

Welcome to E-XFL.COM

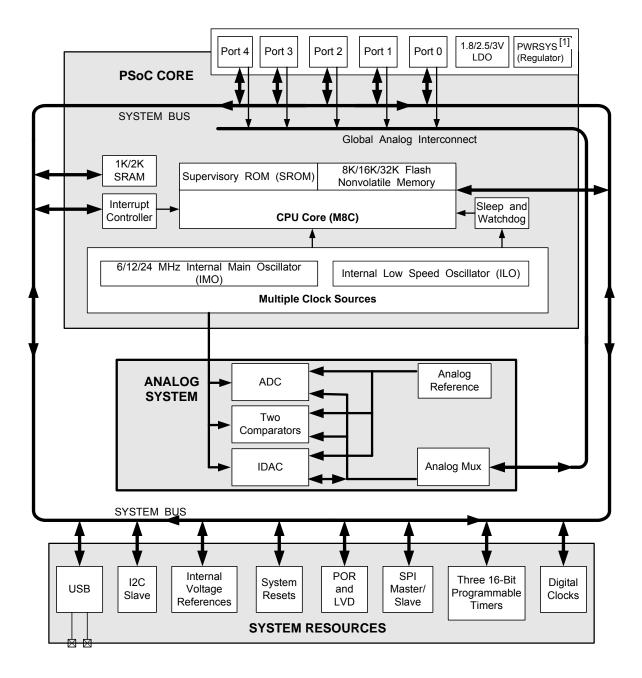
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF


Product Status	Obsolete
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c24393-24lqxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram

PSoC[®] Functional Overview

The PSoC family consists of on-chip controller devices, which are designed to replace multiple traditional microcontroller unit (MCU)-based components with one, low cost single-chip programmable component. A PSoC device includes configurable analog and digital blocks, and programmable interconnect. This architecture allows the user to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast CPU, Flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

The architecture for this device family, as shown in the Logic Block Diagram on page 2, consists of three main areas:

- The Core
- Analog System
- System Resources (including a full-speed USB port).

A common, versatile bus allows connection between I/O and the analog system.

Depending on the PSoC package, up to 36 GPIO are included in the CY8C24x93 PSoC device. The GPIO provides access to the MCU and analog mux.

PSoC Core

The PSoC Core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and IMO and ILO. The CPU core, called the M8C, is a powerful processor with speeds up to 24 MHz. The M8C is a 4-MIPS, 8-bit Harvard-architecture microprocessor.

Analog system

The analog system is composed of an ADC, two comparators and an IDAC. It has an internal 0.8 V, 1 V or 1.2 V analog reference. All the pins can be configured to connect to the analog system.

ADC

The ADC in the CY8C24x93 device is an incremental analog-to-digital converter with a range of 8 to 10 bits supporting signed and unsigned data formats. The input to the ADC can be from any pin.

IDAC

The IDAC can provide current source up to 512μ A to any GPIO pin. In the CY8C24x93 family of devices 4 ranges of current source can be implemented that can vary in 255 steps, and are connected to analog mux bus.

Table 1. IDAC Ranges

Range	Full Scale Range in µA
1x	64
2x	128
4x	256
8x	512

Comparator

The CY8C24x93 family has two high-speed, low-power comparators. The comparators have three voltage references, 0.8 V, 1.0 V and 1.2 V. Comparator inputs can be connected from any pin through the analog mux bus. The comparator output can be read in firmware for processing or routed out via specific pins (P1_0 or P1_4).

The output of the two comparators can be combined with 2-input logic functions. The combinatorial output can be optionally combined with a latched value and routed to a pin output or to the interrupt controller. The input multiplexers and the comparator are controller through the CMP User Module.

Analog Multiplexer System

The Analog Mux Bus can connect to every GPIO pin and can be internally connected to the ADC, Comprators or the IDAC.

Other multiplexer applications include:

- Chip-wide mux that allows analog input from any I/O pin.
- Crosspoint connection between any I/O pin combinations.

Additional System Resources

System resources provide additional capability, such as configurable USB and I2C slave, SPI master/slave communication interface, three 16-bit programmable timers, software 8-bit PWM, low voltage detect, power on reset, and various system resets supported by the M8C.

The merits of each system resource are listed here:

- The I²C slave/SPI master-slave module provides 50/100/400 kHz communication over two wires. SPI communication over three or four wires runs at speeds of 46.9 kHz to 3 MHz (lower for a slower system clock).
- Low-voltage detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced power-on-reset (POR) circuit eliminates the need for a system supervisor.
- A register-controlled bypass mode allows the user to disable the LDO regulator.
- An 8-bit Software PWM is provided for applications like buzzer control or lighting control. A 16-bit Timer acts as the input clock to the PWM. The ISR increments a software counter (8-bit), checks for PWM compare condition and toggles a GPIO accordingly. PWM Output is available on all GPIOs.

Development Tools

PSoC Designer[™] is the revolutionary integrated design environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
- Hardware and software I²C slaves and masters
- □ Full-speed USB 2.0
- □ Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

PSoC Designer Software Subsystems

Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-to-analog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this lets you to use more than 100 percent of PSoC's resources for an application.

Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also lets you to create a trace buffer of registers and memory locations of interest.

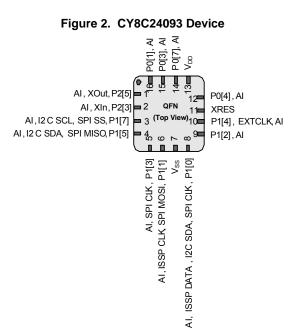
Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer.

In-Circuit Emulator

A low-cost, high-functionality in-circuit emulator (ICE) is available for development support. This hardware can program single devices.

The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24 MHz) operation.



Pinouts

16-pin QFN (13 GPIOs) [2]

Table 2.	Pin Definitions – CY8C24093 ^[3]	3]
----------	--	----

Pin	Ту	pe	Name	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P2[5]	Crystal output (XOut)
2	I/O	I	P2[3]	Crystal input (XIn)
3	IOHR	I	P1[7]	I ² C SCL, SPI SS
4	IOHR	I	P1[5]	I ² C SDA, SPI MISO
5	IOHR	I	P1[3]	SPI CLK
6	IOHR	I	P1[1]	ISSP CLK ^[4] , I ² C SCL, SPI MOSI
7	Po	wer	V_{SS}	Ground connection
8	IOHR	I	P1[0]	ISSP DATA ^[4] , I ² C SDA, SPI CLK ^[5]
9	IOHR	I	P1[2]	
10	IOHR	I	P1[4]	Optional external clock (EXTCLK)
11	Inj	put	XRES	Active high external reset with internal pull-down
12	IOH	I	P0[4]	
13	Po	wer	V _{DD}	Supply voltage
14	IOH	I	P0[7]	
15	IOH	I	P0[3]	
16	IOH	I	P0[1]	

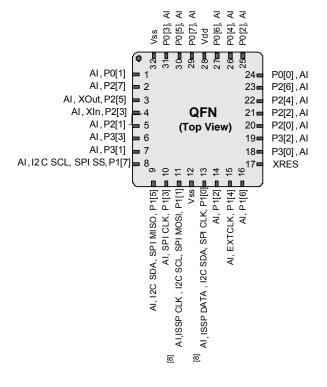
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

No center pad.
 13 GPIOs.

5. Alternate SPI clock.

Is GP103.
 In Schlos.
 On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I²C bus. Use alternate pins if you encounter issues.



32-pin QFN (28 GPIOs) [6]

Table 3. Pin Definitions – CY8C24193^[7]

Pin	Ту	ре	Name	ne Description	
No.	Digital	Analog	Name	Description	
1	IOH	I	P0[1]		
2	I/O	I	P2[7]		
3	I/O	I	P2[5]	Crystal output (XOut)	
4	I/O	I	P2[3]	Crystal input (XIn)	
5	I/O	I	P2[1]		
6	I/O	I	P3[3]		
7	I/O	I	P3[1]		
8	IOHR	I	P1[7]	I ² C SCL, SPI SS	
9	IOHR	I	P1[5]	I ² C SDA, SPI MISO	
10	IOHR	I	P1[3]	SPI CLK.	
11	IOHR	I	P1[1]	ISSP CLK ^[8] , I ² C SCL, SPI MOSI.	
12	Pov	wer	V _{SS}	Ground connection.	
13	IOHR	ļ	P1[0]	ISSP DATA ^[8] , I ² C SDA, SPI CLK ^[9]	
14	IOHR	I	P1[2]		
15	IOHR	I	P1[4]	Optional external clock input (EXTCLK)	
16	IOHR	I	P1[6]		
17	Inp	out	XRES	Active high external reset with internal pull-down	
18	I/O	I	P3[0]		
19	I/O	I	P3[2]		
20	I/O	I	P2[0]		
21	I/O	I	P2[2]		
22	I/O	I	P2[4]		
23	I/O	I	P2[6]		
24	IOH	I	P0[0]		
25	IOH	I	P0[2]		
26	IOH	I	P0[4]		
27	IOH	I	P0[6]		
28	Pov	wer	V _{DD}	Supply voltage	
29	IOH	I	P0[7]		
30	IOH	I	P0[5]		
31	IOH	I	P0[3]		
32	Pov	wer	V _{SS}	Ground connection	
CP	Pov	wer	V _{SS}	Center pad must be connected to ground	

Figure 3. CY8C24193

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

6. 28 GPIOs.

The center pad (CP) on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.

8. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues.

9. Alternate SPI clock.

48-pin QFN (OCD) (36 GPIOs) [23]

The 48-pin QFN part is for the CY8C240093 On-Chip Debug (OCD). Note that this part is only used for in-circuit debugging.

