

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	28
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c24193-24lqxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article "How to Design with $PSoC^{\mbox{\sc B}}$ 1, $PowerPSoC^{\mbox{\sc B}}$, and PLC - KBA88292".

- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 1, PSoC 3, PSoC 4, or PSoC 5LP. In addition, PSoC Designer includes a device selection tool.
- Application Notes and Code Examples: Cover a broad range of topics, from basic to advanced level. Many of the application notes include code examples.
- Technical Reference Manuals (TRM): The TRM provides complete detailed descriptions of the internal architecture of the PSoC 1 devices.

PSoC Designer

PSoC Designer is a free Windows-based Integrated Design Environment (IDE). Develop your applications using a library of pre-characterized analog and digital peripherals in a drag-and-drop design environment. Then, customize your design leveraging the dynamically generated API libraries of code. Figure 1 shows PSoC Designer windows. **Note:** This is not the default view.

- 1. Global Resources all device hardware settings.
- 2. **Parameters** the parameters of the currently selected User Modules.
- 3. Pinout information related to device pins.
- 4. Chip-Level Editor a diagram of the resources available on the selected chip.

Development Kits:

- CY3215A-DK In-Circuit Emulation Lite Development Kit includes an in-circuit emulator (ICE). While the ICE-Cube is primarily used to debug PSoC 1 devices, it can also program PSoC 1 devices using ISSP.
- CY3210-PSOCEVAL1 Kit enables you to evaluate and experiment Cypress's PSoC 1 programmable system-on-chip design methodology and architecture.

The MiniProg1 and MiniProg3 device provides an interface for flash programming.

- 5. Datasheet the datasheet for the currently selected UM
- 6. User Modules all available User Modules for the selected device.
- 7. **Device Resource Meter** device resource usage for the current project configuration.
- 8. **Workspace** a tree level diagram of files associated with the project.
- 9. Output output from project build and debug operations.

Note: For detailed information on PSoC Designer, go to **PSoC**[®] **Designer** > **Help** > **Documentation** > **Designer Specific Documents** > **IDE User Guide**.

Figure 1. PSoC Designer Layout

48-pin QFN (OCD) (36 GPIOs) [23]

The 48-pin QFN part is for the CY8C240093 On-Chip Debug (OCD). Note that this part is only used for in-circuit debugging.

Pin No.	Digital	Analog	Name	Description			Figu		/8C240093
1 ^[26]			OCDOE	OCD mode direction pin			·	Po[5], A Po[3], A Po[5], A	P0[7], AI OCDE OCDO Vdd P0[6], AI P0[2], AI P0[0], AI P0[0], AI
2	I/O	I	P2[7]					n slod	P0 00 00 00 00 00 00 00 00 00 00 00 00 0
3	I/O	Ι	P2[5]	Crystal output (XOut)				46	4 4 4 4 4 6 8 8 6 36 P2[6],AI
4	I/O	I	P2[3]	Crystal input (XIn)			A E 2		35 = P2[4],AI
5	I/O	I	P2[1]			AI, X	(Out, P2[5] = 3		34 □ P2[2],AI
6	I/O	I	P4[3]				XIn , P2[3] = 4		33 = P2[0],AI
7	I/O	I	P4[1]				AI, P2[1] = 5		32 = P4[2],Al QFN 31 = P4[0],Al
8	I/O	I	P3[7]				AI, P4[3] = 6 AI, P4[1] = 7		QFN 31= P4[0],AI (Top View) 30= P3[6],AI
9	I/O	I	P3[5]				AI, P3[7] = 8		29 = P3[4], Al
10	I/O	I	P3[3]				AI, P3[5] 🗖 9		28 = P3[2],AI
11	I/O	I	P3[1]				AI, P3[3] = 10	1	27 = P3[0], Al
12	IOHR	I	P1[7]	I ² C SCL, SPI SS			AI, P3[1] = 11	m st i0 v0	26 ■ XRES ► ∞ • 0 = 3 = 3 = 3 = 25 ■ P1[6], Al
13	IOHR	Ι	P1[5]	I ² C SDA, SPI MISO		20002, 01			
14 ^[26]			CCLK	OCD CPU clock output	-		-	[] [] []	T[1] D + D D - D 1[0] 1[2] 1[2]
15 ^[26]			HCLK	OCD high speed clock output	-		ć	H BO SH I	OSI, P1[1] VSS D + 1 D - 1 D - 1 Vdd AI, P1[2] JLK, P1[4] JLK, P1[4]
16	IOHR	1	P1[3]	SPI CLK.	-		Ç	K, A	PI(1) Vss D + D - D - D - D - AL, P1(0) AL, P1(2) EXTGLK, P1(4)
17	IOHR	1	P1[1]	ISSP CLK ^{[27],} I ² C SCL, SPI	-				SPI , SPI
		-	[.]	MOSI				HCLK BY CLK, AI, PT[3]	AI,ISSP CLK ⁶ , I2C SCL, SPI MOSI, P1[1] Vsv D + AI,ISSP DATA', I2C SDA, SPI CLK, P1[0] AI, ISSP DATA', I2C SDA, SPI CLK, P1[1] AI, EXTCLK, P1[2]
18	Po	wer	V _{SS}	Ground connection					, 120
19	I/O		D+	USB D+			ŝ	2	ATA
20	I/O		D-	USB D-					SP C
21	Po	wer	V _{DD}	Supply voltage					AI,IS
22	IOHR	I	P1[0]	ISSP DATA ^[27] , I ² C SDA, SPI CLK ^[28]				[27]	[27, 28] ,
23	IOHR	Ι	P1[2]		Pin No.	Digital	Analog	Name	Description
24	IOHR	Ι	P1[4]	Optional external clock input (EXTCLK)	37	IOH	I	P0[0]	
25	IOHR	I	P1[6]		38	IOH	I	P0[2]	
26	In	put	XRES	Active high external reset with internal pull-down	39	IOH	I	P0[4]	
27	I/O	I	P3[0]		40	IOH	I	P0[6]	
28	I/O	Ι	P3[2]		41	P	ower	V _{DD}	Supply voltage
29	I/O	I	P3[4]		42 ^[26]			OCDO	OCD even data I/O
30	I/O	Ι	P3[6]		43 ^[26]			OCDE	OCD odd data output
31	I/O	Ι	P4[0]		44	IOH		P0[7]	
32	I/O	Ι	P4[2]		45	IOH	I	P0[5]	
33	I/O	I	P2[0]		46	IOH	I	P0[3]	
34	I/O	I	P2[2]		47	P	ower	V _{SS}	Ground connection
35	I/O	I	P2[4]		48	IOH	I	P0[1]	
36	I/O	Ι	P2[6]	NC = No Connection H = 5 mA High	СР		ower	V _{SS}	Center pad must be connected to ground

