

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l100r8t6a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1 Device overview

Table 2. Ultra-low-power STM32L100x6/8/B-A device features and peripheral counts

Peripheral		STM32L100C6xxA	STM32L10	00R8/BxxA				
Flash (Kbytes)		32	64	128				
Data EEPROM (K	bytes)		2					
RAM (Kbytes)		4	8	16				
Timers	General- purpose		6					
	Basic		2					
Communication interfaces	SPI		2					
	l ² C	2						
	USART		3					
	USB		1					
GPIOs		37 51						
12-bit synchroniz Number of chann	ed ADC els	1114 channels20 channels						
12-bit DAC Number of chann	iels	2 2						
LCD COM x SEG		4x16	4x32 8x28					
Comparator		2						
Max. CPU freque	ncy	32 MHz						
Operating voltage	9	1.8	V to 3.6 V					
Operating temper	ratures	Ambient temperatures: –40 to +85 °C Junction temperature: -40 to +105°C						
Packages		UFQFPN48	LQFP64					

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (V_{REFINT}) in Stop mode. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

Note: The start-up time at power-on is typically 3.3 ms.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.3.3 Voltage regulator

The regulator has three operation modes: main (MR), low-power (LPR) and power down.

- MR is used in Run mode (nominal regulation)
- LPR is used in the Low-power run, Low-power sleep and Stop modes
- Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32K osc, RCC_CSR).

3.3.4 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from Flash memory
- Boot from System Memory
- Boot from embedded RAM

The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1 or USART2. See the application note "STM32 microcontroller system memory boot mode" (AN2606) for details.

enables accurate monitoring of the V_{DD} value. The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode see *Table 17: Embedded internal reference voltage*.

3.11 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration.

This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channels' independent or simultaneous conversions
- DMA capability for each channel (including the underrun interrupt)
- external triggers for conversion

Eight DAC trigger inputs are used in the STM32L100x6/8/B-A devices. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

3.12 Ultra-low-power comparators and reference voltage

The STM32L100x6/8/B-A devices embed two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O).

- one comparator with fixed threshold
- one comparator with rail-to-rail inputs, fast or slow mode. The threshold can be one of the following:
 - DAC output
 - External I/O
 - Internal reference voltage (V_{REFINT}) or V_{REFINT} submultiple (1/4, 1/2, 3/4)

Both comparators can wake up from Stop mode, and be combined into a window comparator.

The internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1 μ A typical).

3.13 Routing interface

The highly flexible routing interface allows the application firmware to control the routing of different I/Os to the TIM2, TIM3 and TIM4 timer input captures. It also controls the routing of internal analog signals to ADC1, COMP1 and COMP2 and the internal reference voltage V_{REFINT}

DocID025966 Rev 5

3.14 Timers and watchdogs

The ultra-low-power STM32L100x6/8/B-A devices include six general-purpose timers, two basic timers and two watchdog timers.

Table 7 compares the features of the general-purpose and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs			
TIM2, TIM3, TIM4	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No			
TIM9	16-bit	Up, down, up/down	Any integer between 1 and 65536	No	2	No			
TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No			
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No			

Table 7. Timer feature comparison

						Digital alterna	ate function	number							
	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFOI6	AFIO7	AFI O8	AFI O9	AFIO11	AFIO 12	AFIO 13	AFIO14	AFIO15
Port name					•	Altern	ate functio	n		•					
	SYSTEM	TIM2	TIM3/4	TIM9/10/11	I2C1/2	SPI1/2	N/A	USART 1/2/3	N/A	N/A	LCD	N/A	N/A	RI	SYSTEM
PC10	-	-	-	-	-	-	-	USART3_TX	-	-	COM4 / SEG28 / SEG40	-	-	TIMx_IC3	EVENTOUT
PC11	-	-	-	-	-	-	-	USART3_RX	-	-	COM5 / SEG29 / SEG41	-	-	TIMx_IC4	EVENTOUT
PC12	-	-	-	-	-	-	_	USART3_CK	-	-	COM6 / SEG30 / SEG42	-	-	TIMx_IC1	EVENTOUT
PC13- WKUP2	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC2	EVENTOUT
PC14- OSC32_IN	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC3	EVENTOUT
PC15- OSC32_OUT	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC4	EVENTOUT
PD2	-	-	TIM3_ETR	-	-	-	-	-	-	-	COM7 / SEG31 / SEG43	-	-	TIMx_IC3	EVENTOUT
PH0- OSC_IN	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PH1- OSC OUT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 10. Alternate function input/output (continued)

DocID025966 Rev 5

39/102

Pin descriptions

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

Please refer to device ErrataSheet for possible latest changes of electrical characteristics.