Pin No.	Digital	Analog	Name	Description			Figu		/8C240093
1 ^[26]			OCDOE	OCD mode direction pin			·	Po[5], A Po[3], A Po[5], A	P0[7], AI OCDE OCDO Vdd P0[6], AI P0[2], AI P0[0], AI P0[0], AI
2	I/O	I	P2[7]					n slod	P0 00 00 00 00 00 00 00 00 00 00 00 00 0
3	I/O	Ι	P2[5]	Crystal output (XOut)				46	4 4 4 4 4 6 8 8 6 36 P2[6],AI
4	I/O	I	P2[3]	Crystal input (XIn)			A E 2		35 = P2[4],AI
5	I/O	I	P2[1]			AI, X	(Out, P2[5] = 3		34 □ P2[2],AI
6	I/O	I	P4[3]				XIn , P2[3] = 4		33 = P2[0],AI
7	I/O	I	P4[1]				AI, P2[1] = 5		32 = P4[2],Al QFN 31 = P4[0],Al
8	I/O	I	P3[7]				AI, P4[3] = 6 AI, P4[1] = 7		QFN 31 P4[0],AI (Top View) 30 P3[6],AI
9	I/O	I	P3[5]				AI, P3[7] = 8		29 = P3[4], Al
10	I/O	I	P3[3]				AI, P3[5] 🗖 9		28 = P3[2],AI
11	I/O	I	P3[1]				AI, P3[3] = 10	1	27 = P3[0], Al
12	IOHR	I	P1[7]	I ² C SCL, SPI SS			AI, P3[1] = 11	m st i0 v0	26 ■ XRES ► ∞ • 0 = 3 = 3 = 3 = 25 ■ P1[6], Al
13	IOHR	Ι	P1[5]	I ² C SDA, SPI MISO		20002, 01			
14 ^[26]			CCLK	OCD CPU clock output	-		-	[] [] []	T[1] D + D D - D 1[0] 1[2] 1[2]
15 ^[26]			HCLK	OCD high speed clock output	-		ć	H BO SH I	OSI, P1[1] VSS D + 1 D - 1 D - Vdd Vdd AI, P1[2] JLK, P1[4] JLK, P1[4]
16	IOHR	1	P1[3]	SPI CLK.	-		Ç	K, A	PI(1) Vss D + D - D - D - D - AL, P1(0) AL, P1(2) EXTCLK, P1(4)
17	IOHR	1	P1[1]	ISSP CLK ^{[27],} I ² C SCL, SPI	-				SPI , SPI
		-	[.]	MOSI				HCLK BY CLK, AI, PT[3]	AI,ISSP CLK ⁶ , I2C SCL, SPI MOSI, P1[1] Vsv D + AI,ISSP DATA', I2C SDA, SPI CLK, P1[0] AI, ISSP DATA', I2C SDA, SPI CLK, P1[1] AI, EXTCLK, P1[2]
18	Po	wer	V _{SS}	Ground connection					, 120
19	I/O		D+	USB D+			ŝ	2	ATA
20	I/O		D-	USB D-					SP C
21	Po	wer	V _{DD}	Supply voltage					AI,IS
22	IOHR	I	P1[0]	ISSP DATA ^[27] , I ² C SDA, SPI CLK ^[28]				[27]	[27, 28] ,
23	IOHR	Ι	P1[2]		Pin No.	Digital	Analog	Name	Description
24	IOHR	Ι	P1[4]	Optional external clock input (EXTCLK)	37	IOH	I	P0[0]	
25	IOHR	I	P1[6]		38	IOH	I	P0[2]	
26	In	put	XRES	Active high external reset with internal pull-down	39	IOH	I	P0[4]	
27	I/O	I	P3[0]		40	IOH	I	P0[6]	
28	I/O	Ι	P3[2]		41	P	ower	V _{DD}	Supply voltage
29	I/O	I	P3[4]		42 ^[26]			OCDO	OCD even data I/O
30	I/O	Ι	P3[6]		43 ^[26]			OCDE	OCD odd data output
31	I/O	Ι	P4[0]		44	IOH		P0[7]	
32	I/O	Ι	P4[2]		45	IOH	I	P0[5]	
33	I/O	I	P2[0]		46	IOH	I	P0[3]	
34	I/O	I	P2[2]		47	P	ower	V _{SS}	Ground connection
35	I/O	I	P2[4]		48	IOH	I	P0[1]	
36	I/O	Ι	P2[6]	NC = No Connection H = 5 mA High	СР		ower	V _{SS}	Center pad must be connected to ground

Table 7. Pin Definitions – CY8C240093 ^[24, 25]

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

Notes

23.36 GPIOs.

24. This part is available in limited quantities for In-Circuit Debugging during prototype development. It is not available in production volumes.

25. The center pad (CP) on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.

26. This pin (associated with OCD part only) is required for connecting the device to ICE-Cube In-Circuit Emulator for firmware debugging purpose. To know more about the usage of ICE-Cube, refer to CY3215-DK PSoC[®] IN-CIRCUIT EMULATOR KIT GUIDE.

27. On Power-up, the SDA(P10)] drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to High impedance state. On reset, after XRES de- asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. In both cases, a pull-up resistance on these lines combines with the pull-down resistance (5.6K ohm) and form a potential divider. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues.
 28. Alternate SPI clock.

