

#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

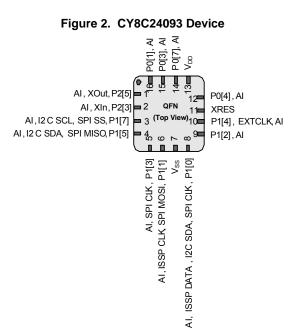
#### Details

E·XF

| Product Status             | Active                                                                      |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | M8C                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 24MHz                                                                       |
| Connectivity               | I <sup>2</sup> C, SPI, USB                                                  |
| Peripherals                | LVD, POR, PWM, WDT                                                          |
| Number of I/O              | 36                                                                          |
| Program Memory Size        | 32KB (32K x 8)                                                              |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | -                                                                           |
| RAM Size                   | 2K x 8                                                                      |
| Voltage - Supply (Vcc/Vdd) | 1.71V ~ 5.5V                                                                |
| Data Converters            | A/D 1x10b                                                                   |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 48-VFQFN Exposed Pad                                                        |
| Supplier Device Package    | 48-QFN (7x7)                                                                |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/cy8c24493-24ltxi |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong




# **Pinouts**

# 16-pin QFN (13 GPIOs) [2]

| Table 2. | Pin Definitions – CY8C24093 <sup>[3]</sup> | 3] |
|----------|--------------------------------------------|----|
|----------|--------------------------------------------|----|

| Pin | Ту      | pe     | Name            | Description                                                                |
|-----|---------|--------|-----------------|----------------------------------------------------------------------------|
| No. | Digital | Analog | Name            | Description                                                                |
| 1   | I/O     | I      | P2[5]           | Crystal output (XOut)                                                      |
| 2   | I/O     | I      | P2[3]           | Crystal input (XIn)                                                        |
| 3   | IOHR    | I      | P1[7]           | I <sup>2</sup> C SCL, SPI SS                                               |
| 4   | IOHR    | I      | P1[5]           | I <sup>2</sup> C SDA, SPI MISO                                             |
| 5   | IOHR    | I      | P1[3]           | SPI CLK                                                                    |
| 6   | IOHR    | I      | P1[1]           | ISSP CLK <sup>[4]</sup> , I <sup>2</sup> C SCL, SPI<br>MOSI                |
| 7   | Po      | wer    | $V_{SS}$        | Ground connection                                                          |
| 8   | IOHR    | I      | P1[0]           | ISSP DATA <sup>[4]</sup> , I <sup>2</sup> C SDA, SPI<br>CLK <sup>[5]</sup> |
| 9   | IOHR    | I      | P1[2]           |                                                                            |
| 10  | IOHR    | I      | P1[4]           | Optional external clock<br>(EXTCLK)                                        |
| 11  | Inj     | put    | XRES            | Active high external reset with internal pull-down                         |
| 12  | IOH     | I      | P0[4]           |                                                                            |
| 13  | Power   |        | V <sub>DD</sub> | Supply voltage                                                             |
| 14  | IOH     | I      | P0[7]           |                                                                            |
| 15  | IOH     | I      | P0[3]           |                                                                            |
| 16  | IOH     | I      | P0[1]           |                                                                            |



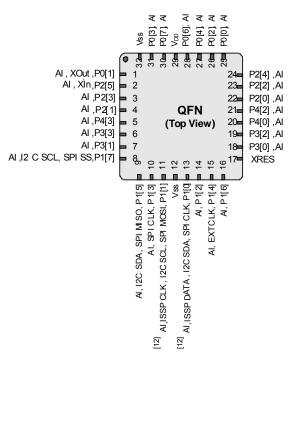
**LEGEND** A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

No center pad.
 13 GPIOs.

5. Alternate SPI clock.

Is GP103.
 In Schlos.
 On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I<sup>2</sup>C bus. Use alternate pins if you encounter issues.




# 32-pin QFN (28 GPIOs) [10]

# Table 4. Pin Definitions – CY8C24293 <sup>[11]</sup>

| Pin<br>No. | Digital | Analog | Name            | Description                                                               |
|------------|---------|--------|-----------------|---------------------------------------------------------------------------|
| 1          | IOH     | 1      | P0[1]           |                                                                           |
| 2          | I/O     | I      | P2[5]           | Crystal output (XOut)                                                     |
| 3          | I/O     | I      | P2[3]           | Crystal input (XIn)                                                       |
| 4          | I/O     | I      | P2[1]           |                                                                           |
| 5          | I/O     | I      | P4[3]           |                                                                           |
| 6          | I/O     | I      | P3[3]           |                                                                           |
| 7          | I/O     | I      | P3[1]           |                                                                           |
| 8          | IOHR    | I      | P1[7]           | I <sup>2</sup> C SCL, SPI SS                                              |
| 9          | IOHR    | I      | P1[5]           | I <sup>2</sup> C SDA, SPI MISO                                            |
| 10         | IOHR    | I      | P1[3]           | SPI CLK.                                                                  |
| 11         | IOHR    | I      | P1[1]           | ISSP CLK <sup>[12]</sup> , I <sup>2</sup> C SCL, SPI MOSI.                |
| 12         | Power   |        | V <sub>SS</sub> | Ground connection                                                         |
| 13         | IOHR    | l      | P1[0]           | ISSP DATA <sup>[12]</sup> , I <sup>2</sup> C SDA, SPI CLK <sup>[13]</sup> |
| 14         | IOHR    | I      | P1[2]           |                                                                           |
| 15         | IOHR    | I      | P1[4]           | Optional external clock input<br>(EXTCLK)                                 |
| 16         | IOHR    | I      | P1[6]           |                                                                           |
| 17         | Input   | 1      | XRES            | Active high external reset with<br>internal pull-down                     |
| 18         | I/O     | I      | P3[0]           |                                                                           |
| 19         | I/O     | I      | P3[2]           |                                                                           |
| 20         | I/O     | I      | P4[0]           |                                                                           |
| 21         | I/O     | I      | P4[2]           |                                                                           |
| 22         | I/O     | I      | P2[0]           |                                                                           |
| 23         | I/O     | I      | P2[2]           |                                                                           |
| 24         | I/O     | I      | P2[4]           |                                                                           |
| 25         | IOH     | I      | P0[0]           |                                                                           |
| 26         | IOH     | I      | P0[2]           |                                                                           |
| 27         | IOH     | I      | P0[4]           |                                                                           |
| 28         | IOH     | 1      | P0[6]           |                                                                           |
| 29         | Power   |        | V <sub>DD</sub> |                                                                           |
| 30         | IOH     | I      | P0[7]           |                                                                           |
| 31         | IOH     | I      | P0[3]           |                                                                           |
| 32         | Power   | •      | V <sub>SS</sub> | Ground connection                                                         |
| СР         | Power   |        | V <sub>SS</sub> | Center pad must be connected to ground                                    |

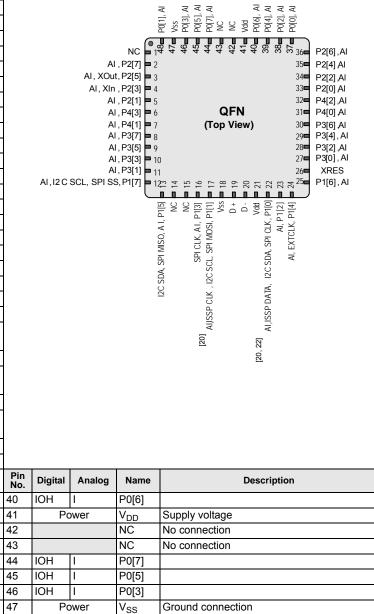
# Figure 4. CY8C24293 Device



LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes 10.28 GPIOs.

 The center pad (CP) on the QFN package must be connected to ground (V<sub>SS</sub>) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
 On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues. 13. Alternate SPI clock.