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 3.0$ V (for the 1.8 V $\leq V_{DD} \leq 3.6$ V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 6.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 7.

6.1.6 Power supply scheme

Figure 8. Power supply scheme

6.3.3 Embedded internal reference voltage

The parameters given in the following table are based on characterization results, unless otherwise specified.

Table 16. Embe	dded internal	reference voltage	calibration values
----------------	---------------	-------------------	--------------------

Calibration value name	Description	Memory address
VREFINT_CAL	Raw data acquired at temperature of 30 °C ±5 °C, V _{DDA} = 3 V ±10 mV	0x1FF8 0078-0x1FF8 0079

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT out} ⁽¹⁾	Internal reference voltage	– 40 °C < T _J < +85 °C	1.202	1.224	1.242	V
I _{REFINT}	Internal reference current consumption	-	-	1.4	2.3	μA
T _{VREFINT}	Internal reference startup time	-	-	2	3	ms
V _{VREF_MEAS}	V _{DDA} voltage during V _{REFINT} factory measure	-	2.99	3	3.01	V
A _{VREF_MEAS}	Accuracy of factory-measured V_{REF} value $^{(2)}$	Including uncertainties due to ADC and V _{DDA} values	-	-	±5	mV
T _{Coeff} ⁽³⁾	Temperature coefficient	–40 °C < T _J < +85 °C	-	25	100	ppm/°C
A _{Coeff} ⁽³⁾	Long-term stability	1000 hours, T= 25 °C	-	-	1000	ppm
V _{DDCoeff} ⁽³⁾⁽⁴⁾	Voltage coefficient	3.0 V < V _{DDA} < 3.6 V	-	-	2000	ppm/V
T _{S_vrefint} ⁽³⁾	ADC sampling time when reading the internal reference voltage	-	4	-	-	μs
T _{ADC_BUF} ⁽³⁾	Startup time of reference voltage buffer for ADC	-	-	-	10	μs
I _{BUF_ADC} ⁽³⁾	Consumption of reference voltage buffer for ADC	-	-	13.5	25	μΑ
I _{VREF_OUT} ⁽³⁾	VREF_OUT output current ⁽⁵⁾	-	-	-	1	μA
C _{VREF_OUT} ⁽³⁾	VREF_OUT output load	-	-	-	50	pF
I _{LPBUF} ⁽³⁾	Consumption of reference voltage buffer for VREF_OUT and COMP	-	-	730	1200	nA
V _{REFINT_DIV1} ⁽³⁾	1/4 reference voltage	-	24	25	26	
V _{REFINT_DIV2} ⁽³⁾	1/2 reference voltage	-	49	50	51	% V _{REFINT}
V _{REFINT_DIV3} ⁽³⁾	3/4 reference voltage	-	74	75	76	

Table 17. Embedded internal reference voltage

1. Guaranteed by test in production.

2. The internal V_{REF} value is individually measured in production and stored in dedicated EEPROM bytes.

3. Guaranteed by characterization results.

4. Shortest sampling time can be determined in the application by multiple interactions.

5. To guarantee less than 1% VREF_OUT deviation.

DocID025966 Rev 5

6.3.4 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in *Figure 10: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code, unless otherwise specified.

The current consumption values are derived from the tests performed under ambient temperature $T_A=25^{\circ}C$ and V_{DD} supply voltage conditions summarized in *Table 14: General operating conditions*, unless otherwise specified.

The MCU is placed under the following conditions:

- All I/O pins are configured in analog input mode.
- All peripherals are disabled except when explicitly mentioned.
- The Flash memory access time, 64-bit access and prefetch is adjusted depending on f_{HCLK} frequency and voltage range to provide the best CPU performance.
- When the peripherals are enabled $f_{APB1} = f_{APB2} = f_{AHB}$.
- When PLL is ON, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or HSE = 16 MHz (if HSE bypass mode is used).
- The HSE user clock applied to OSC_IN input follows the characteristics specified in *Table 27: High-speed external user clock characteristics*.
- For maximum current consumption $V_{DD} = V_{DDA} = 3.6$ V is applied to all supply pins.
- For typical current consumption V_{DD} = V_{DDA} = 3.0 V is applied to all supply pins if not specified otherwise.

