



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Last Time Buy                                                   |
|----------------------------|-----------------------------------------------------------------|
| Core Processor             | 8051                                                            |
| Core Size                  | 8-Bit                                                           |
| Speed                      | 25MHz                                                           |
| Connectivity               | SMBus (2-Wire/I²C), SPI, UART/USART                             |
| Peripherals                | POR, PWM, Temp Sensor, WDT                                      |
| Number of I/O              | 17                                                              |
| Program Memory Size        | 4KB (4K x 8)                                                    |
| Program Memory Type        | OTP                                                             |
| EEPROM Size                | -                                                               |
| RAM Size                   | 768 x 8                                                         |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                     |
| Data Converters            | A/D 16x10b; D/A 1x10b                                           |
| Oscillator Type            | Internal                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                               |
| Mounting Type              | Surface Mount                                                   |
| Package / Case             | 20-VFQFN Exposed Pad                                            |
| Supplier Device Package    | 20-QFN (4x4)                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/silicon-labs/c8051t632-gmr |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# **List of Tables**

| 2. Ordering Informatio                                                                                       | n                                                       |     |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----|
| Table 2.1. Product S                                                                                         | Selection Guide                                         | 17  |
| 3. Pin Definitions                                                                                           |                                                         |     |
| Table 3.1. Pin Defini                                                                                        | itions for the C8051T630/1/2/3/4/5                      | 18  |
| 4. QFN-20 Package Sp                                                                                         | ecifications                                            |     |
| Table 4.1. QFN-20 F                                                                                          | Package Dimensions                                      | 21  |
| Table 4.2. QFN-20 F                                                                                          | <sup>2</sup> CB Land Pattern Dimesions                  | 22  |
| 5. Electrical Character                                                                                      | istics                                                  |     |
| Table 5.1. Absolute                                                                                          | Maximum Ratings                                         | 23  |
| Table 5.2. Global Ele                                                                                        | ectrical Characteristics                                | 24  |
| Table 5.3. Port I/O D                                                                                        | C Electrical Characteristics                            | 25  |
| Table 5.4. Reset Ele                                                                                         | ectrical Characteristics                                | 26  |
| Table 5.5. Internal V                                                                                        | oltage Regulator Electrical Characteristics             | 26  |
| Table 5.6. EPROM E                                                                                           | Electrical Characteristics                              | 26  |
| Table 5.7. Internal H                                                                                        | ligh-Frequency Oscillator Electrical Characteristics    | 27  |
| Table 5.8. Internal L                                                                                        | ow-Frequency Oscillator Electrical Characteristics      | 27  |
| Table 5.9. ADC0 Ele                                                                                          | ectrical Characteristics                                | 28  |
| Table 5.10. Tempera                                                                                          | ature Sensor Electrical Characteristics                 | 29  |
| Table 5.11. Voltage                                                                                          | Reference Electrical Characteristics                    | 29  |
| Table 5.12. IDAC El                                                                                          | ectrical Characteristics                                | 30  |
| Table 5.13. Compara                                                                                          | ator Electrical Characteristics                         | 31  |
| 6. 12. CIP-51 Microcon                                                                                       | ntroller                                                |     |
| Table 12.1. CIP-51 I                                                                                         | nstruction Set Summary                                  | 65  |
| 14. Special Function R                                                                                       | Registers                                               |     |
| Table 14.1. Special                                                                                          | Function Register (SFR) Memory Map                      | 76  |
| Table 14.2. Special                                                                                          | Function Registers                                      | 77  |
| 15. Interrupts                                                                                               | -                                                       |     |
| Table 15.1. Interrupt                                                                                        | Summary                                                 | 82  |
| 16. EPROM Memory                                                                                             |                                                         |     |
| Table 16.1. Security                                                                                         | Byte Decoding                                           | 90  |
| 20. Port Input/Output                                                                                        |                                                         |     |
| Table 20.1. Port I/O                                                                                         | Assignment for Analog Functions                         | 112 |
| Table 20.2. Port I/O                                                                                         | Assignment for Digital Functions                        | 112 |
| Table 20.3. Port I/O                                                                                         | Assignment for External Digital Event Capture Functions | 113 |
| 21. SMBus                                                                                                    |                                                         |     |
| Table 21.1. SMBus (                                                                                          | Clock Source Selection                                  | 131 |
| Table 21.2. Minimun                                                                                          | n SDA Setup and Hold Times                              | 132 |
| Table 21.3. Sources                                                                                          | for Hardware Changes to SMB0CN                          | 136 |
| Table 21.4. Hardwar                                                                                          | re Address Recognition Examples (EHACK = 1)             | 137 |
| Table 21.5. SMBus S                                                                                          | Status Decoding With Hardware ACK Generation Disabled   | d   |
| (EHACK                                                                                                       | ( = 0)                                                  | 144 |
| Table 21.6. SMBus S                                                                                          | Status Decoding With Hardware ACK Generation Enabled    | ł   |
| (EHACK                                                                                                       | ( = 1)                                                  | 146 |
| 15. Interrupts<br>Table 15.1. Interrupt<br>16. EPROM Memory<br>Table 16.1. Security<br>20. Port Input/Output | Byte Decoding                                           | 82  |
| 20. Port Input/Output                                                                                        |                                                         |     |
| Table 20.1. Port I/O                                                                                         | Assignment for Analog Functions                         | 112 |
| Table 20.2. Port I/O                                                                                         | Assignment for Digital Functions                        | 112 |
| Table 20.3. Port I/O                                                                                         | Assignment for External Digital Event Capture Functions | 113 |
| 21. SMBus                                                                                                    |                                                         |     |
| Table 21.1. Sivibus V                                                                                        | n SDA Satur and Hold Times                              | 101 |
| Table 21.3. Sources                                                                                          | for Hardware Changes to SMB0CN                          | 136 |
| Table 21.4. Hardwar                                                                                          | re Address Recognition Examples (EHACK = 1)             | 137 |
| Table 21.5. SMBus S                                                                                          | Status Decoding With Hardware ACK Generation Disabled   | d   |
| (EHACK                                                                                                       | ( = 0)                                                  | 144 |
| Table 21.6. SMBus S                                                                                          | Status Decoding With Hardware ACK Generation Enabled    | 1   |
| (EHACK                                                                                                       | ( = 1)                                                  | 146 |
|                                                                                                              |                                                         |     |