Table 7. Pin Definitions – CY8C240093 ^[24, 25]

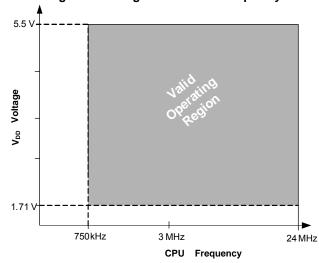
LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

Notes

23.36 GPIOs.

24. This part is available in limited quantities for In-Circuit Debugging during prototype development. It is not available in production volumes.

25. The center pad (CP) on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.


26. This pin (associated with OCD part only) is required for connecting the device to ICE-Cube In-Circuit Emulator for firmware debugging purpose. To know more about the usage of ICE-Cube, refer to CY3215-DK PSoC[®] IN-CIRCUIT EMULATOR KIT GUIDE.

27. On Power-up, the SDA(P10)] drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to High impedance state. On reset, after XRES de- asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. In both cases, a pull-up resistance on these lines combines with the pull-down resistance (5.6K ohm) and form a potential divider. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues.
 28. Alternate SPI clock.

Electrical Specifications (CY8C24193/493)

This section presents the DC and AC electrical specifications of the CY8C24193/493 PSoC devices. For the latest electrical specifications, confirm that you have the most recent datasheet by visiting the web at http://www.cypress.com/psoc.

Figure 8. Voltage versus CPU Frequency

Absolute Maximum Ratings (CY8C24193/493)

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 8. Absolute Maximum Ratings

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{STG}	Storage temperature	Higher storage temperatures reduce data retention time. Recommended Storage Temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 85 °C degrades reliability.		+25	+125	°C
V _{DD}	Supply voltage relative to V _{SS}	_	-0.5	-	+6.0	V
V _{IO}	DC input voltage	-	$V_{\rm SS} - 0.5$	-	V _{DD} + 0.5	V
V _{IOZ}	DC voltage applied to tristate	-	$V_{SS} - 0.5$	-	V _{DD} + 0.5	V
I _{MIO}	Maximum current into any port pin	_	-25	-	+50	mA
ESD	Electro static discharge voltage	Human body model ESD	2000	-	-	V
LU	Latch up current	In accordance with JESD78 standard	-	-	200	mA

Operating Temperature (CY8C24193/493)

Table 9. Operating Temperature

Symbol	Description	Conditions	Min	Тур	Max	Units
T _A	Ambient temperature	-	-40	-	+85	°C
Т _С	Commercial temperature range	-	0		70	°C
TJ	Operational die temperature	The temperature rise from ambient to junction is package specific. See the Thermal Impedances on page 49. The user must limit the power consumption to comply with this requirement.	-40	_	+100	°C