# 48-pin QFN (36 GPIOs (With USB)) <sup>[19]</sup>

# Table 6. Pin Definitions – CY8C24493 <sup>[20, 21]</sup>

| Pin<br>No. | Digital | Analog | Name            | Description                                                                  |            |            |         |
|------------|---------|--------|-----------------|------------------------------------------------------------------------------|------------|------------|---------|
| 1          |         | 1      | NC              | No connection                                                                |            |            |         |
| 2          | I/O     | I      | P2[7]           |                                                                              |            |            |         |
| 3          | I/O     | I      | P2[5]           | Crystal output (XOut)                                                        |            |            |         |
| 4          | I/O     | I      | P2[3]           | Crystal input (XIn)                                                          |            |            |         |
| 5          | I/O     | I      | P2[1]           |                                                                              |            |            |         |
| 6          | I/O     | I      | P4[3]           |                                                                              |            |            | AI<br>A |
| 7          | I/O     | I      | P4[1]           |                                                                              |            |            | ,       |
| 8          | I/O     | I      | P3[7]           |                                                                              |            |            |         |
| 9          | I/O     | I      | P3[5]           |                                                                              |            |            |         |
| 10         | I/O     | I      | P3[3]           |                                                                              |            |            |         |
| 11         | I/O     | I      | P3[1]           |                                                                              |            |            |         |
| 12         | IOHR    | I      | P1[7]           | I <sup>2</sup> C SCL, SPI SS                                                 |            | AI, I2 C   |         |
| 13         | IOHR    | I      | P1[5]           | I <sup>2</sup> C SDA, SPI MISO                                               |            | AI,12 C    | 30L, 3  |
| 14         |         |        | NC              | No connection                                                                |            |            |         |
| 15         |         |        | NC              | No connection                                                                |            |            |         |
| 16         | IOHR    | I      | P1[3]           | SPI CLK                                                                      |            |            |         |
| 17         | IOHR    | I      | P1[1]           | ISSP CLK <sup>[20]</sup> , I <sup>2</sup> C SCL, SPI MOSI                    |            |            |         |
| 18         | Po      | wer    | V <sub>SS</sub> | Ground connection                                                            |            |            |         |
| 19         | I/O     |        | D+              | USB D+                                                                       |            |            |         |
| 20         | I/O     |        | D-              | USB D-                                                                       |            |            |         |
| 21         | Po      | wer    | V <sub>DD</sub> | Supply voltage                                                               |            |            |         |
| 22         | IOHR    | I      | P1[0]           | ISSP DATA <sup>[20]</sup> , I <sup>2</sup> C SDA, SPI<br>CLK <sup>[22]</sup> |            |            |         |
| 23         | IOHR    | I      | P1[2]           |                                                                              |            |            |         |
| 24         | IOHR    | I      | P1[4]           | Optional external clock input<br>(EXTCLK)                                    |            |            |         |
| 25         | IOHR    | I      | P1[6]           |                                                                              |            |            |         |
| 26         | In      | put    | XRES            | Active high external reset with internal pull-down                           |            |            |         |
| 27         | I/O     | I      | P3[0]           |                                                                              |            |            |         |
| 28         | I/O     | I      | P3[2]           |                                                                              |            |            |         |
| 29         | I/O     | I      | P3[4]           |                                                                              | Pin<br>No. | Digital    | Ana     |
| 30         | I/O     | Ι      | P3[6]           |                                                                              | 40         | IOH        | I       |
| 31         | I/O     | Ι      | P4[0]           |                                                                              | 41         | Po         | ower    |
| 32         | I/O     | Ι      | P4[2]           |                                                                              | 42         |            |         |
| 33         | I/O     | Ι      | P2[0]           |                                                                              | 43         |            |         |
| 34         | I/O     | I      | P2[2]           |                                                                              | 44         | IOH        | Ι       |
| 35         | I/O     | I      | P2[4]           |                                                                              | 45         | IOH        | Ι       |
| 36         | I/O     | Ι      | P2[6]           |                                                                              | 46         | IOH        | I       |
| 37         | IOH     | I      | P0[0]           |                                                                              | 47         | Po         | ower    |
| 38         | IOH     | I      | P0[2]           |                                                                              | 48         | IOH        | I       |
| 39         | IOH     |        | P0[4]           |                                                                              | CP         | <b>D</b> . | ower    |

# Figure 6. CY8C24493



P0[1] V<sub>SS</sub>

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

#### Notes

19.36 GPIOs.

20. On Power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to High impedance state. On reset, after XRES de- asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. In both cases, a pull-up resistance on these lines combines with the pull-down resistance (5.6K ohm) and form a potential divider. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues.

21. The center pad (CP) on the QFN package must be connected to ground ( $V_{SS}$ ) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal. 22. Alternate SPI clock.

Center pad must be connected to ground



# Table 13. 1.71 V to 2.4 V DC GPIO Specifications

| Symbol           | Description                                                                       | Conditions                                                                                                                                                                                | Min                    | Тур  | Max                    | Units |
|------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------|------------------------|-------|
| R <sub>PU</sub>  | Pull-up resistor                                                                  | -                                                                                                                                                                                         | 4                      | 5.60 | 8                      | kΩ    |
| V <sub>OH1</sub> | High output voltage<br>Port 2 or 3 pins                                           | I <sub>OH</sub> = 10 μA, maximum of 10 mA<br>source current in all I/Os                                                                                                                   | V <sub>DD</sub> – 0.20 | -    | -                      | V     |
| V <sub>OH2</sub> | High output voltage<br>Port 2 or 3 pins                                           | I <sub>OH</sub> = 0.5 mA, maximum of 10 mA source current in all I/Os                                                                                                                     | V <sub>DD</sub> – 0.50 | -    | -                      | V     |
| V <sub>OH3</sub> | High output voltage<br>Port 0 or 1 pins with LDO regulator<br>Disabled for Port 1 | $I_{OH}$ = 100 $\mu$ A, maximum of 10 mA source current in all I/Os                                                                                                                       | V <sub>DD</sub> – 0.20 | -    | _                      | V     |
| V <sub>OH4</sub> | High output voltage<br>Port 0 or 1 Pins with LDO Regulator<br>Disabled for Port 1 | I <sub>OH</sub> = 2 mA, maximum of 10 mA source<br>current in all I/Os                                                                                                                    | V <sub>DD</sub> – 0.50 | -    | -                      | V     |
| V <sub>OL</sub>  | Low output voltage                                                                | I <sub>OL</sub> = 5 mA, maximum of 20 mA sink<br>current on even port pins (for example,<br>P0[2] and P1[4]) and 30 mA sink<br>current on odd port pins (for example,<br>P0[3] and P1[5]) | _                      | -    | 0.40                   | V     |
| V <sub>IL</sub>  | Input low voltage                                                                 | -                                                                                                                                                                                         | _                      | -    | 0.30 × V <sub>DD</sub> | V     |
| V <sub>IH</sub>  | Input high voltage                                                                | -                                                                                                                                                                                         | $0.65 \times V_{DD}$   | -    | -                      | V     |
| V <sub>H</sub>   | Input hysteresis voltage                                                          | -                                                                                                                                                                                         | -                      | 80   | -                      | mV    |
| I <sub>IL</sub>  | Input leakage (absolute value)                                                    | -                                                                                                                                                                                         | _                      | 1    | 1000                   | nA    |
| C <sub>PIN</sub> | Capacitive load on pins                                                           | Package and pin dependent<br>temp = 25 °C                                                                                                                                                 | 0.50                   | 1.70 | 7                      | pF    |

# Table 14. GPIO Current Sink and Source Specifications

| Supply<br>Voltage | Mode   | Port 1 per I/O (max) | Port 2/3/4 per<br>I/O (max) | Total Current Even<br>Pins (max)Total Current Odd<br>Pins (max) |       | Units |
|-------------------|--------|----------------------|-----------------------------|-----------------------------------------------------------------|-------|-------|
| 1.71 – 2.4        | Sink   | 5                    | 5 5 20 30                   |                                                                 | 20 30 |       |
|                   | Source | 2                    | 0.5                         | 10 <sup>[31]</sup>                                              |       | mA    |
| 2.4 - 3.0         | Sink   | 10                   | 10                          | 30                                                              | 30    | mA    |
|                   | Source | 2                    | 0.2                         | 10 <sup>[31]</sup>                                              |       | mA    |
| 3.0 - 5.0         | Sink   | 25                   | 25                          | 60                                                              | 60    | mA    |
|                   | Source | 5                    | 1                           | 20 <sup>[31]</sup>                                              |       | mA    |