DC Chip-Level Specifications (CY8C24193/493)

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 10. DC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{DD} ^[29, 43]	Supply voltage	See table DC POR and LVD Specifications (CY8C24093/293/393/693) on page 37	1.71	-	5.50	V
I _{DD24}	Supply current, IMO = 24 MHz	Conditions are V _{DD} \leq 3.0 V, T _A = 25 °C, CPU = 24 MHz.	-	2.88	4.00	mA
I _{DD12}	Supply current, IMO = 12 MHz	Conditions are V _{DD} \leq 3.0 V, T _A = 25 °C, CPU = 12 MHz.	-	1.71	2.60	mA
I _{DD6}	Supply current, IMO = 6 MHz	Conditions are V _{DD} \leq 3.0 V, T _A = 25 °C, CPU = 6 MHz.	-	1.16	1.80	mA
I _{SB0}	Deep sleep current	$V_{DD}\!\leq\!3.0$ V, T_{A} = 25 °C, I/O regulator turned off	_	0.10	1.1	μΑ
I _{SB1}	Standby current with POR, LVD and sleep timer	$V_{DD}\!\le\!3.0$ V, T_A = 25 °C, I/O regulator turned off	-	1.07	1.50	μΑ
I _{SBI2C}	Standby current with I ² C enabled	Conditions are V _{DD} = 3.3 V, T _A = 25 °C and CPU = 24 MHz	-	1.64	_	μΑ

Notes

Notes
29. When V_{DD} remains in the range from 1.71 V to 1.9 V for more than 50 µs, the slew rate when moving from the 1.71 V to 1.9 V range to greater than 2 V must be slower than 1 V/500 µs to avoid triggering POR. The only other restriction on slew rates for any other voltage range or transition is the SR_{POWER_UP} parameter.
30. If powering down in standby sleep mode, to properly detect and recover from a V_{DD} brown out condition any of the following actions must be taken:

a. Bring the device out of sleep before powering down.
b. Assure that V_{DD} falls below 100 mV before powering back up.
c. Set the No Buzz bit in the OSC_CR0 register to keep the voltage monitoring circuit powered during sleep.
d. Increase the buzz rate to assure that the falling edge of V_{DD} is captured. The rate is configured through the PSSDC bits in the SLP_CFG register. For the referenced registers, refer to the Technical Reference Manual. In deep sleep/standby sleep mode, additional low power voltage monitoring circuitry allows V_{DD} brown out conditions to be detected and resets the device when V_{DD} goes lower than 1.1 V at edge rates slower than 1 V/ms.

DC GPIO Specifications (CY8C24093/293/393/693)

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and -40 °C \leq T_A \leq 85 °C, 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, or 1.71 V to 2.4 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 C and are for design guidance only.

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor	-	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 or 4 pins	$I_{OH} \le 10 \ \mu$ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	-	V
V _{OH2}	High output voltage Port 2 or 3 or 4 pins	I _{OH} = 1 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	-	_	V
V _{OH3}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I _{OH} < 10 μA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	-	V
V _{OH4}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I _{OH} = 5 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	-	-	V
V _{OH5}	High output voltage Port 1 Pins with LDO Regulator Enabled for 3 V out	I_{OH} < 10 μ A, V _{DD} > 3.1 V, maximum of 4 I/Os all sourcing 5 mA	2.85	3.00	3.30	V
V _{OH6}	High output voltage Port 1 pins with LDO regulator enabled for 3 V out	I_{OH} = 5 mA, V_{DD} > 3.1 V, maximum of 20 mA source current in all I/Os	2.20	-	-	V
V _{OH7}	High output voltage Port 1 pins with LDO enabled for 2.5 V out	I_{OH} < 10 μ A, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	2.35	2.50	2.75	V
V _{OH8}	High output voltage Port 1 pins with LDO enabled for 2.5 V out	I _{OH} = 2 mA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.90	-	Ι	V
V _{OH9}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I_{OH} < 10 μ A, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.60	1.80	2.10	V
V _{OH10}	High output voltage Port 1 pins with LDO enabled for 1.8 V out		1.20	-	-	V
V _{OL}	Low output voltage	I_{OL} = 25 mA, V_{DD} > 3.3 V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5])	_	-	0.75	V
V _{IL}	Input low voltage	-	-	-	0.80	V
V _{IH}	Input high voltage	-	2.00	-	-	V
V _H	Input hysteresis voltage	-	_	80	I	mV
IIL	Input leakage (Absolute Value)	-	_	0.001	1	μΑ
C _{PIN}	Pin capacitance	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF
V _{ILLVT3.3}	Input Low Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	0.8	V	-	-
V _{IHLVT3.3}	Input High Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	1.4	1		V
V _{ILLVT5.5}	Input Low Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	0.8	V	1	-
V _{IHLVT5.5}	Input High Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	1.7	_	_	V