Table 12. 2.4 V to 3.0 V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor	-	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 pins	I_{OH} < 10 μ A, maximum of 10 mA source current in all I/Os	V _{DD} - 0.20	_	_	V
V _{OH2}	High output voltage Port 2 or 3 Pins	I _{OH} = 0.2 mA, maximum of 10 mA source current in all I/Os	V _{DD} - 0.40	_	_	V
V _{OH3}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I_{OH} < 10 μ A, maximum of 10 mA source current in all I/Os	V _{DD} - 0.20	-	-	V
V _{OH4}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for Port 1	I _{OH} = 2 mA, maximum of 10 mA source current in all I/Os	V _{DD} - 0.50	-	-	V
V _{OH5A}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I_{OH} < 10 μ A, V _{DD} > 2.4 V, maximum of 20 mA source current in all I/Os	1.50	1.80	2.10	V
V _{OH6A}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I_{OH} = 1 mA, V_{DD} > 2.4 V, maximum of 20 mA source current in all I/Os	1.20		-	V
V _{OL}	Low output voltage	I_{OL} = 10 mA, maximum of 30 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	_	-	0.75	V
V _{IL}	Input low voltage	-	-	-	0.72	V
V _{IH}	Input high voltage	-	1.40	_		V
V _H	Input hysteresis voltage	-	_	80	-	mV
IIL	Input leakage (absolute value)	-	-	1	1000	nA
C _{PIN}	Capacitive load on pins	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF
V _{ILLVT2.5}	Input Low Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	0.7	V	_	
V _{IHLVT2.5}	Input High Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	1.2		_	V

ADC Electrical Specifications (CY8C24193/493)

Table 18. ADC User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Input	•		•			
V _{IN}	Input voltage range		0	-	VREFADC	V
C _{IIN}	Input capacitance	-	-	-	5	pF
R _{IN}	Input resistance	Equivalent switched cap input resistance for 8-, 9-, or 10-bit resolution	1/(500fF × data clock)	1/(400fF × data clock)	1/(300fF × data clock)	Ω
Reference	•		•			
V _{REFADC}	ADC reference voltage	-	1.14	_	1.26	V
Conversion Rate	• •				•	
F _{CLK}	Data clock	Source is chip's internal main oscillator. See AC Chip-Level Specifications on page 25 for accuracy	2.25	-	6	MHz
S8	8-bit sample rate	Data clock set to 6 MHz. sample rate = 0.001/ (2^Resolution/Data Clock)	-	23.43	_	ksps
S10	10-bit sample rate	Data clock set to 6 MHz. sample rate = 0.001/ (2^resolution/data clock)	-	5.85	_	ksps
DC Accuracy						
RES	Resolution	Can be set to 8, 9, or 10 bit	8	-	10	bits
DNL	Differential nonlinearity	-	-1	_	+2	LSB
INL	Integral nonlinearity	-	-2	-	+2	LSB
E _{OFFSET}	Offset error	8-bit resolution	0	3.20	19.20	LSB
	10-bit resolution 0		0	12.80	76.80	LSB
E _{GAIN}	Gain error	For any resolution	-5	-	+5	%FSR
Power						
I _{ADC}	Operating current	-	-	2.10	2.60	mA
PSRR	Power supply rejection ratio	PSRR (V _{DD} > 3.0 V)	-	24	-	dB
		PSRR (V _{DD} < 3.0 V)	-	30	-	dB

DC POR and LVD Specifications (CY8C24193/493)

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{POR0}	1.66 V selected in PSoC Designer		1.61	1.66	1.71	V
V _{POR1}	2.36 V selected in PSoC Designer	during startup, reset from the XRES pin, or reset from watchdog.	-	2.36	2.41	
V _{POR2}	2.60 V selected in PSoC Designer	reset nom waterladg.	-	2.60	2.66	
V _{POR3}	2.82 V selected in PSoC Designer		-	2.82	2.95	
V _{LVD0}	2.45 V selected in PSoC Designer	-	2.40	2.45	2.51	V
V _{LVD1}	2.71 V selected in PSoC Designer		2.64 ^[46]	2.71	2.78	
V _{LVD2}	2.92 V selected in PSoC Designer		2.85 ^[47]	2.92	2.99	
V _{LVD3}	3.02 V selected in PSoC Designer		2.95 ^[48]	3.02	3.09	
V _{LVD4}	3.13 V selected in PSoC Designer		3.06	3.13	3.20	
V _{LVD5}	1.90 V selected in PSoC Designer		1.84	1.90	2.32	
V _{LVD6}	1.80 V selected in PSoC Designer		1.75 ^[49]	1.80	1.84	
V _{LVD7}	4.73 V selected in PSoC Designer		4.62	4.73	4.83	

DC Programming Specifications (CY8C24193/493)

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 20. DC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{DDIWRITE}	Supply voltage for flash write operations	-	1.71	-	5.25	V
I _{DDP}	Supply current during programming or verify	-	_	5	25	mA
V _{ILP}	Input low voltage during programming or verify	See appropriate DC GPIO Specifications (CY8C24093/293/393/693) on page 33	_	-	V _{IL}	V
V _{IHP}	Input high voltage during programming or verify	See appropriate DC GPIO Specifications (CY8C24093/293/393/693) on page 33	V _{IH}	-	_	V
I _{ILP}	Input current when Applying V _{ILP} to P1[0] or P1[1] during programming or verify	Driving internal pull-down resistor	-	-	0.2	mA
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify	Driving internal pull-down resistor	-	_	1.5	mA
V _{OLP}	Output low voltage during programming or verify		_	-	V _{SS} + 0.75	V
V _{OHP}	Output high voltage during programming or verify	See appropriate DC GPIO Specifications (CY8C24093/293/393/693) on page 33. For V_{DD} > 3V use V_{OH4} in Table 36 on page 33.	V _{OH}	-	V _{DD}	V
Flash _{ENPB}	Flash write endurance	Erase/write cycles per block	50,000	-	-	-
Flash _{DR}	Flash data retention	Following maximum Flash write cycles; ambient temperature of 55 °C	20	-	_	Years