# DC POR and LVD Specifications (CY8C24193/493)

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

| Symbol            | Description                      | Conditions                                                       | Min                  | Тур  | Max  | Units |
|-------------------|----------------------------------|------------------------------------------------------------------|----------------------|------|------|-------|
| V <sub>POR0</sub> | 1.66 V selected in PSoC Designer |                                                                  | 1.61                 | 1.66 | 1.71 | V     |
| V <sub>POR1</sub> | 2.36 V selected in PSoC Designer | during startup, reset from the XRES pin, or reset from watchdog. | -                    | 2.36 | 2.41 |       |
| V <sub>POR2</sub> | 2.60 V selected in PSoC Designer | reset nom waterladg.                                             | -                    | 2.60 | 2.66 |       |
| V <sub>POR3</sub> | 2.82 V selected in PSoC Designer |                                                                  | -                    | 2.82 | 2.95 |       |
| V <sub>LVD0</sub> | 2.45 V selected in PSoC Designer | -                                                                | 2.40                 | 2.45 | 2.51 | V     |
| V <sub>LVD1</sub> | 2.71 V selected in PSoC Designer |                                                                  | 2.64 <sup>[46]</sup> | 2.71 | 2.78 |       |
| V <sub>LVD2</sub> | 2.92 V selected in PSoC Designer |                                                                  | 2.85 <sup>[47]</sup> | 2.92 | 2.99 |       |
| V <sub>LVD3</sub> | 3.02 V selected in PSoC Designer |                                                                  | 2.95 <sup>[48]</sup> | 3.02 | 3.09 |       |
| V <sub>LVD4</sub> | 3.13 V selected in PSoC Designer |                                                                  | 3.06                 | 3.13 | 3.20 |       |
| V <sub>LVD5</sub> | 1.90 V selected in PSoC Designer |                                                                  | 1.84                 | 1.90 | 2.32 |       |
| V <sub>LVD6</sub> | 1.80 V selected in PSoC Designer |                                                                  | 1.75 <sup>[49]</sup> | 1.80 | 1.84 |       |
| V <sub>LVD7</sub> | 4.73 V selected in PSoC Designer |                                                                  | 4.62                 | 4.73 | 4.83 |       |

### DC Programming Specifications (CY8C24193/493)

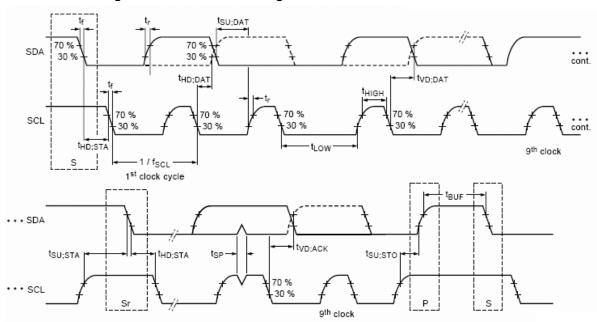
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

#### Table 20. DC Programming Specifications

| Symbol                | Description                                                                                       | Conditions                                                                                                                         | Min             | Тур | Max                    | Units |
|-----------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----|------------------------|-------|
| V <sub>DDIWRITE</sub> | Supply voltage for flash write operations                                                         | -                                                                                                                                  | 1.71            | -   | 5.25                   | V     |
| I <sub>DDP</sub>      | Supply current during<br>programming or verify                                                    | -                                                                                                                                  | _               | 5   | 25                     | mA    |
| V <sub>ILP</sub>      | Input low voltage during<br>programming or verify                                                 | See appropriate DC GPIO Specifications (CY8C24093/293/393/693) on page 33                                                          | _               | -   | V <sub>IL</sub>        | V     |
| V <sub>IHP</sub>      | Input high voltage during<br>programming or verify                                                | See appropriate DC GPIO Specifications (CY8C24093/293/393/693) on page 33                                                          | V <sub>IH</sub> | -   | _                      | V     |
| I <sub>ILP</sub>      | Input current when Applying V <sub>ILP</sub><br>to P1[0] or P1[1] during<br>programming or verify | Driving internal pull-down resistor                                                                                                | -               | -   | 0.2                    | mA    |
| I <sub>IHP</sub>      | Input current when applying V <sub>IHP</sub> to P1[0] or P1[1] during programming or verify       | Driving internal pull-down resistor                                                                                                | -               | _   | 1.5                    | mA    |
| V <sub>OLP</sub>      | Output low voltage during<br>programming or verify                                                |                                                                                                                                    | _               | -   | V <sub>SS</sub> + 0.75 | V     |
| V <sub>OHP</sub>      | Output high voltage during<br>programming or verify                                               | See appropriate DC GPIO Specifications (CY8C24093/293/393/693) on page 33. For $V_{DD}$ > 3V use $V_{OH4}$ in Table 36 on page 33. | V <sub>OH</sub> | -   | V <sub>DD</sub>        | V     |
| Flash <sub>ENPB</sub> | Flash write endurance                                                                             | Erase/write cycles per block                                                                                                       | 50,000          | -   | -                      | -     |
| Flash <sub>DR</sub>   | Flash data retention                                                                              | Following maximum Flash write cycles;<br>ambient temperature of 55 °C                                                              | 20              | -   | _                      | Years |

#### Notes

32. Always greater than 50 mV above  $V_{PPOR1}$  voltage for falling supply. 33. Always greater than 50 mV above  $V_{PPOR2}$  voltage for falling supply. 34. Always greater than 50 mV above  $V_{PPOR3}$  voltage for falling supply. 35. Always greater than 50 mV above  $V_{PPOR0}$  voltage for falling supply.




# AC I<sup>2</sup>C Specifications (CY8C24193/493)

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 30. AC Characteristics of the I<sup>2</sup>C SDA and SCL Pins

| Symbol                              | Description                                                                                 | Standard<br>Mode |      | Fast Mode           |      | Units |
|-------------------------------------|---------------------------------------------------------------------------------------------|------------------|------|---------------------|------|-------|
|                                     |                                                                                             | Min              | Max  | Min                 | Max  |       |
| f <sub>SCL</sub>                    | SCL clock frequency                                                                         | 0                | 100  | 0                   | 400  | kHz   |
| t <sub>HD;STA</sub>                 | Hold time (repeated) START condition. After this period, the first clock pulse is generated | 4.0              | -    | 0.6                 | -    | μs    |
| t <sub>LOW</sub>                    | LOW period of the SCL clock                                                                 | 4.7              | -    | 1.3                 | -    | μs    |
| t <sub>HIGH</sub>                   | HIGH Period of the SCL clock                                                                | 4.0              | -    | 0.6                 | -    | μs    |
| t <sub>SU;STA</sub>                 | Setup time for a repeated START condition                                                   | 4.7              | -    | 0.6                 | -    | μs    |
| t <sub>HD;DAT</sub> <sup>[40]</sup> | Data hold time                                                                              | 20               | 3.45 | 20                  | 0.90 | μs    |
| t <sub>SU;DAT</sub>                 | Data setup time                                                                             | 250              | -    | 100 <sup>[53]</sup> | -    | ns    |
| t <sub>SU;STO</sub>                 | Setup time for STOP condition                                                               | 4.0              | -    | 0.6                 | -    | μs    |
| t <sub>BUF</sub>                    | Bus free time between a STOP and START condition                                            | 4.7              | _    | 1.3                 | -    | μs    |
| t <sub>SP</sub>                     | Pulse width of spikes are suppressed by the input filter                                    | _                | _    | 0                   | 50   | ns    |



# Figure 11. Definition for Timing for Fast/Standard Mode on the I<sup>2</sup>C Bus

#### Notes

- 40. To wake up from sleep using I2C hardware address match event, I2C interface needs 20 ns hold time on SDA line with respect to falling edge of SCL. See the CY8C24x93 Silicon Errata document for more details.
- 41. A Fast-Mode I<sup>2</sup>C-bus device can be used in a standard mode I<sup>2</sup>C-bus system, but the requirement  $t_{SU;DAT} \ge 250$  ns must then be met. This automatically be the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line  $t_{max} + t_{SU;DAT} = 1000 + 250 = 1250$  ns (according to the Standard-Mode I<sup>2</sup>C-bus specification) before the SCL line is released.