Table 37. 2.4 V to 3.0 V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor	_	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 or 4 pins	I _{OH} < 10 μA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	-	V
V _{OH2}	High output voltage Port 2 or 3 or 4 pins	I _{OH} = 0.2 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.40	-	-	V
V _{OH3}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I _{OH} < 10 μA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	_	_	V
V _{OH4}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for Port 1	I _{OH} = 2 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	_	-	V
V _{OH5A}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I _{OH} < 10 μA, V _{DD} > 2.4 V, maximum of 20 mA source current in all I/Os	1.50	1.80	2.10	V
V _{OH6A}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I _{OH} = 1 mA, V _{DD} > 2.4 V, maximum of 20 mA source current in all I/Os	1.20	-	-	V
V _{OL}	Low output voltage	IOL = 10 mA, maximum of 30 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	-	_	0.75	V
V _{IL}	Input low voltage	_	-	-	0.72	V
V _{IH}	Input high voltage	-	1.40	_		V
V _H	Input hysteresis voltage	-	-	80	-	mV
IIL	Input leakage (absolute value)	-	-	1	1000	nA
C _{PIN}	Capacitive load on pins	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF
V _{ILLVT2.5}	Input Low Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	0.7	V	-	
V _{IHLVT2.5}	Input High Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	1.2		-	V

Table 38. 1.71 V to 2.4 V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor	-	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 or 4 pins	I _{OH} = 10 μA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	_	V
V _{OH2}	High output voltage Port 2 or 3 or 4 pins	I _{OH} = 0.5 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	-	_	V
V _{OH3}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for Port 1	I _{OH} = 100 μA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	_	V
V _{OH4}	High output voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	I _{OH} = 2 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	-	_	V
V _{OL}	Low output voltage	I_{OL} = 5 mA, maximum of 20 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])		-	0.40	V

Comparator User Module Electrical Specifications (CY8C24093/293/393/693)

The following table lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the entire device voltage and temperature operating range: –40 °C \leq T_A \leq 85 °C, 1.71 V \leq V_{DD} \leq 5.5 V.

Table 42. Comparator User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
t _{COMP}	Comparator response time	50 mV overdrive	-	70	100	ns
Offset		Valid from 0.2 V to V _{DD} – 0.2 V	-	2.5	30	mV
Current		Average DC current, 50 mV overdrive	-	20	80	μA
PSRR	Supply voltage > 2 V	Power supply rejection ratio	-	80	-	dB
FORK	Supply voltage < 2 V	Power supply rejection ratio	-	40	-	dB
Input range		-	0		1.5	V

ADC Electrical Specifications (CY8C24093/293/393/693)

Table 43. ADC User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Input						
V _{IN}	Input voltage range	-	0	_	VREFADC	V
C _{IIN}	Input capacitance	-	-	-	5	pF
R _{IN}	Input resistance	Equivalent switched cap input resistance for 8-, 9-, or 10-bit resolution	1/(500fF × data clock)	1/(400fF × data clock)	1/(300fF × data clock)	Ω
Reference						
V _{REFADC}	ADC reference voltage	-	1.14	-	1.26	V
Conversion F	Rate		•			
F _{CLK}	Data clock	Source is chip's internal main oscillator. See AC Chip-Level Specifications for accuracy	2.25	_	6	MHz
S8	8-bit sample rate	Data clock set to 6 MHz. sample rate = 0.001/ (2 ^A Resolution/Data Clock)	23.43	_	ksps	
S10	10-bit sample rate	Data clock set to 6 MHz. sample rate = 0.001/ (2 ^{resolution} /data clock)	_	5.85	_	ksps
DC Accuracy	/					1
RES	Resolution	Can be set to 8-, 9-, or 10-bit	8	-	10	bits
DNL	Differential nonlinearity	-	-1	_	+2	LSB
INL	Integral nonlinearity	-	-2	-	+2	LSB
E _{OFFSET}	Offset error	8-bit resolution	0	3.20	19.20	LSB
		10-bit resolution	0	12.80	76.80	LSB
E _{GAIN}	Gain error	For any resolution	-5	-	+5	%FSR
Power	•	· ·		•	•	
I _{ADC}	Operating current	-	-	2.10	2.60	mA
PSRR	Power supply rejection ratio	PSRR (V _{DD} > 3.0 V)	-	24	-	dB
		PSRR (V _{DD} < 3.0 V)	-	30	-	dB

DC POR and LVD Specifications (CY8C24093/293/393/693)

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 44. DC POR and LVD Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{POR0}	1.66 V selected in PSoC Designer	V_{DD} must be greater than or equal	1.61	1.66	1.71	V
V _{POR1}	2.36 V selected in PSoC Designer	to 1.71 V during startup, reset from the XRES pin, or reset from	-	2.36	2.41	
V _{POR2}	2.60 V selected in PSoC Designer	watchdog.	-	2.60	2.66	1
V _{POR3}	2.82 V selected in PSoC Designer	_	-	2.82	2.95	1
V _{LVD0}	2.45 V selected in PSoC Designer	-	2.40	2.45	2.51	V
V _{LVD1}	2.71 V selected in PSoC Designer		2.64 ^[46]	2.71	2.78	
V _{LVD2}	2.92 V selected in PSoC Designer		2.85 ^[47]	2.92	2.99	
V _{LVD3}	3.02 V selected in PSoC Designer		2.95 ^[48]	3.02	3.09	
V _{LVD4}	3.13 V selected in PSoC Designer		3.06	3.13	3.20	
V _{LVD5}	1.90 V selected in PSoC Designer		1.84	1.90	2.32	
V _{LVD6}	1.80 V selected in PSoC Designer		1.75 ^[49]	1.80	1.84	1
V _{LVD7}	4.73 V selected in PSoC Designer		4.62	4.73	4.83	1