Notes

32. Always greater than 50 mV above V_{PPOR1} voltage for falling supply. 33. Always greater than 50 mV above V_{PPOR2} voltage for falling supply. 34. Always greater than 50 mV above V_{PPOR3} voltage for falling supply. 35. Always greater than 50 mV above V_{PPOR0} voltage for falling supply.

DC I²C Specifications (CY8C24193/493)

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and -40 °C \leq T_A \leq 85 °C, 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, or 1.71 V to 2.4 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 21. DC I²C Specifications^[36]

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{ILI2C}	Input low level	$3.1 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	-	_	$0.25 \times V_{DD}$	V
		$2.5 \text{ V} \le \text{V}_{\text{DD}} \le 3.0 \text{ V}$	_	_	$0.3 \times V_{DD}$	V
		$1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.4 \text{ V}$	_	_	$0.3 \times V_{DD}$	V
V _{IHI2C}	Input high level	1.71 V ≤ V _{DD} ≤ 5.5 V	0.65 × V _{DD}	-	V _{DD} + 0.7 V ^[37]	V

Shield Driver DC Specifications (CY8C24193/493)

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and -40 °C $\leq T_A \leq 85$ °C, 2.4 V to 3.0 V and -40 °C $\leq T_A \leq 85$ °C, or 1.71 V to 2.4 V and -40 °C $\leq T_A \leq 85$ °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 22. Shield Driver DC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{Ref}	Reference buffer output	$1.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	0.942	_	1.106	V
V _{RefHi}	Reference buffer output	$1.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	1.104	_	1.296	V

DC IDAC Specifications (CY8C24193/493)

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

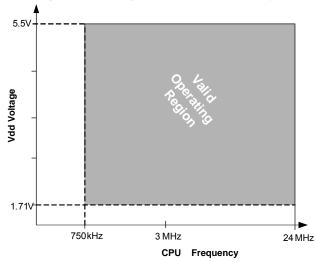
Table 23. DC IDAC Specifications (8-bit IDAC)

Symbol	Description	Min	Тур	Max	Units	Notes
IDAC_DNL	Differential nonlinearity	–1	-	1	LSB	
IDAC_DNL	Integral nonlinearity	-2	-	2	LSB	
IDAC_Current	Range = 4x	138	-	169	μA	DAC setting = 127 dec
	Range = 8x	138	-	169	μA	DAC setting = 64 dec

Table 24. DC IDAC Specifications (7-bit IDAC)

Symbol	Description	Min	Тур	Max	Units	Notes
IDAC_DNL	Differential nonlinearity	–1	-	1	LSB	
IDAC_DNL	Integral nonlinearity	-2	-	2	LSB	
IDAC_Current	Range = 4x	137	-	168	μA	DAC setting = 127 dec
	Range = 8x	138	-	169	μA	DAC setting = 64 dec

Notes


36. Pull-up resistors on I2C interface cannot be connected to a supply voltage that is more than 0.7 V higher than the CY8C24x93 power supply. See the CY8C24x93 Silicon Errata document for more details.

37. Please refer to Item # 6 of the CY8C24x93 Family.

Electrical Specifications (CY8C24093/293/393/693)

This section presents the DC and AC electrical specifications of the CY8C24093/293/393/693 PSoC devices. For the latest electrical specifications, confirm that you have the most recent datasheet by visiting the web at http://www.cypress.com/psoc.

Figure 16. Voltage versus CPU Frequency

Absolute Maximum Ratings (CY8C24093/293/393/693)

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 33. Absolute Maximum Ratings

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{STG}	Storage temperature	Higher storage temperatures reduce data retention time. Recommended Storage Temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 85 °C degrades reliability.	-55	+25	+125	°C
V _{DD}	Supply voltage relative to V_{SS}	-	-0.5	_	+6.0	V
V _{IO}	DC input voltage	_	V _{SS} – 0.5	—	V _{DD} + 0.5	V
V _{IOZ} ^[42]	DC voltage applied to tristate	-	$V_{\rm SS} - 0.5$	_	V _{DD} + 0.5	V
I _{MIO}	Maximum current into any port pin	-	-25	_	+50	mA
ESD	Electrostatic discharge voltage	Human body model ESD	2000	—	-	V
LU	Latch-up current	In accordance with JESD78 standard	-	—	200	mA

Operating Temperature (CY8C24093/293/393/693)

Table 34. Operating Temperature

Symbol	Description	Conditions	Min	Тур	Max	Units
T _A	Ambient temperature	-	-40	-	+85	°C
Т _С	Commercial temperature range	-	0		70	°C
TJ	Operational die temperature	The temperature rise from ambient to junction is package specific. Refer the Thermal Impedances on page 49. The user must limit the power consumption to comply with this requirement.	-40	_	+100	°C

Note

42. Port1 pins are hot-swap capable with I/O configured in High-Z mode, and pin input voltage above V_{DD}.

DC GPIO Specifications (CY8C24093/293/393/693)

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and -40 °C \leq T_A \leq 85 °C, 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, or 1.71 V to 2.4 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 C and are for design guidance only.