# DC Chip-Level Specifications (CY8C24093/293/393/693)

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

#### Table 35. DC Chip-Level Specifications

| Symbol                                     | Description                                   | Conditions                                                                                                 | Min  | Тур  | Max  | Units |
|--------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------|------|------|------|-------|
| V <sub>DD</sub> <sup>[43, 44, 45]</sup>    | Supply voltage                                | No USB activity. Refer the table DC POR<br>and LVD Specifications<br>(CY8C24093/293/393/693) on page 37    | 1.71 | _    | 5.50 | V     |
| V <sub>DDUSB</sub> <sup>[43, 44, 45]</sup> | Operating voltage                             | USB activity, USB regulator enabled                                                                        | 4.35 | -    | 5.25 | V     |
|                                            |                                               | USB activity, USB regulator bypassed                                                                       | 3.15 | 3.3  | 3.60 | V     |
| I <sub>DD24</sub>                          | Supply current, IMO = 24 MHz                  | Conditions are V <sub>DD</sub> $\leq$ 3.0 V, T <sub>A</sub> = 25 °C, CPU = 24 MHz. No I/O sourcing current | -    | -    | 4.00 | mA    |
| I <sub>DD12</sub>                          | Supply current, IMO = 12 MHz                  | Conditions are $V_{DD} \le 3.0$ V, $T_A = 25$ °C, CPU = 12 MHz. No I/O sourcing current                    | -    | -    | 2.60 | mA    |
| I <sub>DD6</sub>                           | Supply current, IMO = 6 MHz                   | Conditions are $V_{DD} \le 3.0$ V, $T_A = 25$ °C, CPU = 6 MHz. No I/O sourcing current                     | -    | -    | 1.80 | mA    |
| I <sub>SB0</sub>                           | Deep sleep current                            | $V_{DD} \leq 3.0$ V, $T_A$ = 25 °C, I/O regulator turned off                                               | -    | 0.10 | 1.05 | μA    |
| I <sub>SB1</sub>                           | Standby current with POR, LVD and sleep timer | $V_{DD} \leq 3.0$ V, $T_A$ = 25 °C, I/O regulator turned off                                               | -    | 1.07 | 1.50 | μA    |
| I <sub>SBI2C</sub>                         | Standby current with I <sup>2</sup> C enabled | Conditions are $V_{DD}$ = 3.3 V, $T_A$ = 25 °C and CPU = 24 MHz                                            | -    | 1.64 | _    | μΑ    |

Notes

43. When V<sub>DD</sub> remains in the range from 1.71 V to 1.9 V for more than 50 µs, the slew rate when moving from the 1.71 V to 1.9 V range to greater than 2 V must be slower than 1 V/500 µs to avoid triggering POR. The only other restriction on slew rates for any other voltage range or transition is the SR<sub>POWER\_UP</sub> parameter.
 44. If powering down in standby sleep mode, to properly detect and recover from a V<sub>DD</sub> brown out condition any of the following actions must be taken:

- a.Bring the device out of sleep before powering down.
- b.Assure that  $V_{DD}$  falls below 100 mV before powering back up.
- c.Set the No Buzz bit in the OSC\_CR0 register to keep the voltage monitoring circuit powered during sleep.

d.Increase the buzz rate to assure that the falling edge of V<sub>DD</sub> is captured. The rate is configured through the PSSDC bits in the SLP\_CFG register. For the referenced registers, refer to the CY8C24x93 *Technical Reference Manual*. In deep sleep mode, additional low power voltage monitoring circuitry allows V<sub>DD</sub> brown out conditions to be detected for edge rates slower than 1V/ms.
 45. For USB mode, the V<sub>DD</sub> supply for bus-powered application should be limited to 4.35 V–5.35 V. For self-powered application, V<sub>DD</sub> should be 3.15 V–3.45 V.



# Table 37. 2.4 V to 3.0 V DC GPIO Specifications

| Symbol                | Description                                                                       | Conditions                                                                                                                                                                  | Min                    | Тур  | Max  | Units |
|-----------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------|------|-------|
| R <sub>PU</sub>       | Pull-up resistor                                                                  | _                                                                                                                                                                           | 4                      | 5.60 | 8    | kΩ    |
| V <sub>OH1</sub>      | High output voltage<br>Port 2 or 3 or 4 pins                                      | I <sub>OH</sub> < 10 μA, maximum of 10 mA source<br>current in all I/Os                                                                                                     | V <sub>DD</sub> – 0.20 | -    | -    | V     |
| V <sub>OH2</sub>      | High output voltage<br>Port 2 or 3 or 4 pins                                      | I <sub>OH</sub> = 0.2 mA, maximum of 10 mA source<br>current in all I/Os                                                                                                    | V <sub>DD</sub> – 0.40 | -    | -    | V     |
| V <sub>OH3</sub>      | High output voltage<br>Port 0 or 1 pins with LDO regulator<br>Disabled for port 1 | I <sub>OH</sub> < 10 μA, maximum of 10 mA source<br>current in all I/Os                                                                                                     | V <sub>DD</sub> – 0.20 | _    | _    | V     |
| V <sub>OH4</sub>      | High output voltage<br>Port 0 or 1 pins with LDO regulator<br>Disabled for Port 1 | I <sub>OH</sub> = 2 mA, maximum of 10 mA source<br>current in all I/Os                                                                                                      | V <sub>DD</sub> – 0.50 | _    | -    | V     |
| V <sub>OH5A</sub>     | High output voltage<br>Port 1 pins with LDO enabled for 1.8 V out                 | I <sub>OH</sub> < 10 μA, V <sub>DD</sub> > 2.4 V, maximum of<br>20 mA source current in all I/Os                                                                            | 1.50                   | 1.80 | 2.10 | V     |
| V <sub>OH6A</sub>     | High output voltage<br>Port 1 pins with LDO enabled for 1.8 V out                 | I <sub>OH</sub> = 1 mA, V <sub>DD</sub> > 2.4 V, maximum of 20 mA source current in all I/Os                                                                                | 1.20                   | -    | -    | V     |
| V <sub>OL</sub>       | Low output voltage                                                                | IOL = 10 mA, maximum of 30 mA sink<br>current on even port pins (for example,<br>P0[2] and P1[4]) and 30 mA sink current on<br>odd port pins (for example, P0[3] and P1[5]) | -                      | _    | 0.75 | V     |
| V <sub>IL</sub>       | Input low voltage                                                                 | _                                                                                                                                                                           | -                      | -    | 0.72 | V     |
| V <sub>IH</sub>       | Input high voltage                                                                | -                                                                                                                                                                           | 1.40                   | _    |      | V     |
| V <sub>H</sub>        | Input hysteresis voltage                                                          | -                                                                                                                                                                           | -                      | 80   | -    | mV    |
| IIL                   | Input leakage (absolute value)                                                    | -                                                                                                                                                                           | -                      | 1    | 1000 | nA    |
| C <sub>PIN</sub>      | Capacitive load on pins                                                           | Package and pin dependent<br>Temp = 25 °C                                                                                                                                   | 0.50                   | 1.70 | 7    | pF    |
| V <sub>ILLVT2.5</sub> | Input Low Voltage with low threshold<br>enable set, Enable for Port1              | Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input                                                                                                          | 0.7                    | V    | -    |       |
| V <sub>IHLVT2.5</sub> | Input High Voltage with low threshold<br>enable set, Enable for Port1             | Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input                                                                                                          | 1.2                    |      | -    | V     |