DC Programming Specifications (CY8C24093/293/393/693)

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 45. DC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{DDIWRITE}	Supply voltage for flash write operations	-	1.71	-	5.25	V
I _{DDP}	Supply current during programming or verify	-	-	5	25	mA
V _{ILP}	Input low voltage during programming or verify	See the appropriate DC GPIO Specifications (CY8C24093/293/393/693) on page 33	-	-	V _{IL}	V
V _{IHP}	Input high voltage during programming or verify	See the appropriate DC GPIO Specifications (CY8C24093/293/393/693) on page 33	V _{IH}	_	-	V
I _{ILP}	Input current when Applying V _{ILP} to P1[0] or P1[1] during programming or verify	Driving internal pull-down resistor	-	-	0.2	mA
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify	Driving internal pull-down resistor	-	-	1.5	mA
V _{OLP}	Output low voltage during programming or verify		-	-	V _{SS} + 0.75	V
V _{OHP}	Output high voltage during programming or verify	See appropriate DC GPIO Specifications (CY8C24093/293/393/693) on page 33. For V_{DD} > 3 V use V_{OH4} in Table 34 on page 31.	V _{OH}	_	V _{DD}	V
Flash _{ENPB}	Flash write endurance	Erase/write cycles per block	50,000	_	-	-
Flash _{DR}	Flash data retention	Following maximum Flash write cycles; ambient temperature of 55 °C	20	-	-	Years

Notes

- 46. Always greater than 50 mV above V_{PPOR1} voltage for falling supply. 47. Always greater than 50 mV above V_{PPOR2} voltage for falling supply. 48. Always greater than 50 mV above V_{PPOR3} voltage for falling supply. 49. Always greater than 50 mV above V_{PPOR0} voltage for falling supply.

DC I²C Specifications (CY8C24093/293/393/693)

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and –40 °C \leq T_A \leq 85 °C, 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, or 1.71 V to 2.4 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 46. DC I²C Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{ILI2C}	Input low level	$3.1 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	-	-	$0.25 \times V_{DD}$	V
		$2.5 \text{ V} \le \text{V}_{\text{DD}} \le 3.0 \text{ V}$	_	_	0.3 × V _{DD}	V
		$1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.4 \text{ V}$	_	_	0.3 × V _{DD}	V
V _{IHI2C}	Input high level	1.71 V ≤ V _{DD} ≤ 5.5 V	$0.65 \times V_{DD}$	_	_	V

DC Reference Buffer Specifications (CY8C24093/293/393/693)

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and -40 °C \leq T_A \leq 85 °C, 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, or 1.71 V to 2.4 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 47. DC Reference Buffer Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{Ref}	Reference buffer output	$1.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	1	_	1.05	V
V _{RefHi}	Reference buffer output	$1.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	1.2	_	1.25	V

DC IDAC Specifications (CY8C24093/293/393/693)

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 48. DC IDAC Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
IDAC_DNL	Differential nonlinearity	-4.5	-	+4.5	LSB	
IDAC_INL	Integral nonlinearity	-5	-	+5	LSB	
IDAC_Gain	Range = 0.5x	6.64	-	22.46	μA	DAC setting = 128 dec
(Source)	Range = 1x	14.5	-	47.8	μA	
	Range = 2x	42.7	-	92.3	μA	
	Range = 4x	91.1	-	170	μA	DAC setting = 128 dec
	Range = 8x	184.5	_	426.9	μA	DAC setting = 128 dec

Table 51. AC Characteristics – USB Data Timings

Symbol	Description	Conditions	Min	Тур	Max	Units
t _{DRATE}	Full speed data rate	Average bit rate	12 – 0.25%	12	12 + 0.25%	MHz
t _{JR1}	Receiver jitter tolerance	To next transition	-18.5	-	18.5	ns
t _{JR2}	Receiver jitter tolerance	To pair transition	-9.0	_	9	ns
t _{DJ1}	FS Driver jitter	To next transition	-3.5	-	3.5	ns
t _{DJ2}	FS Driver jitter	To pair transition	-4.0	-	4.0	ns
t _{FDEOP}	Source jitter for differential transition	To SE0 transition	-2.0	-	5	ns
t _{FEOPT}	Source SE0 interval of EOP	-	160.0	-	175	ns
t _{FEOPR}	Receiver SE0 interval of EOP	-	82.0	-	-	ns
t _{FST}	Width of SE0 interval during differential transition	-	-	_	14	ns

Table 52. AC Characteristics – USB Driver

Symbol	Description	Conditions	Min	Тур	Max	Units
t _{FR}	Transition rise time	50 pF	4	_	20	ns
t _{FF}	Transition fall time	50 pF	4	_	20	ns
t _{FRFM} ^[52]	Rise/fall time matching	-	90	_	111	%
V _{CRS}	Output signal crossover voltage	-	1.30	-	2.00	V