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor	-	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 or 4 pins	$I_{OH} \le 10 \ \mu$ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	-	V
V _{OH2}	High output voltage Port 2 or 3 or 4 pins	I _{OH} = 1 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	-	_	V
V _{OH3}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I_{OH} < 10 μ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	-	V
V _{OH4}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I _{OH} = 5 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	-	-	V
V _{OH5}	High output voltage Port 1 Pins with LDO Regulator Enabled for 3 V out	I_{OH} < 10 μ A, V _{DD} > 3.1 V, maximum of 4 I/Os all sourcing 5 mA	2.85	3.00	3.30	V
V _{OH6}	High output voltage Port 1 pins with LDO regulator enabled for 3 V out	I_{OH} = 5 mA, V_{DD} > 3.1 V, maximum of 20 mA source current in all I/Os	2.20	-	-	V
V _{OH7}	High output voltage Port 1 pins with LDO enabled for 2.5 V out	I_{OH} < 10 μ A, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	2.35	2.50	2.75	V
V _{OH8}	High output voltage Port 1 pins with LDO enabled for 2.5 V out	I _{OH} = 2 mA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.90	-	Ι	V
V _{OH9}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I_{OH} < 10 μ A, V_{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.60	1.80	2.10	V
V _{OH10}	High output voltage Port 1 pins with LDO enabled for 1.8 V out		1.20	-	-	V
V _{OL}	Low output voltage	I_{OL} = 25 mA, V_{DD} > 3.3 V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5])	_	-	0.75	V
V _{IL}	Input low voltage	-	-	-	0.80	V
V _{IH}	Input high voltage	-	2.00	-	-	V
V _H	Input hysteresis voltage	-	_	80	I	mV
IIL	Input leakage (Absolute Value)	-	_	0.001	1	μΑ
C _{PIN}	Pin capacitance	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF
V _{ILLVT3.3}	Input Low Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	0.8	V	-	-
V _{IHLVT3.3}	Input High Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	1.4	1		V
V _{ILLVT5.5}	Input Low Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	0.8	V	1	-
V _{IHLVT5.5}	Input High Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	1.7	_	_	V

Comparator User Module Electrical Specifications (CY8C24093/293/393/693)

The following table lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the entire device voltage and temperature operating range: –40 °C \leq T_A \leq 85 °C, 1.71 V \leq V_{DD} \leq 5.5 V.

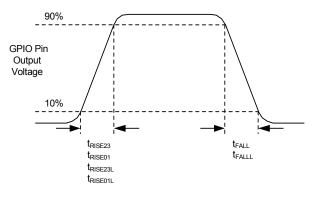
Table 42. Comparator User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
t _{COMP}	Comparator response time	50 mV overdrive	-	70	100	ns
Offset		Valid from 0.2 V to V _{DD} – 0.2 V	-	2.5	30	mV
Current		Average DC current, 50 mV overdrive	-	20	80	μA
PSRR	Supply voltage > 2 V	Power supply rejection ratio	-	80	-	dB
FORK	Supply voltage < 2 V	Power supply rejection ratio	-	40	-	dB
Input range		-	0		1.5	V

ADC Electrical Specifications (CY8C24093/293/393/693)

Table 43. ADC User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Input						
V _{IN}	Input voltage range	-	0	_	VREFADC	V
C _{IIN}	Input capacitance	-	-	-	5	pF
R _{IN}	Input resistance	Equivalent switched cap input resistance for 8-, 9-, or 10-bit resolution	1/(500fF × data clock)	1/(400fF × data clock)	1/(300fF × data clock)	Ω
Reference						
V _{REFADC}	ADC reference voltage	-	1.14	-	1.26	V
Conversion F	Rate		•			
F _{CLK}	Data clock	Source is chip's internal main oscillator. See AC Chip-Level Specifications for accuracy	2.25	_	6	MHz
S8	8-bit sample rate	Data clock set to 6 MHz. sample rate = 0.001/ (2 ^A Resolution/Data Clock)	-	23.43	_	ksps
S10	10-bit sample rate	Data clock set to 6 MHz. sample rate = 0.001/ (2 ^{resolution} /data clock)	_	5.85	_	ksps
DC Accuracy	/					1
RES	Resolution	Can be set to 8-, 9-, or 10-bit	8	-	10	bits
DNL	Differential nonlinearity	-	-1	_	+2	LSB
INL	Integral nonlinearity	-	-2	-	+2	LSB
E _{OFFSET}	Offset error	8-bit resolution	0	3.20	19.20	LSB
		10-bit resolution	0	12.80	76.80	LSB
E _{GAIN}	Gain error	For any resolution	-5	-	+5	%FSR
Power	•	· ·		•	•	
I _{ADC}	Operating current	-	-	2.10	2.60	mA
PSRR	Power supply rejection ratio	PSRR (V _{DD} > 3.0 V)	-	24	-	dB
		PSRR (V _{DD} < 3.0 V)	-	30	-	dB