# Table 38. 1.71 V to 2.4 V DC GPIO Specifications

| Symbol           | Description                                                                       | Conditions                                                                                                                                                                         | Min                    | Тур  | Max  | Units |
|------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------|------|-------|
| R <sub>PU</sub>  | Pull-up resistor                                                                  | -                                                                                                                                                                                  | 4                      | 5.60 | 8    | kΩ    |
| V <sub>OH1</sub> | High output voltage<br>Port 2 or 3 or 4 pins                                      | I <sub>OH</sub> = 10 μA, maximum of 10 mA source current in all I/Os                                                                                                               | V <sub>DD</sub> – 0.20 | -    | _    | V     |
| V <sub>OH2</sub> | High output voltage<br>Port 2 or 3 or 4 pins                                      | I <sub>OH</sub> = 0.5 mA, maximum of 10 mA source current in all I/Os                                                                                                              | V <sub>DD</sub> – 0.50 | -    | _    | V     |
| V <sub>OH3</sub> | High output voltage<br>Port 0 or 1 pins with LDO regulator<br>Disabled for Port 1 | I <sub>OH</sub> = 100 μA, maximum of 10 mA<br>source current in all I/Os                                                                                                           | V <sub>DD</sub> – 0.20 | -    | _    | V     |
| V <sub>OH4</sub> | High output voltage<br>Port 0 or 1 Pins with LDO Regulator<br>Disabled for Port 1 | I <sub>OH</sub> = 2 mA, maximum of 10 mA source<br>current in all I/Os                                                                                                             | V <sub>DD</sub> – 0.50 | -    | _    | V     |
| V <sub>OL</sub>  | Low output voltage                                                                | $I_{OL}$ = 5 mA, maximum of 20 mA sink<br>current on even port pins (for example,<br>P0[2] and P1[4]) and 30 mA sink<br>current on odd port pins (for example,<br>P0[3] and P1[5]) |                        | -    | 0.40 | V     |



# Table 38. 1.71 V to 2.4 V DC GPIO Specifications (continued)

| Symbol           | Description                    | Conditions                             | Min                  | Тур  | Max                  | Units |
|------------------|--------------------------------|----------------------------------------|----------------------|------|----------------------|-------|
| V <sub>IL</sub>  | Input low voltage              | -                                      | -                    | -    | $0.30 \times V_{DD}$ | V     |
| V <sub>IH</sub>  | Input high voltage             | -                                      | $0.65 \times V_{DD}$ | _    | -                    | V     |
| V <sub>H</sub>   | Input hysteresis voltage       | -                                      | -                    | 80   | -                    | mV    |
| IIL              | Input leakage (absolute value) | -                                      | -                    | 1    | 1000                 | nA    |
| C <sub>PIN</sub> | Capacitive load on pins        | Package and pin dependent temp = 25 °C | 0.50                 | 1.70 | 7                    | pF    |

#### Table 39. DC Characteristics – USB Interface

| Symbol             | Description                          | Conditions                  | Min   | Тур  | Max   | Units |
|--------------------|--------------------------------------|-----------------------------|-------|------|-------|-------|
| R <sub>USBI</sub>  | USB D+ pull-up resistance            | With idle bus               | 900   | -    | 1575  | Ω     |
| R <sub>USBA</sub>  | USB D+ pull-up resistance            | While receiving traffic     | 1425  | -    | 3090  | Ω     |
| V <sub>OHUSB</sub> | Static output high                   | -                           | 2.8   | -    | 3.6   | V     |
| V <sub>OLUSB</sub> | Static output low                    | -                           | -     | -    | 0.3   | V     |
| V <sub>DI</sub>    | Differential input sensitivity       | -                           | 0.2   | -    |       | V     |
| V <sub>CM</sub>    | Differential input common mode range | -                           | 0.8   | -    | 2.5   | V     |
| V <sub>SE</sub>    | Single ended receiver threshold      | -                           | 0.8   | -    | 2.0   | V     |
| C <sub>IN</sub>    | Transceiver capacitance              | -                           | -     | -    | 50    | pF    |
| I <sub>IO</sub>    | High Z state data line leakage       | On D+ or D- line            | -10   | -    | +10   | μA    |
| R <sub>PS2</sub>   | PS/2 pull-up resistance              | -                           | 3000  | 5000 | 7000  | Ω     |
| R <sub>EXT</sub>   | External USB series resistor         | In series with each USB pin | 21.78 | 22.0 | 22.22 | Ω     |

# DC Analog Mux Bus Specifications (CY8C24093/293/393/693)

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

### Table 40. DC Analog Mux Bus Specifications

| Symbol           | Description                                     | Conditions | Min | Тур | Max | Units |
|------------------|-------------------------------------------------|------------|-----|-----|-----|-------|
| R <sub>SW</sub>  | Switch resistance to common analog bus          | -          | -   | -   | 800 | Ω     |
| R <sub>GND</sub> | Resistance of initialization switch to $V_{SS}$ | -          | _   | _   | 800 | Ω     |

The maximum pin voltage for measuring  $R_{SW}$  and  $R_{GND}$  is 1.8 V

# DC Low Power Comparator Specifications (CY8C24093/293/393/693)

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

### Table 41. DC Comparator Specifications

| Symbol             | Description                            | Conditions                          | Min | Тур | Max | Units |
|--------------------|----------------------------------------|-------------------------------------|-----|-----|-----|-------|
| V <sub>LPC</sub>   | Low power comparator (LPC) common mode | Maximum voltage limited to $V_{DD}$ | 0.0 | _   | 1.8 | V     |
| I <sub>LPC</sub>   | LPC supply current                     | -                                   | _   | 10  | 40  | μA    |
| V <sub>OSLPC</sub> | LPC voltage offset                     | -                                   | _   | 3   | 30  | mV    |



# DC POR and LVD Specifications (CY8C24093/293/393/693)

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

#### Table 44. DC POR and LVD Specifications

| Symbol            | Description                      | Conditions                                                       | Min                  | Тур  | Max  | Units |
|-------------------|----------------------------------|------------------------------------------------------------------|----------------------|------|------|-------|
| V <sub>POR0</sub> | 1.66 V selected in PSoC Designer | $V_{DD}$ must be greater than or equal                           | 1.61                 | 1.66 | 1.71 | V     |
| V <sub>POR1</sub> | 2.36 V selected in PSoC Designer | to 1.71 V during startup, reset from the XRES pin, or reset from | -                    | 2.36 | 2.41 |       |
| V <sub>POR2</sub> | 2.60 V selected in PSoC Designer | watchdog.                                                        | -                    | 2.60 | 2.66 | 1     |
| V <sub>POR3</sub> | 2.82 V selected in PSoC Designer |                                                                  | -                    | 2.82 | 2.95 | 1     |
| V <sub>LVD0</sub> | 2.45 V selected in PSoC Designer | -                                                                | 2.40                 | 2.45 | 2.51 | V     |
| V <sub>LVD1</sub> | 2.71 V selected in PSoC Designer |                                                                  | 2.64 <sup>[46]</sup> | 2.71 | 2.78 |       |
| V <sub>LVD2</sub> | 2.92 V selected in PSoC Designer |                                                                  | 2.85 <sup>[47]</sup> | 2.92 | 2.99 |       |
| V <sub>LVD3</sub> | 3.02 V selected in PSoC Designer |                                                                  | 2.95 <sup>[48]</sup> | 3.02 | 3.09 |       |
| V <sub>LVD4</sub> | 3.13 V selected in PSoC Designer |                                                                  | 3.06                 | 3.13 | 3.20 |       |
| V <sub>LVD5</sub> | 1.90 V selected in PSoC Designer |                                                                  | 1.84                 | 1.90 | 2.32 |       |
| V <sub>LVD6</sub> | 1.80 V selected in PSoC Designer |                                                                  | 1.75 <sup>[49]</sup> | 1.80 | 1.84 | 1     |
| V <sub>LVD7</sub> | 4.73 V selected in PSoC Designer |                                                                  | 4.62                 | 4.73 | 4.83 | 1     |

# DC Programming Specifications (CY8C24093/293/393/693)

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

#### Table 45. DC Programming Specifications

| Symbol                | Description                                                                                       | Conditions                                                                                                                          | Min             | Тур | Max                    | Units |
|-----------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----|------------------------|-------|
| V <sub>DDIWRITE</sub> | Supply voltage for flash write operations                                                         | -                                                                                                                                   | 1.71            | -   | 5.25                   | V     |
| I <sub>DDP</sub>      | Supply current during<br>programming or verify                                                    | -                                                                                                                                   | -               | 5   | 25                     | mA    |
| V <sub>ILP</sub>      | Input low voltage during<br>programming or verify                                                 | See the appropriate DC GPIO<br>Specifications (CY8C24093/293/393/693)<br>on page 33                                                 | -               | -   | V <sub>IL</sub>        | V     |
| V <sub>IHP</sub>      | Input high voltage during<br>programming or verify                                                | See the appropriate DC GPIO<br>Specifications (CY8C24093/293/393/693)<br>on page 33                                                 | V <sub>IH</sub> | _   | -                      | V     |
| I <sub>ILP</sub>      | Input current when Applying V <sub>ILP</sub><br>to P1[0] or P1[1] during<br>programming or verify | Driving internal pull-down resistor                                                                                                 | -               | -   | 0.2                    | mA    |
| I <sub>IHP</sub>      | Input current when applying V <sub>IHP</sub><br>to P1[0] or P1[1] during<br>programming or verify | Driving internal pull-down resistor                                                                                                 | -               | -   | 1.5                    | mA    |
| V <sub>OLP</sub>      | Output low voltage during<br>programming or verify                                                |                                                                                                                                     | -               | -   | V <sub>SS</sub> + 0.75 | V     |
| V <sub>OHP</sub>      | Output high voltage during<br>programming or verify                                               | See appropriate DC GPIO Specifications (CY8C24093/293/393/693) on page 33. For $V_{DD}$ > 3 V use $V_{OH4}$ in Table 34 on page 31. | V <sub>OH</sub> | -   | V <sub>DD</sub>        | V     |
| Flash <sub>ENPB</sub> | Flash write endurance                                                                             | Erase/write cycles per block                                                                                                        | 50,000          | _   | -                      | -     |
| Flash <sub>DR</sub>   | Flash data retention                                                                              | Following maximum Flash write cycles;<br>ambient temperature of 55 °C                                                               | 20              | -   | -                      | Years |

#### Notes

- 46. Always greater than 50 mV above V<sub>PPOR1</sub> voltage for falling supply. 47. Always greater than 50 mV above V<sub>PPOR2</sub> voltage for falling supply. 48. Always greater than 50 mV above V<sub>PPOR3</sub> voltage for falling supply. 49. Always greater than 50 mV above V<sub>PPOR0</sub> voltage for falling supply.

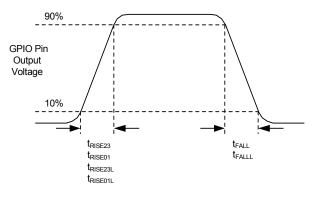


# AC Chip-Level Specifications (CY8C24093/293/393/693)

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. Table 49. AC Chip-Level Specifications

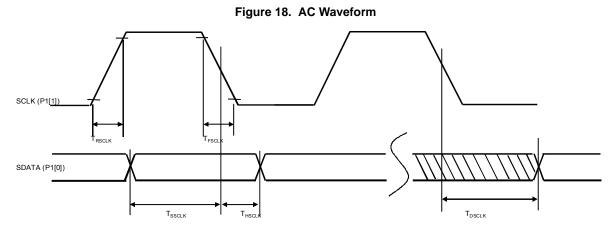
| Symbol                               | Description                                               | Conditions                                                     | Min  | Тур | Max   | Units |
|--------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|------|-----|-------|-------|
| F <sub>IMO24</sub>                   | IMO frequency at 24 MHz Setting                           | _                                                              | 22.8 | 24  | 25.2  | MHz   |
| F <sub>IMO12</sub>                   | IMO frequency at 12 MHz setting                           | _                                                              | 11.4 | 12  | 12.6  | MHz   |
| F <sub>IMO6</sub>                    | IMO frequency at 6 MHz setting                            | _                                                              | 5.7  | 6.0 | 6.3   | MHz   |
| F <sub>CPU</sub>                     | CPU frequency                                             | _                                                              | 0.75 | _   | 25.20 | MHz   |
| F <sub>32K1</sub>                    | ILO frequency                                             | -                                                              | 15   | 32  | 50    | kHz   |
| F <sub>32K_U</sub>                   | ILO untrimmed frequency                                   | -                                                              | 13   | 32  | 82    | kHz   |
| DCIMO                                | Duty cycle of IMO                                         | -                                                              | 40   | 50  | 60    | %     |
| DC <sub>ILO</sub>                    | ILO duty cycle                                            | _                                                              | 40   | 50  | 60    | %     |
| SR <sub>POWER_UP</sub>               | Power supply slew rate                                    | V <sub>DD</sub> slew rate during power-up                      | -    | _   | 250   | V/ms  |
| t <sub>XRST</sub>                    | External reset pulse width at power-up                    | After supply voltage is valid                                  | 1    | _   | -     | ms    |
| t <sub>XRST2</sub>                   | External reset pulse width after power-up <sup>[50]</sup> | Applies after part has booted                                  | 10   | -   | -     | μS    |
| t <sub>OS</sub>                      | Startup time of ECO                                       | -                                                              | -    | 1   | -     | s     |
| t <sub>JIT_IMO</sub> <sup>[51]</sup> | N=32                                                      | 6 MHz IMO cycle-to-cycle jitter (RMS)                          | -    | 0.7 | 6.7   | ns    |
|                                      |                                                           | 6 MHz IMO long term N (N = 32)<br>cycle-to-cycle jitter (RMS)  | -    | 4.3 | 29.3  | ns    |
|                                      |                                                           | 6 MHz IMO period jitter (RMS)                                  | -    | 0.7 | 3.3   | ns    |
|                                      |                                                           | 12 MHz IMO cycle-to-cycle jitter (RMS)                         | -    | 0.5 | 5.2   | ns    |
|                                      |                                                           | 12 MHz IMO long term N (N = 32)<br>cycle-to-cycle jitter (RMS) | -    | 2.3 | 5.6   | ns    |
|                                      |                                                           | 12 MHz IMO period jitter (RMS)                                 | _    | 0.4 | 2.6   | ns    |
|                                      |                                                           | 24 MHz IMO cycle-to-cycle jitter (RMS)                         | _    | 1.0 | 8.7   | ns    |
|                                      |                                                           | 24 MHz IMO long term N (N = 32)<br>cycle-to-cycle jitter (RMS) | -    | 1.4 | 6.0   | ns    |
|                                      |                                                           | 24 MHz IMO period jitter (RMS)                                 | -    | 0.6 | 4.0   | ns    |

Notes 50. The minimum required XRES pulse length is longer when programming the device (see Table 55 on page 42). 51. Refer to Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products for more information.




# AC GPIO Specifications (CY8C24093/293/393/693)

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. **Table 50. AC GPIO Specifications** 


| Symbol               | Description                                                                | Conditions                                                             | Min | Тур | Max                                                                                           | Units |
|----------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------|-----|-----|-----------------------------------------------------------------------------------------------|-------|
| F <sub>GPIO</sub>    | GPIO operating frequency                                                   | Normal strong mode Port 0, 1                                           | 0   | -   | 6 MHz for                                                                                     | MHz   |
|                      |                                                                            |                                                                        | 0   | -   | 1.71 V <v<sub>DD &lt; 2.40 V<br/>12 MHz for<br/>2.40 V &lt; V<sub>DD</sub>&lt; 5.50 V</v<sub> | MHz   |
| t <sub>RISE23</sub>  | Rise time, strong mode, Cload = 50 pF<br>Port 2 or 3 or 4 pins             | V <sub>DD</sub> = 3.0 to 3.6 V, 10% to 90%                             | 15  | -   | 80                                                                                            | ns    |
| t <sub>RISE23L</sub> | Rise time, strong mode low supply,<br>Cload = 50 pF, Port 2 or 3 or 4 pins | V <sub>DD</sub> = 1.71 to 3.0 V, 10% to 90%                            | 15  | Ι   | 80                                                                                            | ns    |
| t <sub>RISE01</sub>  | Rise time, strong mode, Cload = 50 pF<br>Ports 0 or 1                      | V <sub>DD</sub> = 3.0 to 3.6 V, 10% to 90%<br>LDO enabled or disabled  | 10  | -   | 50                                                                                            | ns    |
| t <sub>RISE01L</sub> | Rise time, strong mode low supply,<br>Cload = 50 pF, Ports 0 or 1          | V <sub>DD</sub> = 1.71 to 3.0 V, 10% to 90%<br>LDO enabled or disabled | 10  | -   | 80                                                                                            | ns    |
| t <sub>FALL</sub>    | Fall time, strong mode, Cload = 50 pF<br>all ports                         | V <sub>DD</sub> = 3.0 to 3.6 V, 10% to 90%                             | 10  | _   | 50                                                                                            | ns    |
| t <sub>FALLL</sub>   | Fall time, strong mode low supply,<br>Cload = 50 pF, all ports             | V <sub>DD</sub> = 1.71 to 3.0 V, 10% to 90%                            | 10  | l   | 70                                                                                            | ns    |