AC Comparator Specifications (CY8C24093/293/393/693)

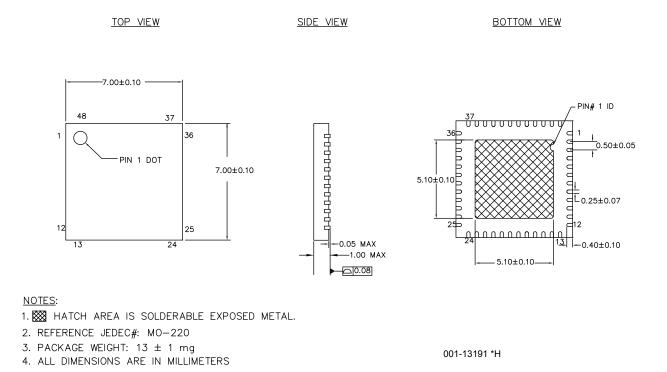
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 53. AC Low Power Comparator Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
t _{LPC}	Comparator response time, 50 mV overdrive	50 mV overdrive does not include offset voltage.	-	_	100	ns

AC External Clock Specifications (CY8C24093/293/393/693)

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.


Table 54. AC External Clock Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{OSCEXT}	Frequency (external oscillator frequency)	-	0.75	-	25.20	MHz
	High period	-	20.60	-	5300	ns
	Low period	-	20.60	-	-	ns
	Power-up IMO to switch	-	150	_	-	μS

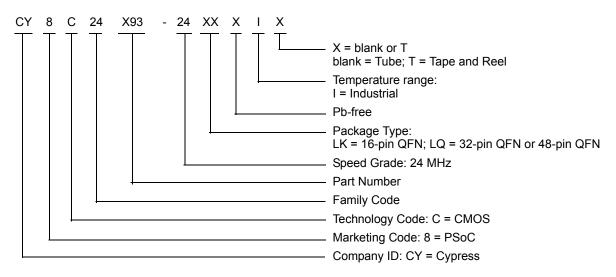
Note

52. T_{FRFM} is not met under all conditions. There is a corner case at lower supply voltages, such as those under 3.3 V. This condition does not affect USB communications. Signal integrity tests show an excellent eye diagram at 3.15 V.

Figure 27. 48-pin QFN (7 × 7 × 1.0 mm) LT48A 5.1 × 5.1 E-Pad (SAWN) Package Outline, 001-13191

Important Notes

- For information on the preferred dimensions for mounting QFN packages, see the following Application Note at http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.
- Pinned vias for thermal conduction are not required for the low power PSoC device.


Ordering Information

The following table lists the CY8C24X93 PSoC devices' key package features and ordering codes.

Table 62. PSoC Device Key Features and Ordering Information

Package	Ordering Code	Flash (Bytes)	SRAM (Bytes)	Digital I/O Pins	Analog Inputs ^[56]	XRES Pin	USB	ADC	Supported by OCD
16-pin QFN (3 × 3 × 0.6 mm)	CY8C24093-24LKXI	8 K	1 K	13	13	Yes	No	Yes	No
32-pin QFN (5 × 5 × 0.6 mm)	CY8C24193-24LQXI	8 K	1 K	28	28	Yes	No	Yes	Yes
32-pin QFN (5 × 5 × 0.6 mm)	CY8C24293-24LQXI	16 K	2 K	28	28	Yes	No	Yes	No
48-pin QFN (6 × 6 × 0.6 mm)	CY8C24393-24LQXI	16 K	2 K	34	34	Yes	No	Yes	No
48-pin QFN (7 × 7 × 1.0 mm)	CY8C24493-24LTXI	32 K	2 K	36	36	Yes	Yes	Yes	Yes
48-pin QFN (6 × 6 × 0.6 mm)	CY8C24693-24LQXI	32 K	2 K	34	34	Yes	No	Yes	No
48-pin QFN (OCD) (7 × 7 × 1.0 mm)	CY8C240093-24LTXI	32 K	2 K	36	36	Yes	Yes	Yes	-

Ordering Code Definitions

Glossary

Crosspoint connection	Connection between any GPIO combination via analog multiplexer bus.
Differential non-linearity	Ideally, any two adjacent digital codes correspond to output analog voltages that are exactly one LSB apart. Differential non-linearity is a measure of the worst case deviation from the ideal 1 LSB step.
Hold time	Hold time is the time following a clock event during which the data input to a latch or flip-flop must remain stable in order to guarantee that the latched data is correct.
l ² C	It is a serial multi-master bus used to connect low speed peripherals to MCU.
Integral nonlinearity	It is a term describing the maximum deviation between the ideal output of a DAC/ADC and the actual output level.
Latch-up current	Current at which the latch-up test is conducted according to JESD78 standard (at 125 degree Celsius)
Power supply rejection ratio (PSRR)	The PSRR is defined as the ratio of the change in supply voltage to the corresponding change in output voltage of the device.
Setup time	Period required to prepare a device, machine, process, or system for it to be ready to function.
SPI	Serial peripheral interface is a synchronous serial data link standard.