AC GPIO Specifications (CY8C24093/293/393/693)

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. **Table 50. AC GPIO Specifications**

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{GPIO}	GPIO operating frequency	Normal strong mode Port 0, 1	0	-	6 MHz for	MHz
			0	-	1.71 V <v<sub>DD < 2.40 V 12 MHz for 2.40 V < V_{DD}< 5.50 V</v<sub>	MHz
t _{RISE23}	Rise time, strong mode, Cload = 50 pF Port 2 or 3 or 4 pins	V _{DD} = 3.0 to 3.6 V, 10% to 90%	15	-	80	ns
t _{RISE23L}	Rise time, strong mode low supply, Cload = 50 pF, Port 2 or 3 or 4 pins	V _{DD} = 1.71 to 3.0 V, 10% to 90%	15	Ι	80	ns
t _{RISE01}	Rise time, strong mode, Cload = 50 pF Ports 0 or 1	V _{DD} = 3.0 to 3.6 V, 10% to 90% LDO enabled or disabled	10	-	50	ns
t _{RISE01L}	Rise time, strong mode low supply, Cload = 50 pF, Ports 0 or 1	V _{DD} = 1.71 to 3.0 V, 10% to 90% LDO enabled or disabled	10	-	80	ns
t _{FALL}	Fall time, strong mode, Cload = 50 pF all ports	V _{DD} = 3.0 to 3.6 V, 10% to 90%	10	_	50	ns
t _{FALLL}	Fall time, strong mode low supply, Cload = 50 pF, all ports	V _{DD} = 1.71 to 3.0 V, 10% to 90%	10	l	70	ns

Figure 17. GPIO Timing Diagram

Table 51. AC Characteristics – USB Data Timings

Symbol	Description	Conditions	Min	Тур	Max	Units
t _{DRATE}	Full speed data rate	Average bit rate	12 – 0.25%	12	12 + 0.25%	MHz
t _{JR1}	Receiver jitter tolerance	To next transition	-18.5	-	18.5	ns
t _{JR2}	Receiver jitter tolerance	To pair transition	-9.0	_	9	ns
t _{DJ1}	FS Driver jitter	To next transition	-3.5	_	3.5	ns
t _{DJ2}	FS Driver jitter	To pair transition	-4.0	-	4.0	ns
t _{FDEOP}	Source jitter for differential transition	To SE0 transition	-2.0	-	5	ns
t _{FEOPT}	Source SE0 interval of EOP	-	160.0	-	175	ns
t _{FEOPR}	Receiver SE0 interval of EOP	-	82.0	-	-	ns
t _{FST}	Width of SE0 interval during differential transition	-	-	_	14	ns

Table 52. AC Characteristics – USB Driver

Symbol	Description	Conditions	Min	Тур	Max	Units
t _{FR}	Transition rise time	50 pF	4	_	20	ns
t _{FF}	Transition fall time	50 pF	4	_	20	ns
t _{FRFM} ^[52]	Rise/fall time matching	-	90	_	111	%
V _{CRS}	Output signal crossover voltage	-	1.30	-	2.00	V

AC Comparator Specifications (CY8C24093/293/393/693)

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 53. AC Low Power Comparator Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
t _{LPC}	Comparator response time, 50 mV overdrive	50 mV overdrive does not include offset voltage.	-	_	100	ns

AC External Clock Specifications (CY8C24093/293/393/693)

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 54. AC External Clock Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{OSCEXT}	Frequency (external oscillator frequency)	-	0.75	_	25.20	MHz
	High period	-	20.60	-	5300	ns
	Low period	-	20.60	-	-	ns
	Power-up IMO to switch	-	150	_	-	μS

Note

52. T_{FRFM} is not met under all conditions. There is a corner case at lower supply voltages, such as those under 3.3 V. This condition does not affect USB communications. Signal integrity tests show an excellent eye diagram at 3.15 V.