# Figure 17. GPIO Timing Diagram





# AC Programming Specifications (CY8C24093/293/393/693)

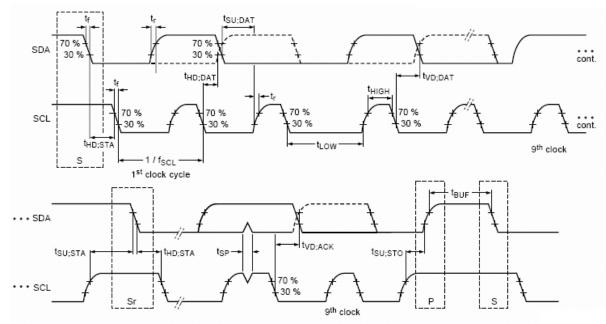


The following table lists the guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

# Table 55. AC Programming Specifications

| Symbol               | Description                                                                               | Conditions                                                  | Min   | Тур | Max   | Units |
|----------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------|-----|-------|-------|
| t <sub>RSCLK</sub>   | Rise time of SCLK                                                                         | -                                                           | 1     | _   | 20    | ns    |
| t <sub>FSCLK</sub>   | Fall time of SCLK                                                                         | -                                                           | 1     | _   | 20    | ns    |
| t <sub>SSCLK</sub>   | Data setup time to falling edge of SCLK                                                   | -                                                           | 40    | _   | -     | ns    |
| t <sub>HSCLK</sub>   | Data hold time from falling edge of SCLK                                                  | -                                                           | 40    | _   | -     | ns    |
| F <sub>SCLK</sub>    | Frequency of SCLK                                                                         | -                                                           | 0     | _   | 8     | MHz   |
| t <sub>ERASEB</sub>  | Flash erase time (block)                                                                  | -                                                           | _     | _   | 18    | ms    |
| t <sub>WRITE</sub>   | Flash block write time                                                                    | -                                                           | _     | _   | 25    | ms    |
| t <sub>DSCLK</sub>   | Data out delay from falling edge of SCLK                                                  | 3.6 < V <sub>DD</sub>                                       | _     | _   | 60    | ns    |
| t <sub>DSCLK3</sub>  | Data out delay from falling edge of SCLK                                                  | $3.0 \le V_{DD} \le 3.6$                                    | _     | _   | 85    | ns    |
| t <sub>DSCLK2</sub>  | Data out delay from falling edge of SCLK                                                  | $1.71 \le V_{DD} \le 3.0$                                   | _     | _   | 130   | ns    |
| t <sub>XRST3</sub>   | External reset pulse width after power-up                                                 | Required to enter programming mode when coming out of sleep | 300   | -   | -     | μs    |
| t <sub>XRES</sub>    | XRES pulse length                                                                         | -                                                           | 300   | _   | -     | μS    |
| t <sub>VDDWAIT</sub> | V <sub>DD</sub> stable to wait-and-poll hold off                                          | -                                                           | 0.1   | _   | 1     | ms    |
| t <sub>VDDXRES</sub> | V <sub>DD</sub> stable to XRES assertion delay                                            | -                                                           | 14.27 | _   | -     | ms    |
| t <sub>POLL</sub>    | SDATA high pulse time                                                                     | -                                                           | 0.01  | _   | 200   | ms    |
| t <sub>ACQ</sub>     | "Key window" time after a V <sub>DD</sub> ramp<br>acquire event, based on 256 ILO clocks. | -                                                           | 3.20  | -   | 19.60 | ms    |
| t <sub>XRESINI</sub> | "Key window" time after an XRES event,<br>based on 8 ILO clocks                           | -                                                           | 98    | -   | 615   | μs    |




# AC I<sup>2</sup>C Specifications (CY8C24093/293/393/693)

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

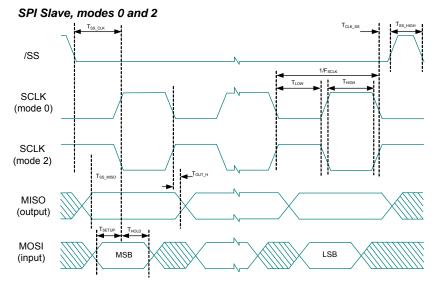
Table 56. AC Characteristics of the I<sup>2</sup>C SDA and SCL Pins

| Symbol              | Description                                                                                 | Standard Mode |      | Fast Mode           |      | Units |
|---------------------|---------------------------------------------------------------------------------------------|---------------|------|---------------------|------|-------|
| Symbol              | Description                                                                                 | Min           | Max  | Min                 | Max  | Units |
| f <sub>SCL</sub>    | SCL clock frequency                                                                         | 0             | 100  | 0                   | 400  | kHz   |
| t <sub>HD;STA</sub> | Hold time (repeated) START condition. After this period, the first clock pulse is generated |               | -    | 0.6                 | -    | μs    |
| t <sub>LOW</sub>    | LOW period of the SCL clock                                                                 | 4.7           | -    | 1.3                 | -    | μs    |
| t <sub>HIGH</sub>   | HIGH Period of the SCL clock                                                                | 4.0           | -    | 0.6                 | -    | μs    |
| t <sub>SU;STA</sub> | Setup time for a repeated START condition                                                   | 4.7           | -    | 0.6                 | -    | μs    |
| t <sub>HD;DAT</sub> | Data hold time                                                                              | 0             | 3.45 | 0                   | 0.90 | μs    |
| t <sub>SU;DAT</sub> | Data setup time                                                                             | 250           | -    | 100 <sup>[53]</sup> | -    | ns    |
| t <sub>SU;STO</sub> | Setup time for STOP condition                                                               | 4.0           | -    | 0.6                 | _    | μs    |
| t <sub>BUF</sub>    | Bus free time between a STOP and START condition                                            | 4.7           | -    | 1.3                 | -    | μs    |
| t <sub>SP</sub>     | Pulse width of spikes are suppressed by the input filter                                    | -             | -    | 0                   | 50   | ns    |

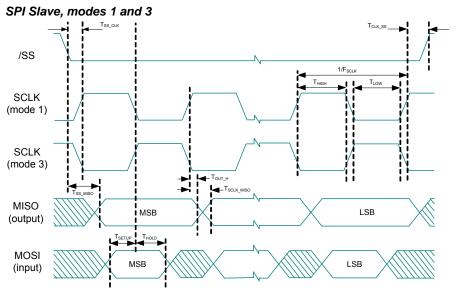




#### Note


53. A Fast-Mode I<sup>2</sup>C-bus device can be used in a standard mode I<sup>2</sup>C-bus system, but the requirement t<sub>SU:DAT</sub> ≥ 250 ns must then be met. This automatically be the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t<sub>max</sub> + t<sub>SU:DAT</sub> = 1000 + 250 = 1250 ns (according to the Standard-Mode I<sup>2</sup>C-bus specification) before the SCL line is released.