| SFR Definition 25.6. PCA0H: PCA Counter/Timer High Byte                | 208 |
|------------------------------------------------------------------------|-----|
| SFR Definition 25.7. PCA0CPLn: PCA Capture Module Low Byte             | 209 |
| SFR Definition 25.8. PCA0CPHn: PCA Capture Module High Byte            | 209 |
| C2 Register Definition 26.1. C2ADD: C2 Address                         | 210 |
| C2 Register Definition 26.2. DEVICEID: C2 Device ID                    | 211 |
| C2 Register Definition 26.3. REVID: C2 Revision ID                     | 211 |
| C2 Register Definition 26.4. DEVCTL: C2 Device Control                 | 212 |
| C2 Register Definition 26.5. EPCTL: EPROM Programming Control Register | 212 |
| C2 Register Definition 26.6. EPDAT: C2 EPROM Data                      | 213 |
| C2 Register Definition 26.7. EPSTAT: C2 EPROM Status                   | 213 |
| C2 Register Definition 26.8. EPADDRH: C2 EPROM Address High Byte       | 214 |
| C2 Register Definition 26.9. EPADDRL: C2 EPROM Address Low Byte        | 214 |
| C2 Register Definition 26.10. CRC0: CRC Byte 0                         | 215 |
| C2 Register Definition 26.11. CRC1: CRC Byte 1                         | 215 |
| C2 Register Definition 26.12. CRC2: CRC Byte 2                         | 216 |
| C2 Register Definition 26.13. CRC3: CRC Byte 3                         | 216 |
|                                                                        |     |



# 1. System Overview

C8051T630/1/2/3/4/5 devices are fully integrated, mixed-signal, system-on-a-chip MCUs. Highlighted features are listed below. Refer to Table 2.1 for specific product feature selection and part ordering numbers.

- High-speed pipelined 8051-compatible microcontroller core (up to 25 MIPS)
- In-system, full-speed, non-intrusive debug interface (on-chip)
- C8051F336 ISP Flash device is available for quick in-system code development
- 10-bit 500 ksps Single-ended ADC with analog multiplexer and integrated temperature sensor
- 10-bit Current Output DAC
- Precision calibrated 24.5 MHz internal oscillator
- 8/4/2 kB of on-chip Byte-Programmable EPROM—(512 bytes are reserved on 8k version)
- 768 bytes of on-chip RAM
- SMBus/I2C, Enhanced UART, and Enhanced SPI serial interfaces implemented in hardware
- Four general-purpose 16-bit timers
- Programmable Counter/Timer Array (PCA) with three capture/compare modules and Watchdog Timer function
- On-chip Power-On Reset, V<sub>DD</sub> Monitor, and Temperature Sensor
- On-chip Voltage Comparator
- 17 Port I/O

With on-chip power-on reset,  $V_{DD}$  monitor, watchdog timer, and clock oscillator, the C8051T630/1/2/3/4/5 devices are truly stand-alone, system-on-a-chip solutions. User software has complete control of all peripherals, and may individually shut down any or all peripherals for power savings.

Code written for the C8051T630/1/2/3/4/5 family of processors will run on the C8051F336 Mixed-Signal ISP Flash microcontroller, providing a quick, cost-effective way to develop code without requiring special emulator circuitry. The C8051T630/1/2/3/4/5 processors include Silicon Laboratories' 2-Wire C2 Debug and Programming interface, which allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection of memory, viewing and modification of special function registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging using C2. The two C2 interface pins can be shared with user functions, allowing in-system debugging without occupying package pins.

Each device is specified for 1.8–3.6 V operation over the industrial temperature rang<u>e (–45</u> to +85 °C). An internal LDO is used to supply the processor core voltage at 1.8 V. The Port I/O and RST pins are tolerant of input signals up to 5 V. The C8051T630/1/2/3/4/5 are available in 20-pin QFN RoHS compliant packaging. See Table 2.1 for ordering information. A block diagram is shown in Figure 1.1.





Figure 7.2. Temperature Sensor Error with 1-Point Calibration at 0 Celsius



# SFR Definition 7.1. TOFFH: Temperature Offset Measurement High Byte

| Bit   | 7             | 6                                                                                                                                                                                                                                                                                                                                                     | 5                                          | 4      | 3        | 2      | 1      | 0      |  |
|-------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------|----------|--------|--------|--------|--|
| Nam   | е             | TOFF[9:2]                                                                                                                                                                                                                                                                                                                                             |                                            |        |          |        |        |        |  |
| Туре  | 9             | R/W                                                                                                                                                                                                                                                                                                                                                   |                                            |        |          |        |        |        |  |
| Rese  | t Varies      | Varies                                                                                                                                                                                                                                                                                                                                                | Varies                                     | Varies | Varies   | Varies | Varies | Varies |  |
| SFR A | Address = 0x8 | 36                                                                                                                                                                                                                                                                                                                                                    |                                            |        |          |        |        |        |  |
| Bit   | Name          |                                                                                                                                                                                                                                                                                                                                                       |                                            |        | Function |        |        |        |  |
| 7:0   | TOFF[9:2]     | Temperatur                                                                                                                                                                                                                                                                                                                                            | Temperature Sensor Offset High Order Bits. |        |          |        |        |        |  |
|       |               | The temperature sensor offset registers represent the output of the ADC when mea-<br>suring the temperature sensor at 0 °C, with the voltage reference set to the internal<br>regulator. The temperature sensor offset information is left-justified. One LSB of this<br>measurement is equivalent to one LSB of the ADC output under the measurement |                                            |        |          |        |        |        |  |