2. Missed GPIO Interrupt

Problem Definition

When in sleep mode, if a GPIO interrupt happens simultaneously with a Timer0 or Sleep Timer interrupt, the GPIO interrupt may be missed, and the corresponding GPIO ISR not run.

Parameters Affected

No datasheet parameters are affected.

Trigger Condition(S)

Triggered by enabling sleep mode, then having GPIO interrupt occur simultaneously with a Timer 0 or Sleep Timer interrupt.

Scope of Impact

The GPIO interrupt service routine will not be run.

Workaround

The system should be architected such that a missed GPIO interrupt may be detected. For example, if a GPIO is used to wake the system to perform some function, the system should detect if the function is not performed, and re-issue the GPIO interrupt.

Alternatively, if a GPIO interrupt is required to wake the system, then firmware should disable the Sleep Timer and Timer0.

Alternatively, the ISR's for Sleep Timer and Timer0 should manually check the state of the GPIO to determine if the host system has attempted to generate a GPIO interrupt.

Fix Status

Will not be fixed

Changes

None

3. Missed Interrupt During Transition to Sleep

Problem Definition

If an interrupt is posted a short time (within 2.5 CPU cycles) before firmware commands the device to sleep, the interrupt will be missed.

Parameters Affected

No datasheet parameters are affected.

Trigger Condition(S)

Triggered by enabling sleep mode just prior to an interrupt.

Scope of Impact

The relevant interrupt service routine will not be run.

Workaround

None.

■ Fix Status

Will not be fixed

Changes

None

Appendix B: Silicon Errata for the PSoC[®] CY8C24193/493 Families

This section describes the errata for the PSoC[®] CY8C24193/493 families. Details include errata trigger conditions, scope of impact, available workarounds, and silicon revision applicability.

Contact your local Cypress Sales Representative if you have questions.

CY8C24193/493 Qualification Status

Product Status: Production released.

CY8C24193/493 Errata Summary

The following Errata items apply to the CY8C24193/493 datasheet 001-86894.

1. Wakeup from sleep may intermittently fail

Problem Definition

When the device is put to sleep in Standby or I2C_USB Mode and the bandgap circuit is refreshed less frequently than every 8 ms (default), the device may not come out of sleep when a sleep-ending input is received.

Parameters Affected

None

Trigger Condition(S)

By default, when the device is in the Standby or I2C_USB sleep modes, the bandgap circuit is powered-up approximately every 8 ms to facilitate detection of POR or LVD events. This interval can be lengthened or the periodic power-up disabled to reduce sleep current by setting the ALT_BUZZ bits in the SLP_CFG2 register or the Disable Buzz bit in the OSC_CR0 register respectively. If the bandgap circuit refresh interval is set longer than the default 8 ms, the device may fail to wakeup from sleep and enter a locked up state that can only be recovered by Watchdog Reset, XRES, or POR.

Scope of Impact

The trigger conditions outlined above may cause the device to never wakeup.

Workaround

Prior to entering Standby or I2C_USB sleep modes, do not lengthen or disable the bandgap refresh interval by manipulating the ALT_BUZZ bits in the SLP_CFG2 register or the Disable Buzz bit in the OSC_CR0 register respectively.

Fix Status

This issue will not be corrected in the next silicon revision.

4. Missed GPIO Interrupt

Problem Definition

When in sleep mode, if a GPIO interrupt happens simultaneously with a Timer0 or Sleep Timer interrupt, the GPIO interrupt may be missed, and the corresponding GPIO ISR not run.

Parameters Affected

No datasheet parameters are affected.

Trigger Condition(S)

Triggered by enabling sleep mode, then having GPIO interrupt occur simultaneously with a Timer 0 or Sleep Timer interrupt.

Scope of Impact

The GPIO interrupt service routine will not be run.

Workaround

The system should be architected such that a missed GPIO interrupt may be detected. For example, if a GPIO is used to wake the system to perform some function, the system should detect if the function is not performed, and re-issue the GPIO interrupt.

Alternatively, if a GPIO interrupt is required to wake the system, then firmware should disable the Sleep Timer and Timer0.

Alternatively, the ISR's for Sleep Timer and Timer0 should manually check the state of the GPIO to determine if the host system has attempted to generate a GPIO interrupt.

Fix Status

Will not be fixed

Changes

None

5. Missed Interrupt During Transition to Sleep

Problem Definition

If an interrupt is posted a short time (within 2.5 CPU cycles) before firmware commands the device to sleep, the interrupt will be missed.

Parameters Affected

No datasheet parameters are affected.

Trigger Condition(S)

Triggered by enabling sleep mode just prior to an interrupt.

Scope of Impact

The relevant interrupt service routine will not be run.

Workaround

None.

Fix Status

Will not be fixed

Changes

None

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2013-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and other countries intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software is no form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-86894 Rev. *C

Revised May 6, 2016

Page 65 of 65

PSoC Designer[™] and PSoC Programmer[™] are trademarks and PSoC[®] and CapSense[®] are registered trademarks of Cypress Semiconductor Corporation. Purchase of I²C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors.