor Reset Flag, and V _{DD} monitor Reset Enable.	Writing a 1 enables the V_{DD} monitor as a reset source. Writing 1 to this bit before the V_{DD} monitor is enabled and stabilized may cause a system reset.	Set to 1 anytime a power- on or V _{DD} monitor reset occurs. When set to 1 all other RSTSRC flags are inde- terminate.
PINRSF	HW Pin Reset Flag.	N/A	Set to 1 if RST pin caused the last reset.
	Unused MEMERR CORSEF SWRSF WDTRSF MCDRSF	UnusedUnused.MEMERREPROM Error Reset Flag.CORSEFComparator0 Reset Enable and Flag.SWRSFSoftware Reset Force and Flag.WDTRSFWatchdog Timer Reset Flag.MCDRSFMissing Clock Detector Enable and Flag.PORSFPower-On/V _{DD} Monitor Reset Flag, and V _{DD} monitor Reset Enable.	UnusedUnused.Don't care.MEMERREPROM Error Reset Flag.N/ACORSEFComparator0 Reset Enable and Flag.Writing a 1 enables Comparator0 as a reset source (active-low).SWRSFSoftware Reset Force and Flag.Writing a 1 forces a sys- tem reset.WDTRSFWatchdog Timer Reset Flag.N/AMCDRSFMissing Clock Detector Enable and Flag.Writing a 1 enables the Missing Clock Detector. The MCD triggers a reset if a missing clock condition is detected.PORSFPower-On/V _{DD} Monitor Reset Flag, and V _{DD} monitor Reset Enable.Writing a 1 enables the V _{DD} monitor as a reset source.PORSFPower-On/V _{DD} Monitor Reset Enable.Writing a 1 enables the V _{DD} monitor as a reset source.PORSFPower-On/V _{DD} Monitor Reset Enable.Writing a 1 enables the V _{DD} monitor is enabled and stabilized may cause a system reset.

19.4. External Oscillator Drive Circuit

The external oscillator circuit may drive an external capacitor or RC network. A CMOS clock may also provide a clock input. In RC, capacitor, or CMOS clock configuration, the clock source should be wired to the EXTCLK pin as shown in Figure 19.1. The type of external oscillator must be selected in the OSCXCN register, and the frequency control bits (XFCN) must be selected appropriately (see SFR Definition 19.5).

Important Note on External Oscillator Usage: Port pins must be configured when using the external oscillator circuit. When the external oscillator drive circuit is enabled in capacitor, RC, or CMOS clock mode, Port pin P0.3 is used as EXTCLK. The Port I/O Crossbar should be configured to skip the Port pin used by the oscillator circuit; see Section "20.3. Priority Crossbar Decoder" on page 114 for Crossbar configuration. Additionally, when using the external oscillator circuit in capacitor or RC mode, the associated Port pin should be configured as an **analog input**. In CMOS clock mode, the associated pin should be configured as a **digital input**. See Section "20.4. Port I/O Initialization" on page 116 for details on Port input mode selection.

SFR Definition 20.10. P0SKIP: Port 0 Skip

Bit	7	6	5	4	3	2	1	0
Name	P0SKIP[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD4

Bit	Name	Function	
7:0	P0SKIP[7:0]	Port 0 Crossbar Skip Enable Bits.	
		These bits select Port 0 pins to be skipped by the Crossbar Decoder. Port pins used for analog, special functions or GPIO should be skipped by the Crossbar. 0: Corresponding P0.n pin is not skipped by the Crossbar. 1: Corresponding P0.n pin is skipped by the Crossbar.	

SFR Definition 20.11. P1: Port 1

Bit	7	6	5	4	3	2	1	0
Name	P1[7:0]							
Туре	R/W							
Reset	1	1	1	1	1	1	1	1

SFR Address = 0x90; Bit-Addressable

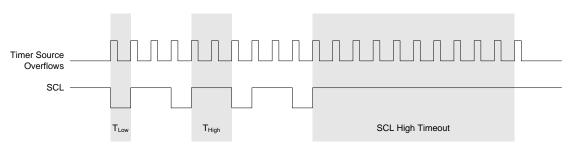
Bit	Name	Description	Write	Read
7:0	P1[7:0]	Port 1 Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells con- figured for digital I/O.	0: Set output latch to logic LOW. 1: Set output latch to logic HIGH.	0: P1.n Port pin is logic LOW. 1: P1.n Port pin is logic HIGH.

SMBCS1	SMBCS0	SMBus Clock Source
0	0	Timer 0 Overflow
0	1	Timer 1 Overflow
1	0	Timer 2 High Byte Overflow
1	1	Timer 2 Low Byte Overflow

Table 21.1. SMBus Clock Source Selection

The SMBCS1–0 bits select the SMBus clock source, which is used only when operating as a master or when the Free Timeout detection is enabled. When operating as a master, overflows from the selected source determine the absolute minimum SCL low and high times as defined in Equation 21.1. Note that the selected clock source may be shared by other peripherals so long as the timer is left running at all times. For example, Timer 1 overflows may generate the SMBus and UART baud rates simultaneously. Timer configuration is covered in Section "24. Timers" on page 169.

$$T_{HighMin} = T_{LowMin} = \frac{1}{f_{ClockSourceOverflow}}$$


Equation 21.1. Minimum SCL High and Low Times

The selected clock source should be configured to establish the minimum SCL High and Low times as per Equation 21.1. When the interface is operating as a master (and SCL is not driven or extended by any other devices on the bus), the typical SMBus bit rate is approximated by Equation 21.2.

$$BitRate = \frac{f_{ClockSourceOverflow}}{3}$$

Equation 21.2. Typical SMBus Bit Rate

Figure 21.4 shows the typical SCL generation described by Equation 21.2. Notice that T_{HIGH} is typically twice as large as T_{LOW} . The actual SCL output may vary due to other devices on the bus (SCL may be extended low by slower slave devices, or driven low by contending master devices). The bit rate when operating as a master will never exceed the limits defined by equation Equation 21.1.