# SFR Definition 7.2. TOFFL: Temperature Offset Measurement Low Byte

conditions.

| Bit   | 7         | 6      | 5 | 4 | 3 | 2 | 1 | 0 |
|-------|-----------|--------|---|---|---|---|---|---|
| Name  | TOFF[1:0] |        |   |   |   |   |   |   |
| Туре  | R/W       |        | R | R | R | R | R | R |
| Reset | Varies    | Varies | 0 | 0 | 0 | 0 | 0 | 0 |

SFR Address = 0x85

| Bit | Name      | Function                                                                                                                                                                                                                                                                                                                                                             |
|-----|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:6 | TOFF[1:0] | Temperature Sensor Offset Low Order Bits.                                                                                                                                                                                                                                                                                                                            |
|     |           | The temperature sensor offset registers represent the output of the ADC when mea-<br>suring the temperature sensor at 0 °C, with the voltage reference set to the internal<br>regulator. The temperature sensor offset information is left-justified. One LSB of this<br>measurement is equivalent to one LSB of the ADC output under the measurement<br>conditions. |
| 5:0 | Unused    | Unused. Read = 000000b; Write = Don't Care.                                                                                                                                                                                                                                                                                                                          |



# 15. Interrupts

The C8051T630/1/2/3/4/5 includes an extended interrupt system supporting a total of 14 interrupt sources with two priority levels. The allocation of interrupt sources between on-chip peripherals and external input pins varies according to the specific version of the device. Each interrupt source has one or more associated interrupt-pending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt condition, the associated interrupt-pending flag is set to logic 1.

If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a predetermined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI instruction, which returns program execution to the next instruction that would have been executed if the interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regard-less of the interrupt's enable/disable state.)

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt enable bit in an SFR (IE–EIE1). However, interrupts must first be globally enabled by setting the EA bit (IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0 disables all interrupt sources regardless of the individual interrupt-enable settings.

**Note:** Any instruction that clears a bit to disable an interrupt should be immediately followed by an instruction that has two or more opcode bytes. Using EA (global interrupt enable) as an example:

```
// in 'C':
EA = 0; // clear EA bit.
EA = 0; // this is a dummy instruction with two-byte opcode.
; in assembly:
CLR EA ; clear EA bit.
CLR EA ; this is a dummy instruction with two-byte opcode.
```

For example, if an interrupt is posted during the execution phase of a "CLR EA" opcode (or any instruction which clears a bit to disable an interrupt source), and the instruction is followed by a single-cycle instruction, the interrupt may be taken. However, a read of the enable bit will return a '0' inside the interrupt service routine. When the bit-clearing opcode is followed by a multi-cycle instruction, the interrupt will not be taken.

Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR. However, most are not cleared by the hardware and must be cleared by software before returning from the ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI) instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after the completion of the next instruction.



# 20. Port Input/Output

Digital and analog resources are available through 17 I/O pins. Port pins P0.0-P1.7 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources,Para1 or assigned to an analog function as shown in Figure 20.3. Port pin P2.0 on can be used as GPIO and is shared with the C2 Interface Data signal (C2D). The designer has complete control over which functions are assigned, limited only by the number of physical I/O pins. This resource assignment flexibility is achieved through the use of a Priority Crossbar Decoder. Note that the state of a Port I/O pin can always be read in the corresponding Port latch, regardless of the Crossbar settings.

The Crossbar assigns the selected internal digital resources to the I/O pins based on the Priority Decoder (Figure 20.3 and Figure 20.4). The registers XBR0 and XBR1, defined in SFR Definition 20.1 and SFR Definition 20.2, are used to select internal digital functions.

All Port I/Os are 5 V tolerant (refer to Figure 20.2 for the Port cell circuit). The Port I/O cells are configured as either push-pull or open-drain in the Port Output Mode registers (PnMDOUT, where n = 0,1). Complete Electrical Specifications for Port I/O are given in Table 5.3 on page 25.







## Figure 20.2. Port I/O Cell Block Diagram

#### 20.1.3. Interfacing Port I/O to 5V Logic

All Port I/O configured for digital, open-drain operation are capable of interfacing to digital logic operating at a supply voltage higher than VDD and less than 5.25 V. An external pullup resistor to the higher supply voltage is typically required for most systems.

**Important Note:** In a multi-voltage interface, the external pullup resistor should be sized to allow a current of at least 150  $\mu$ A to flow into the Port pin when the supply voltage is between (VDD + 0.6 V) and (VDD + 1.0 V). Once the Port pin voltage increases beyond this range, the current flowing into the Port pin is minimal.