### Table 58. SPI Slave AC Specifications

| Symbol                 | Description                    | Conditions | Min    | Тур | Max | Units |
|------------------------|--------------------------------|------------|--------|-----|-----|-------|
| F <sub>SCLK</sub>      | SCLK clock frequency           | -          | -      | _   | 4   | MHz   |
| t <sub>LOW</sub>       | SCLK low time                  | -          | 42     | -   | -   | ns    |
| t <sub>HIGH</sub>      | SCLK high time                 | -          | 42     | _   | -   | ns    |
| t <sub>SETUP</sub>     | MOSI to SCLK setup time        | -          | 30     | _   | -   | ns    |
| t <sub>HOLD</sub>      | SCLK to MOSI hold time         | -          | 50     | -   | -   | ns    |
| t <sub>SS MISO</sub>   | SS high to MISO valid          | -          | -      | -   | 153 | ns    |
| t <sub>SCLK</sub> MISO | SCLK to MISO valid             | -          | -      | _   | 125 | ns    |
| t <sub>SS_HIGH</sub>   | SS high time                   | -          | 50     | -   | -   | ns    |
| t <sub>SS_CLK</sub>    | Time from SS low to first SCLK | -          | 2/SCLK | -   | -   | ns    |
| t <sub>CLK_SS</sub>    | Time from last SCLK to SS high | -          | 2/SCLK | -   | -   | ns    |











# **Development Tool Selection**

### Software

#### PSoC Designer™

At the core of the PSoC development software suite is PSoC Designer. Utilized by thousands of PSoC developers, this robust software has been facilitating PSoC designs for over half a decade. PSoC Designer is available free of charge at http://www.cypress.com.

#### PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube In-Circuit Emulator and PSoC MiniProg. PSoC Programmer is available free of charge at http://www.cypress.com.

# **Development Kits**

All development kits are sold at the Cypress Online Store.

#### CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation and the software interface enables users to run, halt, and single step the processor and view the content of specific memory locations.

PSoC Designer supports the advance emulation features also. The kit includes:

- PSoC Designer Software CD
- ICE-Cube In-Circuit Emulator
- ICE Flex-Pod for CY8C29X66A Family
- Cat-5 Adapter
- Mini-Eval Programming Board
- 110 ~ 240 V Power Supply, Euro-Plug Adapter
- iMAGEcraft C Compiler (Registration Required)
- ISSP Cable
- USB 2.0 Cable and Blue Cat-5 Cable
- 2 CY8C29466A-24PXI 28-PDIP Chip Samples

### **Evaluation Tools**

All evaluation tools are sold at the Cypress Online Store. For more information on PSoC 1 kits, visit the link http://www.cypress.com/?rID=63754

### **Device Programmers**

All device programmers are purchased from the Cypress Online Store.



### 2. Missed GPIO Interrupt

#### Problem Definition

When in sleep mode, if a GPIO interrupt happens simultaneously with a Timer0 or Sleep Timer interrupt, the GPIO interrupt may be missed, and the corresponding GPIO ISR not run.

#### Parameters Affected

No datasheet parameters are affected.

#### Trigger Condition(S)

Triggered by enabling sleep mode, then having GPIO interrupt occur simultaneously with a Timer 0 or Sleep Timer interrupt.

#### Scope of Impact

The GPIO interrupt service routine will not be run.

#### Workaround

The system should be architected such that a missed GPIO interrupt may be detected. For example, if a GPIO is used to wake the system to perform some function, the system should detect if the function is not performed, and re-issue the GPIO interrupt.

Alternatively, if a GPIO interrupt is required to wake the system, then firmware should disable the Sleep Timer and Timer0.

Alternatively, the ISR's for Sleep Timer and Timer0 should manually check the state of the GPIO to determine if the host system has attempted to generate a GPIO interrupt.

#### Fix Status

Will not be fixed

#### Changes

None

#### 3. Missed Interrupt During Transition to Sleep

#### Problem Definition

If an interrupt is posted a short time (within 2.5 CPU cycles) before firmware commands the device to sleep, the interrupt will be missed.

#### Parameters Affected

No datasheet parameters are affected.

### Trigger Condition(S)

Triggered by enabling sleep mode just prior to an interrupt.

#### Scope of Impact

The relevant interrupt service routine will not be run.

### Workaround

None.

■ Fix Status

Will not be fixed

#### Changes

None



# Appendix B: Silicon Errata for the PSoC<sup>®</sup> CY8C24193/493 Families

This section describes the errata for the PSoC<sup>®</sup> CY8C24193/493 families. Details include errata trigger conditions, scope of impact, available workarounds, and silicon revision applicability.

Contact your local Cypress Sales Representative if you have questions.

# CY8C24193/493 Qualification Status

Product Status: Production released.

# CY8C24193/493 Errata Summary

The following Errata items apply to the CY8C24193/493 datasheet 001-86894.

### 1. Wakeup from sleep may intermittently fail

#### Problem Definition

When the device is put to sleep in Standby or I2C\_USB Mode and the bandgap circuit is refreshed less frequently than every 8 ms (default), the device may not come out of sleep when a sleep-ending input is received.

#### Parameters Affected

None

### Trigger Condition(S)

By default, when the device is in the Standby or I2C\_USB sleep modes, the bandgap circuit is powered-up approximately every 8 ms to facilitate detection of POR or LVD events. This interval can be lengthened or the periodic power-up disabled to reduce sleep current by setting the ALT\_BUZZ bits in the SLP\_CFG2 register or the Disable Buzz bit in the OSC\_CR0 register respectively. If the bandgap circuit refresh interval is set longer than the default 8 ms, the device may fail to wakeup from sleep and enter a locked up state that can only be recovered by Watchdog Reset, XRES, or POR.

#### Scope of Impact

The trigger conditions outlined above may cause the device to never wakeup.

#### Workaround

Prior to entering Standby or I2C\_USB sleep modes, do not lengthen or disable the bandgap refresh interval by manipulating the ALT\_BUZZ bits in the SLP\_CFG2 register or the Disable Buzz bit in the OSC\_CR0 register respectively.

### Fix Status

This issue will not be corrected in the next silicon revision.



# 2. I<sup>2</sup>C Errors

### Problem Definition

The  $I^2C$  block exhibits occasional data and bus corruption errors when the  $I^2C$  master initiates transactions while the device is transitioning in to or out of sleep mode.

#### Parameters Affected

Affects reliability of I<sup>2</sup>C communication to device, and between I<sup>2</sup>C master and third party I<sup>2</sup>C slaves.

### ■ Trigger Condition(S)

Triggered by transitions into and out of the device's sleep mode.

#### Scope of Impact

Data errors result in incorrect data reported to the  $I^2C$  master, or incorrect data received from the master by the device. Bus corruption errors can corrupt data in transactions between the  $I^2C$  master and third party  $I^2C$  slaves.

#### Workaround

Firmware workarounds are available in firmware. Generally the workaround consists of disconnecting the  $I^2C$  block from the bus prior to going to sleep modes.  $I^2C$  transactions during sleep are supported by a protocol in which the master wakes the device prior to the  $I^2C$  transaction.

#### Fix Status

To be fixed in future silicon.

#### Changes

None

#### 3. DoubleTimer0 ISR

#### Problem Definition

When programmable timer 0 is used in "one-shot" mode by setting bit 1 of register 0,B0h (PT0\_CFG), and the timer interrupt is used to wake the device from sleep, the interrupt service routine (ISR) may be executed twice.

#### Parameters Affected

No datasheet parameters are affected.

#### Trigger Condition(S)

Triggered by enabling one-shot mode in the timer, and using the timer to wake from sleep mode.

#### Scope of Impact

The ISR may be executed twice.

#### Workaround

In the ISR, firmware should clear the one-shot bit with a statement such as "and reg[B0h], FDh"

### Fix Status

Will not be fixed

#### Changes

None



### 6. Wakeup from sleep with analog interrupt

#### Problem Definition

Device wakes up from sleep when an analog interrupt is trigger

#### Parameters Affected

No datasheet parameters are affected.

#### ■ Trigger Condition(S)

Triggered by enabling analog interrupt during sleep mode when device operating temperature is 50 °C or above

### Scope of Impact

Device unexpectedly wakes up from sleep

#### Workaround

Disable the analog interrupt before entering sleep and turn it back on upon wakeup.

# Fix Status

Will not be fixed

### Changes

None