Figure 25. 16-pin Chip On Lead (3 × 3 × 0.6 mm) LG16A/LD16A (Sawn) Package Outline, 001-09116

NOTES

1. REFERENCE JEDEC # MO-220

2. ALL DIMENSIONS ARE IN MILLIMETERS

001-09116 *J

TOP VIEW SIDE VIEW BOTTOM VIEW - 6.00±0.10 -PIN# 1 ID 37 37 48 48 0 36 0.40±0.05 C PIN 1 DOT 6.00±0.10 4.60±0.10 0.20±0.05 12 25 12 hnnnnnnnnnn 24 13 0.05 MAX 13 - 0.60 MAX ---- 0.40±0.10 4.60±0.10 0.08 NOTES: 1. HATCH AREA IS SOLDERABLE EXPOSED PAD 2. REFERENCE JEDEC # MO-248 3. PACKAGE WEIGHT: 68 ±7 mg 001-57280 *E 4. ALL DIMENSIONS ARE IN MILLIMETERS

Figure 26. 48-pin QFN (6 × 6 × 0.6 mm) LQ48A 4.6 × 4.6 E-Pad (Sawn) Package Outline, 001-57280

Thermal Impedances

Table 59. Thermal Impedances per Package

Package	Typical θ _{JA} ^[54]	Typical θ _{JC}
16-pin QFN (No Center Pad)	33 °C/W	-
32-pin QFN ^[55]	20 °C/W	-
48-pin QFN (6 × 6 × 0.6 mm) ^[55]	25.20 °C/W	3.04 °C/W
48-pin QFN (7 × 7 × 1.0 mm) ^[55]	18 °C/W	-

Capacitance on Crystal Pins

Table 60. Typical Package Capacitance on Crystal Pins

Package	Package Capacitance
32-pin QFN	3.2 pF
48-pin QFN	3.3 pF

Solder Reflow Specifications

Table 61 shows the solder reflow temperature limits that must not be exceeded.

Table 61. Solder Reflow Specifications

Package	Maximum Peak Temperature (T _C)	Maximum Time above T _C – 5 °C
16-pin QFN	260 °C	30 seconds
32-pin QFN	260 °C	30 seconds
48-pin QFN (6 × 6 × 0.6 mm)	260 °C	30 seconds
48-pin QFN (7 × 7 × 1.0 mm)	260 °C	30 seconds

Notes $54. T_J = T_A + Power \times \theta_{JA}.$ 55. To achieve the thermal impedance specified for the QFN package, the center thermal pad must be soldered to the PCB ground plane.

Acronyms

Table 63. Acronyms Used in this Document

Acronym	Description
AC	Alternating Current
ADC	Analog-to-Digital Converter
API	Application Programming Interface
CMOS	Complementary Metal Oxide Semiconductor
CPU	Central Processing Unit
DAC	Digital-to-Analog Converter
DC	Direct Current
EOP	End Of Packet
FSR	Full Scale Range
GPIO	General Purpose Input/Output
GUI	Graphical User Interface
l ² C	Inter-Integrated Circuit
ICE	In-Circuit Emulator
IDAC	Digital Analog Converter Current
ILO	Internal Low Speed Oscillator
IMO	Internal Main Oscillator
I/O	Input/Output
ISSP	In-System Serial Programming
LCD	Liquid Crystal Display
LDO	Low Dropout (regulator)
LSB	Least-Significant Bit
LVD	Low Voltage Detect
MCU	Micro-Controller Unit
MIPS	Mega Instructions Per Second
MISO	Master In Slave Out
MOSI	Master Out Slave In
MSB	Most-Significant Bit
OCD	On-Chip Debugger
POR	Power On Reset
PPOR	precision power on reset
PSRR	Power Supply Rejection Ratio
PWRSYS	Power System
PSoC [®]	Programmable System-on-Chip
SLIMO	Slow Internal Main Oscillator
SRAM	Static Random Access Memory
SNR	Signal to Noise Ratio
QFN	Quad Flat No-lead
SCL	Serial I2C Clock
SDA	Serial I2C Data
SDATA	Serial ISSP Data
SPI	Serial Peripheral Interface

Table 63. Acronyms Used in this Document (continued)

Acronym	Description
SS	Slave Select
SSOP	Shrink Small Outline Package
тс	Test Controller
USB	Universal Serial Bus
USB D+	USB Data+
USB D-	USB Data-
WLCSP	Wafer Level Chip Scale Package
XTAL	Crystal

Document Conventions

Units of Measure

Table 64. Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
dB	decibel
fF	femtofarad
g	gram
Hz	hertz
KB	1024 bytes
Kbit	1024 bits
KHz	kilohertz
Ksps	kilo samples per second
kΩ	kilohm
MHz	megahertz
MΩ	megaohm
μA	microampere
μF	microfarad
μН	microhenry
μS	microsecond
μW	microwatt
mA	milliampere
ms	millisecond
mV	millivolt
nA	nanoampere
nF	nanofarad
ns	nanosecond
nV	nanovolt
W	ohm
pА	picoampere
pF	picofarad
рр	peak-to-peak
ppm	parts per million
ps	picosecond
sps	samples per second
S	sigma: one standard deviation
V	volt
W	watt

Reference Documents

- Technical reference manual for CY8C24x93 devices
- In-system Serial Programming (ISSP) protocol for CY8C24x93 (AN2026C)
- Host Sourced Serial Programming for CY8C24x93 devices (AN59389)

Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h', 'b', or 0x are decimal.

Glossary

Crosspoint connection	Connection between any GPIO combination via analog multiplexer bus.
Differential non-linearity	Ideally, any two adjacent digital codes correspond to output analog voltages that are exactly one LSB apart. Differential non-linearity is a measure of the worst case deviation from the ideal 1 LSB step.
Hold time	Hold time is the time following a clock event during which the data input to a latch or flip-flop must remain stable in order to guarantee that the latched data is correct.
l ² C	It is a serial multi-master bus used to connect low speed peripherals to MCU.
Integral nonlinearity	It is a term describing the maximum deviation between the ideal output of a DAC/ADC and the actual output level.
Latch-up current	Current at which the latch-up test is conducted according to JESD78 standard (at 125 degree Celsius)
Power supply rejection ratio (PSRR)	The PSRR is defined as the ratio of the change in supply voltage to the corresponding change in output voltage of the device.
Setup time	Period required to prepare a device, machine, process, or system for it to be ready to function.
SPI	Serial peripheral interface is a synchronous serial data link standard.

Appendix A: Silicon Errata for the CY8C24093/293/393/693 Family

This section describes the errata for the CY8C24093/293/393/693 family. Details include errata trigger conditions, scope of impact, available workarounds, and silicon revision applicability.

Contact your local Cypress Sales Representative if you have questions.

CY8C24093/293/393/693 Qualification Status

Product Status: Production released.

CY8C24093/293/393/693 Errata Summary

The following Errata items apply to the CY8C24093/293/393/693 datasheet 001-86894.

1. DoubleTimer0 ISR

Problem Definition

When programmable timer 0 is used in "one-shot" mode by setting bit 1 of register 0,B0h (PT0_CFG), and the timer interrupt is used to wake the device from sleep, the interrupt service routine (ISR) may be executed twice.

Parameters Affected

No datasheet parameters are affected.

Trigger Condition(S)

Triggered by enabling one-shot mode in the timer, and using the timer to wake from sleep mode.

Scope of Impact

The ISR may be executed twice.

Workaround

In the ISR, firmware should clear the one-shot bit with a statement such as "and reg[B0h], FDh"

Fix Status

Will not be fixed

Changes

None

6. I2C Port Pin Pull-up Supply Voltage

Problem Definition

Pull-up resistor on I2C interface cannot be connected to a supply voltage that is greater than 0.7 V of CY8C24093/293/393/693 V_{DD} .

Parameters Affected

None.

■ Trigger Condition(S)

This problem occurs only when the I2C master is powered at a higher voltage than CY8C24093/293/393/693.

Scope of Impact

This trigger condition will corrupt the I2C communication between the I2C host and the CY8C24093/293/393/693 controller.

Workaround

I2C master cannot be powered at a supply voltage that is greater than 0.7 V compared to CY8C24093/293/393/693 supply voltage.

Fix Status

Will not be fixed

■ Changes

None

7. Port1 Pin Voltage

Problem Definition

Pull-up resistor on port1 pins cannot be connected to a voltage that is greater than 0.7 V higher than CY8C24093/293/393/693 V_{DD}.

Parameters Affected

None.

Trigger Condition(S)

This problem occurs only when port1 pins are at voltage 0.7 V higher than V_{DD} of CY8C24093/293/393/693.

Scope of Impact

This trigger condition will not allow CY8C24093/293/393/693 to drive the output signal on port1 pins, input path is unaffected by this condition.

Workaround

Port1 should not be connected to a higher voltage than V_{DD} of CY8C24093/293/393/693.

Fix Status

Will not be fixed

Changes

None

Appendix B: Silicon Errata for the PSoC[®] CY8C24193/493 Families

This section describes the errata for the PSoC[®] CY8C24193/493 families. Details include errata trigger conditions, scope of impact, available workarounds, and silicon revision applicability.

Contact your local Cypress Sales Representative if you have questions.

CY8C24193/493 Qualification Status

Product Status: Production released.

CY8C24193/493 Errata Summary

The following Errata items apply to the CY8C24193/493 datasheet 001-86894.

1. Wakeup from sleep may intermittently fail

Problem Definition

When the device is put to sleep in Standby or I2C_USB Mode and the bandgap circuit is refreshed less frequently than every 8 ms (default), the device may not come out of sleep when a sleep-ending input is received.

Parameters Affected

None

Trigger Condition(S)

By default, when the device is in the Standby or I2C_USB sleep modes, the bandgap circuit is powered-up approximately every 8 ms to facilitate detection of POR or LVD events. This interval can be lengthened or the periodic power-up disabled to reduce sleep current by setting the ALT_BUZZ bits in the SLP_CFG2 register or the Disable Buzz bit in the OSC_CR0 register respectively. If the bandgap circuit refresh interval is set longer than the default 8 ms, the device may fail to wakeup from sleep and enter a locked up state that can only be recovered by Watchdog Reset, XRES, or POR.

Scope of Impact

The trigger conditions outlined above may cause the device to never wakeup.

Workaround

Prior to entering Standby or I2C_USB sleep modes, do not lengthen or disable the bandgap refresh interval by manipulating the ALT_BUZZ bits in the SLP_CFG2 register or the Disable Buzz bit in the OSC_CR0 register respectively.

Fix Status

This issue will not be corrected in the next silicon revision.