## SFR Definition 20.8. P0MDIN: Port 0 Input Mode

| Bit   | 7           | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------|-------------|---|---|---|---|---|---|---|
| Name  | P0MDIN[7:0] |   |   |   |   |   |   |   |
| Туре  | R/W         |   |   |   |   |   |   |   |
| Reset | 1           | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

SFR Address = 0xF1

| Bit | Name        | Function                                                                                                    |
|-----|-------------|-------------------------------------------------------------------------------------------------------------|
| 7:0 | P0MDIN[7:0] | Analog Configuration Bits for P0.7–P0.0 (respectively).                                                     |
|     |             | Port pins configured for analog mode have their weak pullup, digital driver, and digital receiver disabled. |
|     |             | 0: Corresponding P0.n pin is configured for analog mode.                                                    |
|     |             | 1: Corresponding P0.n pin is not configured for analog mode.                                                |

## SFR Definition 20.9. P0MDOUT: Port 0 Output Mode

| Bit   | 7            | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------|--------------|---|---|---|---|---|---|---|
| Name  | POMDOUT[7:0] |   |   |   |   |   |   |   |
| Туре  | R/W          |   |   |   |   |   |   |   |
| Reset | 0            | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

SFR Address = 0xA4

| Bit | Name         | Function                                                                       |
|-----|--------------|--------------------------------------------------------------------------------|
| 7:0 | P0MDOUT[7:0] | Output Configuration Bits for P0.7–P0.0 (respectively).                        |
|     |              | These bits are ignored if the corresponding bit in register P0MDIN is logic 0. |
|     |              | 0: Corresponding P0.n Output is open-drain.                                    |
|     |              | 1: Corresponding P0.n Output is push-pull.                                     |



# SFR Definition 20.10. P0SKIP: Port 0 Skip

| Bit   | 7           | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------|-------------|---|---|---|---|---|---|---|
| Name  | P0SKIP[7:0] |   |   |   |   |   |   |   |
| Туре  | R/W         |   |   |   |   |   |   |   |
| Reset | 0           | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

SFR Address = 0xD4

| Bit | Name        | Function                                                                                                                                                                                                                                                                                                           |
|-----|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | P0SKIP[7:0] | Port 0 Crossbar Skip Enable Bits.                                                                                                                                                                                                                                                                                  |
|     |             | <ul> <li>These bits select Port 0 pins to be skipped by the Crossbar Decoder. Port pins used for analog, special functions or GPIO should be skipped by the Crossbar.</li> <li>0: Corresponding P0.n pin is not skipped by the Crossbar.</li> <li>1: Corresponding P0.n pin is skipped by the Crossbar.</li> </ul> |

#### SFR Definition 20.11. P1: Port 1

| Bit   | 7       | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|-------|---------|---|---|---|---|---|---|---|--|--|
| Name  | P1[7:0] |   |   |   |   |   |   |   |  |  |
| Туре  | R/W     |   |   |   |   |   |   |   |  |  |
| Reset | 1       | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  |

#### SFR Address = 0x90; Bit-Addressable

| Bit | Name    | Description                                                                                                                                   | Write                                                                         | Read                                                                    |
|-----|---------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 7:0 | P1[7:0] | <b>Port 1 Data.</b><br>Sets the Port latch logic<br>value or reads the Port pin<br>logic state in Port cells con-<br>figured for digital I/O. | 0: Set output latch to logic<br>LOW.<br>1: Set output latch to logic<br>HIGH. | 0: P1.n Port pin is logic<br>LOW.<br>1: P1.n Port pin is logic<br>HIGH. |



# SFR Definition 20.14. P1SKIP: Port 1 Skip

| Bit   | 7 | 6 | 5           | 4 | 3 | 2 | 1 | 0 |  |  |  |  |
|-------|---|---|-------------|---|---|---|---|---|--|--|--|--|
| Name  |   |   | P1SKIP[6:0] |   |   |   |   |   |  |  |  |  |
| Туре  | R |   | R/W         |   |   |   |   |   |  |  |  |  |
| Reset | 0 | 0 | 0           | 0 | 0 | 0 | 0 | 0 |  |  |  |  |

SFR Address = 0xD5

| Bit | Name        | Function                                                                                                                                                                                                                                                                              |
|-----|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | Unused      | Unused. Read = 0b; Write = Don't Care.                                                                                                                                                                                                                                                |
| 6:0 | P1SKIP[6:0] | Port 1 Crossbar Skip Enable Bits.                                                                                                                                                                                                                                                     |
|     |             | These bits select Port 1 pins to be skipped by the Crossbar Decoder. Port pins<br>used for analog, special functions or GPIO should be skipped by the Crossbar.<br>0: Corresponding P1.n pin is not skipped by the Crossbar.<br>1: Corresponding P1.n pin is skipped by the Crossbar. |

#### SFR Definition 20.15. P2: Port 2

| Bit   | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0     |
|-------|---|---|---|---|---|---|---|-------|
| Name  |   |   |   |   |   |   |   | P2[0] |
| Туре  | R | R | R | R | R | R | R | R/W   |
| Reset | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1     |

#### SFR Address = 0xA0; Bit-Addressable

| Bit | Name   | Description                                                                                                                                   | Write                                                                         | Read                                                                    |
|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 7:1 | Unused | Unused.                                                                                                                                       | Don't Care                                                                    | 000000b                                                                 |
| 0   | P2[0]  | <b>Port 2 Data.</b><br>Sets the Port latch logic<br>value or reads the Port pin<br>logic state in Port cells con-<br>figured for digital I/O. | 0: Set output latch to logic<br>LOW.<br>1: Set output latch to logic<br>HIGH. | 0: P2.0 Port pin is logic<br>LOW.<br>1: P2.0 Port pin is logic<br>HIGH. |



#### 21.5. SMBus Transfer Modes

The SMBus interface may be configured to operate as master and/or slave. At any particular time, it will be operating in one of the following four modes: Master Transmitter, Master Receiver, Slave Transmitter, or Slave Receiver. The SMBus interface enters Master Mode any time a START is generated, and remains in Master Mode until it loses an arbitration or generates a STOP. An SMBus interrupt is generated at the end of all SMBus byte frames. Note that the position of the ACK interrupt when operating as a receiver depends on whether hardware ACK generation is enabled. As a receiver, the interrupt for an ACK occurs **before** the ACK with hardware ACK generation disabled, and **after** the ACK when hardware ACK generation is enabled. As a transmitter, interrupts occur **after** the ACK, regardless of whether hardware ACK generation is enabled or not.

#### 21.5.1. Write Sequence (Master)

During a write sequence, an SMBus master writes data to a slave device. The master in this transfer will be a transmitter during the address byte, and a transmitter during all data bytes. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 0 (WRITE). The master then transmits one or more bytes of serial data. After each byte is transmitted, an acknowledge bit is generated by the slave. The transfer is ended when the STO bit is set and a STOP is generated. Note that the interface will switch to Master Receiver Mode if SMB0DAT is not written following a Master Transmitter interrupt. Figure 21.5 shows a typical master write sequence. Two transmit data bytes are shown, though any number of bytes may be transmitted. Notice that all of the "data byte transferred" interrupts occur **after** the ACK cycle in this mode, regardless of whether hardware ACK generation is enabled.



Figure 21.5. Typical Master Write Sequence



#### 21.5.3. Write Sequence (Slave)

During a write sequence, an SMBus master writes data to a slave device. The slave in this transfer will be a receiver during the address byte, and a receiver during all data bytes. When slave events are enabled (INH = 0), the interface enters Slave Receiver Mode when a START followed by a slave address and direction bit (WRITE in this case) is received. If hardware ACK generation is disabled, upon entering Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the received slave address with an ACK, or ignore the received slave address with a NACK. If hardware ACK generation is enabled, the hardware will apply the ACK for a slave address which matches the criteria set up by SMB0ADR and SMB0ADM. The interrupt will occur after the ACK cycle.

If the received slave address is ignored (by software or hardware), slave interrupts will be inhibited until the next START is detected. If the received slave address is acknowledged, zero or more data bytes are received.

If hardware ACK generation is disabled, the ACKRQ is set to 1 and an interrupt is generated after each received byte. Software must write the ACK bit at that time to ACK or NACK the received byte.

With hardware ACK generation enabled, the SMBus hardware will automatically generate the ACK/NACK, and then post the interrupt. It is important to note that the appropriate ACK or NACK value should be set up by the software prior to receiving the byte when hardware ACK generation is enabled.

The interface exits Slave Receiver Mode after receiving a STOP. Note that the interface will switch to Slave Transmitter Mode if SMB0DAT is written while an active Slave Receiver. Figure 21.7 shows a typical slave write sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur at different places in the sequence, depending on whether hardware ACK generation is enabled. The interrupt occurs **before** the ACK with hardware ACK generation disabled, and **after** the ACK when hardware ACK generation is enabled.



Figure 21.7. Typical Slave Write Sequence



# Table 21.5. SMBus Status Decoding With Hardware ACK Generation Disabled(EHACK = 0) (Continued)

|              | Valu                                                               | es F  | Rea                                                                                         | d          |                                                                                       |                                                            | Va<br>V | lues<br>Vrit | sto<br>e | itus<br>ected          |
|--------------|--------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------|------------------------------------------------------------|---------|--------------|----------|------------------------|
| Mode         | Status<br>Vector                                                   | ACKRQ | ARBLOST                                                                                     | ACK        | Current SMbus State                                                                   | Typical Response Options                                   | STA     | STO          | ACK      | Next Sta<br>Vector Exp |
| 9r           |                                                                    | 0     | 0                                                                                           | 0          | A slave byte was transmitted;<br>NACK received.                                       | No action required (expecting STOP condition).             |         | 0            | Х        | 0001                   |
| smitt€       | 0100                                                               | 0     | 0                                                                                           | 1          | A slave byte was transmitted;<br>ACK received.                                        | Load SMB0DAT with next data byte to transmit.              | 0       | 0            | Х        | 0100                   |
| e Tran       |                                                                    | 0     | 1XA Slave byte was transmitted;<br>error detected.N                                         |            | A Slave byte was transmitted;<br>error detected.                                      | No action required (expecting Master to end transfer).     | 0       | 0            | Х        | 0001                   |
| Slav         | 0101 0 X X was detected while a Slave<br>Transmission was in progr |       | An illegal STOP or bus error<br>was detected while a Slave<br>Transmission was in progress. | Clear STO. | 0                                                                                     | 0                                                          | Х       |              |          |                        |
|              |                                                                    |       |                                                                                             |            |                                                                                       | If Write, Acknowledge received address                     | 0       | 0            | 1        | 0000                   |
|              |                                                                    | 1     | 0                                                                                           | Х          | A slave address + R/W was received; ACK requested.                                    | If Read, Load SMB0DAT with data byte; ACK received address |         | 0            | 1        | 0100                   |
|              |                                                                    |       |                                                                                             |            |                                                                                       | NACK received address.                                     | 0       | 0            | 0        |                        |
|              | 0010                                                               |       |                                                                                             |            |                                                                                       | If Write, Acknowledge received address                     | 0       | 0            | 1        | 0000                   |
| <u>șiver</u> |                                                                    | 1     | 1                                                                                           | x          | Lost arbitration as master;<br>slave address + R/W received;                          | If Read, Load SMB0DAT with data byte; ACK received address | 0       | 0            | 1        | 0100                   |
| ece          |                                                                    |       |                                                                                             |            | ACK requested.                                                                        | NACK received address.                                     | 0       | 0            | 0        | —                      |
| lave R       |                                                                    |       |                                                                                             |            |                                                                                       | Reschedule failed transfer;<br>NACK received address.      | 1       | 0            | 0        | 1110                   |
| S            | 0001                                                               | 0     | 0                                                                                           | х          | A STOP was detected while<br>addressed as a Slave Trans-<br>mitter or Slave Receiver. | Clear STO.                                                 | 0       | 0            | Х        |                        |
|              |                                                                    | 1     | 1                                                                                           | х          | Lost arbitration while attempt-<br>ing a STOP.                                        | No action required (transfer complete/aborted).            | 0       | 0            | 0        | _                      |
|              | 0000                                                               | 1     | 0                                                                                           | х          | A slave byte was received;                                                            | Acknowledge received byte;<br>Read SMB0DAT.                | 0       | 0            | 1        | 0000                   |
|              |                                                                    |       |                                                                                             |            | ACK requested.                                                                        | NACK received byte.                                        | 0       | 0            | 0        | _                      |
| uo           | 0010                                                               | 0     | 1                                                                                           | v          | Lost arbitration while attempt-                                                       | Abort failed transfer.                                     | 0       | 0            | Х        | _                      |
| diti         | 0010                                                               | 0     | 1                                                                                           | ^          | ing a repeated START.                                                                 | Reschedule failed transfer.                                | 1       | 0            | Х        | 1110                   |
| Son          | 0001                                                               | 0     | 1                                                                                           | Y          | Lost arbitration due to a                                                             | Abort failed transfer.                                     | 0       | 0            | Х        | —                      |
| o            | 0001                                                               | 0     | 1                                                                                           | ^          | detected STOP.                                                                        | Reschedule failed transfer.                                | 1       | 0            | Х        | 1110                   |
| Ш            | 0000                                                               |       |                                                                                             | v          | Lost arbitration while transmit-                                                      | Abort failed transfer.                                     | 0       | 0            | 0        | —                      |
| Bus          | ן<br>1<br>2<br>0000 1                                              |       | 1                                                                                           | ~          | ting a data byte as master.                                                           | Reschedule failed transfer.                                | 1       | 0            | 0        | 1110                   |



# SFR Definition 22.1. SCON0: Serial Port 0 Control

| Bit   | 7      | 6 | 5    | 4    | 3    | 2    | 1   | 0   |
|-------|--------|---|------|------|------|------|-----|-----|
| Name  | SOMODE |   | MCE0 | REN0 | TB80 | RB80 | TIO | RI0 |
| Туре  | R/W    | R | R/W  | R/W  | R/W  | R/W  | R/W | R/W |
| Reset | 0      | 1 | 0    | 0    | 0    | 0    | 0   | 0   |

#### SFR Address = 0x98; Bit-Addressable

| Bit | Name   | Function                                                                                                                                                                                                                                                                                                                                         |
|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | SOMODE | Serial Port 0 Operation Mode.<br>Selects the UART0 Operation Mode.                                                                                                                                                                                                                                                                               |
|     |        | 0: 8-bit UART with Variable Baud Rate.<br>1: 9-bit UART with Variable Baud Rate.                                                                                                                                                                                                                                                                 |
| 6   | Unused | Unused. Read = 1b, Write = Don't Care.                                                                                                                                                                                                                                                                                                           |
| 5   | MCE0   | Multiprocessor Communication Enable.                                                                                                                                                                                                                                                                                                             |
|     |        | The function of this bit is dependent on the Serial Port 0 Operation Mode:<br>Mode 0: Checks for valid stop bit.                                                                                                                                                                                                                                 |
|     |        | 0: Logic level of stop bit is ignored.                                                                                                                                                                                                                                                                                                           |
|     |        | 1: RIO will only be activated if stop bit is logic level 1.                                                                                                                                                                                                                                                                                      |
|     |        | Mode 1: Multiprocessor Communications Enable.                                                                                                                                                                                                                                                                                                    |
|     |        | 1: RI0 is set and an interrupt is generated only when the ninth bit is logic 1.                                                                                                                                                                                                                                                                  |
| 4   | REN0   | Receive Enable.                                                                                                                                                                                                                                                                                                                                  |
|     |        | 0: UART0 reception disabled.                                                                                                                                                                                                                                                                                                                     |
|     |        | 1: UART0 reception enabled.                                                                                                                                                                                                                                                                                                                      |
| 3   | TB80   | Ninth Transmission Bit.                                                                                                                                                                                                                                                                                                                          |
|     |        | The logic level of this bit will be sent as the ninth transmission bit in 9-bit UART Mode (Mode 1). Unused in 8-bit mode (Mode 0).                                                                                                                                                                                                               |
| 2   | RB80   | Ninth Receive Bit.                                                                                                                                                                                                                                                                                                                               |
|     |        | RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9th data bit in Mode 1.                                                                                                                                                                                                                                    |
| 1   | TI0    | Transmit Interrupt Flag.                                                                                                                                                                                                                                                                                                                         |
|     |        | Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bit<br>in 8-bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When<br>the UART0 interrupt is enabled, setting this bit causes the CPU to vector to the UART0<br>interrupt service routine. This bit must be cleared manually by software. |
| 0   | RI0    | Receive Interrupt Flag.                                                                                                                                                                                                                                                                                                                          |
|     |        | Set to 1 by hardware when a byte of data has been received by UART0 (set at the STOP bit sampling time). When the UART0 interrupt is enabled, setting this bit to 1 causes the CPU to vector to the UART0 interrupt service routine. This bit must be cleared manually by software.                                                              |



## SFR Definition 23.1. SPI0CFG: SPI0 Configuration

| Bit   | 7      | 6     | 5     | 4     | 3      | 2     | 1    | 0     |
|-------|--------|-------|-------|-------|--------|-------|------|-------|
| Name  | SPIBSY | MSTEN | СКРНА | CKPOL | SLVSEL | NSSIN | SRMT | RXBMT |
| Туре  | R      | R/W   | R/W   | R/W   | R      | R     | R    | R     |
| Reset | 0      | 0     | 0     | 0     | 0      | 1     | 1    | 1     |

SFR Address = 0xA1

| Bit   | Name            | Function                                                                                                                                                                     |
|-------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7     | SPIBSY          | SPI Busy.                                                                                                                                                                    |
|       |                 | This bit is set to logic 1 when a SPI transfer is in progress (master or slave mode).                                                                                        |
| 6     | MSTEN           | Master Mode Enable.                                                                                                                                                          |
|       |                 | 0: Disable master mode. Operate in slave mode.                                                                                                                               |
|       |                 | 1: Enable master mode. Operate as a master.                                                                                                                                  |
| 5     | СКРНА           | SPI0 Clock Phase.                                                                                                                                                            |
|       |                 | 0: Data centered on first edge of SCK period.                                                                                                                                |
|       |                 | 1: Data centered on second edge of SCK period.                                                                                                                               |
| 4     | CKPOL           | SPI0 Clock Polarity.                                                                                                                                                         |
|       |                 | 0: SCK line low in idle state.                                                                                                                                               |
| 2     |                 |                                                                                                                                                                              |
| 3     | SLVSEL          | Slave Selected Flag.                                                                                                                                                         |
|       |                 | I his bit is set to logic 1 whenever the NSS pin is low indicating SPIU is the selected slave. It is cleared to logic 0 when NSS is high (slave not selected). This bit does |
|       |                 | not indicate the instantaneous value at the NSS pin, but rather a de-glitched ver-                                                                                           |
|       |                 | sion of the pin input.                                                                                                                                                       |
| 2     | NSSIN           | NSS Instantaneous Pin Input.                                                                                                                                                 |
|       |                 | This bit mimics the instantaneous value that is present on the NSS port pin at the                                                                                           |
|       | 00147           | time that the register is read. This input is not de-glitched.                                                                                                               |
| 1     | SRMI            | Shift Register Empty (valid in slave mode only).                                                                                                                             |
|       |                 | This bit will be set to logic 1 when all data has been transferred in/out of the shift                                                                                       |
|       |                 | or write to the receive buffer. It returns to logic 0 when a data byte is transferred to                                                                                     |
|       |                 | the shift register from the transmit buffer or by a transition on SCK. SRMT = 1 when                                                                                         |
|       |                 | in Master Mode.                                                                                                                                                              |
| 0     | RXBMT           | Receive Buffer Empty (valid in slave mode only).                                                                                                                             |
|       |                 | This bit will be set to logic 1 when the receive buffer has been read and contains no                                                                                        |
|       |                 | new information. If there is new information available in the receive buffer that has<br>not been read, this bit will return to logic 0. RXBMT = 1 when in Master Mode       |
| Note: | In slave mode ( | tata on MOSI is sampled in the center of each data bit. In master mode, data on MISO is                                                                                      |
| note. | sampled one S   | SCLK before the end of each data bit, to provide maximum settling time for the slave device.                                                                                 |
|       | See Table 23.1  | for timing parameters.                                                                                                                                                       |





\* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.





\* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.





# SFR Definition 24.8. TMR2CN: Timer 2 Control

| Bit   | 7    | 6    | 5      | 4      | 3       | 2   | 1 | 0      |
|-------|------|------|--------|--------|---------|-----|---|--------|
| Name  | TF2H | TF2L | TF2LEN | TF2CEN | T2SPLIT | TR2 |   | T2XCLK |
| Туре  | R/W  | R/W  | R/W    | R/W    | R/W     | R/W | R | R/W    |
| Reset | 0    | 0    | 0      | 0      | 0       | 0   | 0 | 0      |

#### SFR Address = 0xC8; Bit-Addressable

| Bit | Name    | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | TF2H    | <b>Timer 2 High Byte Overflow Flag.</b><br>Set by hardware when the Timer 2 high byte overflows from 0xFF to 0x00. In 16 bit mode, this will occur when Timer 2 overflows from 0xFFFF to 0x0000. When the Timer 2 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 2 interrupt service routine. This bit is not automatically cleared by hardware.                                                                                                                                                                            |
| 6   | TF2L    | <b>Timer 2 Low Byte Overflow Flag.</b><br>Set by hardware when the Timer 2 low byte overflows from 0xFF to 0x00. TF2L will be set when the low byte overflows regardless of the Timer 2 mode. This bit is not automatically cleared by hardware.                                                                                                                                                                                                                                                                                                          |
| 5   | TF2LEN  | <b>Timer 2 Low Byte Interrupt Enable.</b><br>When set to 1, this bit enables Timer 2 Low Byte interrupts. If Timer 2 interrupts are also enabled, an interrupt will be generated when the low byte of Timer 2 overflows.                                                                                                                                                                                                                                                                                                                                  |
| 4   | TF2CEN  | <b>Timer 2 Low-Frequency Oscillator Capture Enable.</b><br>When set to 1, this bit enables Timer 2 Low-Frequency Oscillator Capture Mode. If TF2CEN is set and Timer 2 interrupts are enabled, an interrupt will be generated on a falling edge of the low-frequency oscillator output, and the current 16-bit timer value in TMR2H:TMR2L will be copied to TMR2RLH:TMR2RLL.                                                                                                                                                                              |
| 3   | T2SPLIT | Timer 2 Split Mode Enable.When this bit is set, Timer 2 operates as two 8-bit timers with auto-reload.0: Timer 2 operates in 16-bit auto-reload mode.1: Timer 2 operates as two 8-bit auto-reload timers.                                                                                                                                                                                                                                                                                                                                                 |
| 2   | TR2     | <b>Timer 2 Run Control.</b><br>Timer 2 is enabled by setting this bit to 1. In 8-bit mode, this bit enables/disables<br>TMR2H only; TMR2L is always enabled in split mode.                                                                                                                                                                                                                                                                                                                                                                                |
| 1   | Unused  | Unused. Read = 0b; Write = Don't Care                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0   | T2XCLK  | <ul> <li>Timer 2 External Clock Select.</li> <li>This bit selects the external clock source for Timer 2. If Timer 2 is in 8-bit mode, this bit selects the external oscillator clock source for both timer bytes. However, the Timer 2 Clock Select bits (T2MH and T2ML in register CKCON) may still be used to select between the external clock and the system clock for either timer.</li> <li>0: Timer 2 clock is the system clock divided by 12.</li> <li>1: Timer 2 clock is the external clock divided by 8 (synchronized with SYSCLK).</li> </ul> |



# SFR Definition 24.14. TMR3RLL: Timer 3 Reload Register Low Byte

| Bit   | 7                  | 6         | 5           | 4           | 3       | 2 | 1 | 0 |
|-------|--------------------|-----------|-------------|-------------|---------|---|---|---|
| Nam   | e                  |           |             | TMR3F       | LL[7:0] |   |   |   |
| Туре  | 9                  |           |             | R/          | W       |   |   |   |
| Rese  | et 0               | 0         | 0           | 0           | 0       | 0 | 0 | 0 |
| SFR A | SFR Address = 0x92 |           |             |             |         |   |   |   |
| Bit   | Name               | Function  |             |             |         |   |   |   |
| 7:0   | TMR3RLL[7:0]       | Timer 3 F | Reload Regi | ster Low By | /te.    |   |   |   |

TMR3RLL holds the low byte of the reload value for Timer 3.

#### SFR Definition 24.15. TMR3RLH: Timer 3 Reload Register High Byte

| Bit   | 7                  | 6                                                            | 5 | 4  | 3        | 2 | 1 | 0 |  |  |
|-------|--------------------|--------------------------------------------------------------|---|----|----------|---|---|---|--|--|
| Nam   | e                  | TMR3RLH[7:0]                                                 |   |    |          |   |   |   |  |  |
| Тур   | e                  |                                                              |   | R/ | W        |   |   |   |  |  |
| Rese  | et 0               | 0                                                            | 0 | 0  | 0        | 0 | 0 | 0 |  |  |
| SFR A | SFR Address = 0x93 |                                                              |   |    |          |   |   |   |  |  |
| Bit   | Name               |                                                              |   |    | Function |   |   |   |  |  |
| 7:0   | TMR3RLH[7:0]       | Timer 3 Reload Register High Byte.                           |   |    |          |   |   |   |  |  |
|       |                    | TMR3RLH holds the high byte of the reload value for Timer 3. |   |    |          |   |   |   |  |  |

#### SFR Definition 24.16. TMR3L: Timer 3 Low Byte

| Bit   | 7   | 6 | 5 | 4    | 3       | 2 | 1 | 0 |
|-------|-----|---|---|------|---------|---|---|---|
| Name  |     |   |   | TMR3 | BL[7:0] |   |   |   |
| Туре  | R/W |   |   |      |         |   |   |   |
| Reset | 0   | 0 | 0 | 0    | 0       | 0 | 0 | 0 |

#### SFR Address = 0x94

| Bit | Name       | Function                                                                                                                                      |
|-----|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | TMR3L[7:0] | Timer 3 Low Byte.                                                                                                                             |
|     |            | In 16-bit mode, the TMR3L register contains the low byte of the 16-bit Timer 3. In 8-bit mode, TMR3L contains the 8-bit low byte timer value. |



#### 25.3.4. Frequency Output Mode

Frequency Output Mode produces a programmable-frequency square wave on the module's associated CEXn pin. The capture/compare module high byte holds the number of PCA clocks to count before the output is toggled. The frequency of the square wave is then defined by Equation 25.1.

$$F_{CEXn} = \frac{F_{PCA}}{2 \times PCA0CPHn}$$

Note: A value of 0x00 in the PCA0CPHn register is equal to 256 for this equation.

#### Equation 25.1. Square Wave Frequency Output

Where  $F_{PCA}$  is the frequency of the clock selected by the CPS2–0 bits in the PCA mode register, PCA0MD. The lower byte of the capture/compare module is compared to the PCA counter low byte; on a match, CEXn is toggled and the offset held in the high byte is added to the matched value in PCA0CPLn. Frequency Output Mode is enabled by setting the ECOMn, TOGn, and PWMn bits in the PCA0CPMn register. Note that the MATn bit should normally be set to 0 in this mode. If the MATn bit is set to 1, the CCFn flag for the channel will be set when the 16-bit PCA0 counter and the 16-bit capture/compare register for the channel are equal.





#### 25.3.5. 8-bit, 9-bit, 10-bit and 11-bit Pulse Width Modulator Modes

Each module can be used independently to generate a pulse width modulated (PWM) output on its associated CEXn pin. The frequency of the output is dependent on the timebase for the PCA counter/timer, and the setting of the PWM cycle length (8, 9, 10 or 11-bits). For backwards-compatibility with the 8-bit PWM mode available on other devices, the 8-bit PWM mode operates slightly different than 9, 10 and 11-bit PWM modes. It is important to note that all channels configured for 8/9/10/11-bit PWM mode will use the same cycle length. It is not possible to configure one channel for 8-bit PWM mode and another for 11bit mode (for example). However, other PCA channels can be configured to Pin Capture, High-Speed Output, Software Timer, Frequency Output, or 16-bit PWM mode independently.