Setting the EXTHOLD bit extends the minimum setup and hold times for the SDA line. The minimum SDA setup time defines the absolute minimum time that SDA is stable before SCL transitions from low-to-high. The minimum SDA hold time defines the absolute minimum time that the current SDA value remains stable

21.5.2. Read Sequence (Master)

During a read sequence, an SMBus master reads data from a slave device. The master in this transfer will be a transmitter during the address byte, and a receiver during all data bytes. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 1 (READ). Serial data is then received from the slave on SDA while the SMBus outputs the serial clock. The slave transmits one or more bytes of serial data.

If hardware ACK generation is disabled, the ACKRQ is set to 1 and an interrupt is generated after each received byte. Software must write the ACK bit at that time to ACK or NACK the received byte.

With hardware ACK generation enabled, the SMBus hardware will automatically generate the ACK/NACK, and then post the interrupt. It is important to note that the appropriate ACK or NACK value should be set up by the software prior to receiving the byte when hardware ACK generation is enabled.

Writing a 1 to the ACK bit generates an ACK; writing a 0 generates a NACK. Software should write a 0 to the ACK bit for the last data transfer, to transmit a NACK. The interface exits Master Receiver Mode after the STO bit is set and a STOP is generated. The interface will switch to Master Transmitter Mode if SMB0-DAT is written while an active Master Receiver. Figure 21.6 shows a typical master read sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur at different places in the sequence, depending on whether hardware ACK generation is enabled. The interrupt occurs **before** the ACK with hardware ACK generation disabled, and **after** the ACK when hardware ACK generation is enabled.

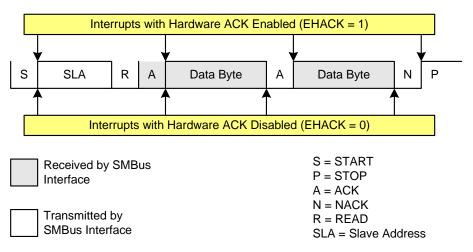
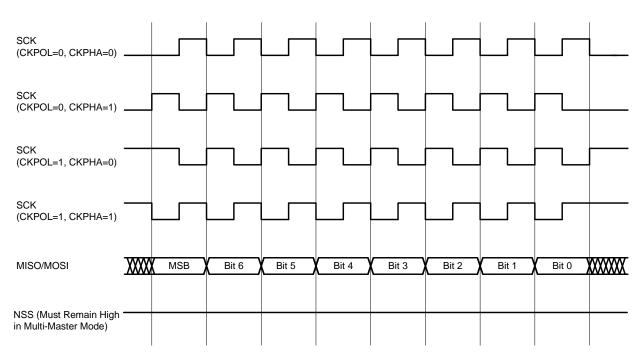
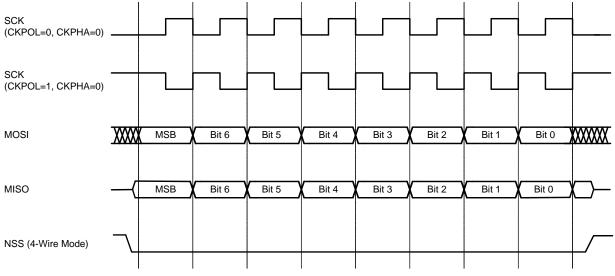




Figure 21.6. Typical Master Read Sequence

25.3.6. 16-Bit Pulse Width Modulator Mode

A PCA module may also be operated in 16-Bit PWM mode. 16-bit PWM mode is independent of the other (8/9/10/11-bit) PWM modes. In this mode, the 16-bit capture/compare module defines the number of PCA clocks for the low time of the PWM signal. When the PCA counter matches the module contents, the output on CEXn is asserted high; when the 16-bit counter overflows, CEXn is asserted low. To output a varying duty cycle, new value writes should be synchronized with PCA CCFn match interrupts. 16-Bit PWM Mode is enabled by setting the ECOMn, PWMn, and PWM16n bits in the PCA0CPMn register. For a varying duty cycle, match interrupts should be enabled (ECCFn = 1 AND MATn = 1) to help synchronize the capture/compare register writes. If the MATn bit is set to 1, the CCFn flag for the module will be set each time a 16-bit comparator match (rising edge) occurs. The CF flag in PCA0CN can be used to detect the overflow (falling edge). The duty cycle for 16-Bit PWM Mode is given by Equation 25.4.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

$$Duty Cycle = \frac{(65536 - PCA0CPn)}{65536}$$

Equation 25.4. 16-Bit PWM Duty Cycle

Using Equation 25.4, the largest duty cycle is 100% (PCA0CPn = 0), and the smallest duty cycle is 0.0015% (PCA0CPn = 0xFFFF). A 0% duty cycle may be generated by clearing the ECOMn bit to 0.

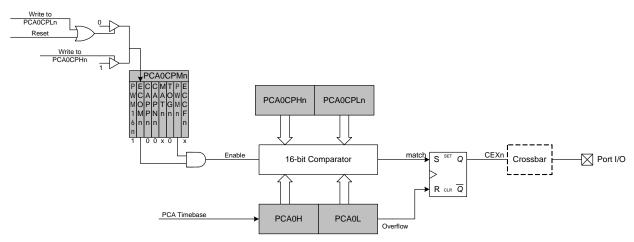


Figure 25.10. PCA 16-Bit PWM Mode