Symbol	Parameter		Conditions		Тур	Max ⁽¹⁾	Unit
			MSI clock, 65 kHz f _{HCLK} = 32 kHz Flash OFF	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	5.5	-	
			MSI clock, 65 kHz	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	15	16	
		All peripherals	f _{HCLK} = 32 kHz Flash ON	T _A = 85 °C	20	23	
		OFF, V _{DD} from 1 8 V	MSI clock, 65 kHz	$T_A = -40 \text{ °C to } 25 \text{ °C}$	15	16	
I _{DD} (LP Sleep)	Supply	to 3.6 V	f _{HCLK} = 65 kHz, Flash ON	T _A = 85 °C	20.5	23	
	current in Low power sleep mode		MSI clock,	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	18	20	
			131 кнz fucur = 131 kHz.	T _A = 55 °C	21	22	
			Flash ON	T _A = 85 °C	23	27	
		TIM9 and	MSI clock, 65 kHz	$T_A = -40 \text{ °C to } 25 \text{ °C}$	15	16	μA
			f _{HCLK} = 32 kHz	T _A = 85 °C	20	22	
		USART1 enabled	MSI clock, 65 kHz	T_A = -40 °C to 25 °C	15	16	1
		Flash ON,	f _{HCLK} = 65 kHz	T _A = 85 °C	20.5	23	
		V _{DD} from 1.8 V to	MSI clock.	T_A = -40 °C to 25 °C	18	20	
		3.6 V	131 kHz	T _A = 55 °C	21	22	
			f _{HCLK} = 131 kHz	T _A = 85 °C	23	27	
I _{DD} Max (LP Sleep)	Max allowed current in Low power Sleep mode	V _{DD} from 1.8 V to 3.6 V	-	-	-	200	

Table 22. Current consumption in Low power sleep mode

1. Guaranteed by characterization results, unless otherwise specified.

Symbol	Parameter	C	Typ ⁽¹⁾	Max (1)(2)	Unit		
				$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 1.8 \text{ V}$	1.13	-	
			LCD OFF	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.38	4	
				T _A = 55°C	1.70	6	
		RTC clocked by LSI,		T _A = 85°C	3.30	10	
		and HSE OFF	LCD ON	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.50	6	
		(no independent	(static	T _A = 55°C	1.80	7	
		watchildog)	duty) ⁽³⁾	T _A = 85°C	3.45	12	
			LCD ON	$T_A = -40^{\circ}C$ to $25^{\circ}C$	3.80	10	
			(1/8	T _A = 55°C	4.30	11	
			duty)(*)	T _A = 85°C	6.10	16	
	Supply current in		1	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.50	-	
I _{DD} (Stop Sto with RTC) RT	Stop mode with	RTC clocked by LSE external clock (32.768 kHz), regulator in LP mode, HSI and HSE OFF (no independent watchdog)	LCD OFF	T _A = 55°C	1.90	-	
	RTC enabled			T _A = 85°C	3.65	-	
			LCD ON (static duty) ⁽³⁾ LCD ON (1/8 duty) ⁽¹⁾ LCD OFF	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.60	-	μA
				T _A = 55°C	2.05	-	
				T _A = 85°C	3.75	-	
				$T_A = -40^{\circ}C$ to $25^{\circ}C$	3.90	-	
				T _A = 55°C	4.55	-	
				T _A = 85°C	6.35	-	
		RTC clocked by LSE (no independent watchdog) ⁽⁵⁾		$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 1.8 \text{ V}$	1.23	-	
				$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 3.0 \text{ V}$	1.50	-	
				$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 3.6 \text{ V}$	1.75	-	
	Supply current in	Regulator in LP mode, HSI OFF, independent watchdo enabled	and HSE g and LSI	$T_A = -40^{\circ}C$ to 25°C	1.80	2.2	
I _{DD (Stop)}	Stop mode ($T_A = -40^{\circ}C$ to $25^{\circ}C$	0.434	1	
	RIC disabled)	Regulator in LP mode, LSI	, HSI and	T _A = 55°C	0.735	3	
			Matorialogy	T _A = 85°C	2.350	9	
	RMS (root mean	MSI = 4.2 MHz			2	-	
	square) supply current during	MSI = 1.05 MHz		V _{DD} = 3.0 V	1.45	-	1.
from Stop)	wakeup time when exiting from Stop mode	MSI = 65 kHz ⁽⁶⁾		$T_A = -40^{\circ}C$ to 25°C	1.45	-	mA

Table 23. Typical	and maximum cur	rent consumption	ns in Sto	op mode

- 1. The typical values are given for V_{DD} = 3.0 V and max values are given for V_{DD} = 3.6 V, unless otherwise specified.
- 2. Guaranteed by characterization results, unless otherwise specified.
- 3. LCD enabled with external VLCD, static duty, division ratio = 256, all pixels active, no LCD connected.
- 4. LCD enabled with external VLCD, 1/8 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.
- 5. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF loading capacitors.
- When MSI = 64 kHz, the RMS current is measured over the first 15 μs following the wakeup event. For the remaining time
 of the wakeup period, the current is similar to the Run mode current.

Symbol	Parameter	Conditions		Typ ⁽¹⁾	Max (1)(2)	Unit
	Supply current in Standby mode with RTC enabled	۲ ۷		0.865	-	
		RTC clocked by LSI (no	$T_A = -40 \degree C$ to 25 $\degree C$	1.11	1.9	
		independent watchdog)	T _A = 55 °C	1.15	2.2	
I _{DD} (Standby with RTC)			T _A = 85 °C	1.35	4	
		RTC clocked by LSE (no independent watchdog) ⁽³⁾	T _A = -40 °C to 25 °C V _{DD} = 1.8 V	0.97	-	
			T_A = -40 °C to 25 °C	1.28	-	μA
			T _A = 55 °C	1.4	-	
			T _A = 85 °C	1.7	-	
		Independent watchdog and LSI enabled	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	1.0	1.7	
I _{DD}	Supply current in Standby		$T_A = -40 \degree C$ to 25 $\degree C$	0.277	0.6	
(Standby)	Thode with RTC disabled	Independent watchdog and LSI OFF	T _A = 55 °C	0.31	0.9	
			T _A = 85 °C	0.52	2.75	
I _{DD (WU} from Standby)	RMS supply current during wakeup time when exiting from Standby mode	-	V _{DD} = 3.0 V T _A = -40 °C to 25 °C	1	-	mA

Table 24. Typical and maximum current consumptions in Standby mode

1. The typical values are given for V_{DD} = 3.0 V and max values are given for V_{DD} = 3.6 V, unless otherwise specified.

2. Guaranteed by characterization results, unless otherwise specified.

 Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF loading capacitors.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in the following table. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on

		Туріса	Typical consumption, V_{DD} = 3.0 V, T _A = 25 °C					
Peripheral		Range 1, V _{CORE} = 1.8 V VOS[1:0] = 01	Range 2, V _{CORE} = 1.5 V VOS[1:0] = 10	Range 3, V _{CORE} = 1.2 V VOS[1:0] = 11	Low-power sleep and run	Unit		
	TIM2	11.3	9.0	7.3	9.0			
	TIM3	11.4	9.1	7.1	9.1			
	TIM4	11.3	9.0	7.3	9.0			
	TIM6	3.9	3.1	2.5	3.1			
	TIM7	4.2	3.3	2.6	3.3			
	LCD	4.7	3.6	2.9	3.6			
	WWDG	3.7	2.9	2.4	2.9			
	SPI2	5.9	4.8	3.9	4.8			
APB1	USART2	8.1	6.6	5.1	6.6	µA/MHz (fucur)		
	USART3	7.9	6.4	5.0	6.4	(HCLK)		
	I2C1	7.8	6.1	4.9	6.1			
	I2C2	7.2	5.7	4.6	5.7			
	USB	12.7	10.3	8.1	10.3			
	PWR	3.1	2.4	2.0	2.4			
	DAC	6.6	5.3	4.3	5.3			
	COMP	5.3	4.3	3.4	4.3			

Table 25. Peripheral current consumption⁽¹⁾

Low-speed external user clock generated from an external source

The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Min	Тур	Max	Unit	
f _{LSE_ext}	User external clock source frequency	1	32.768	1000	kHz	
V_{LSEH}	OSC32_IN input pin high level voltage	0.7V _{DD}	-	V _{DD}	-	
V_{LSEL}	OSC32_IN input pin low level voltage	V_{SS}	_	$0.3V_{DD}$	-	
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time	465	-	-	2	
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time	-	-	10	- ns	
C _{IN(LSE)}	OSC32_IN input capacitance	-	0.6	-	pF	

Table 28. Low-s	speed external	user clock	characteristics ⁽¹⁾
-----------------	----------------	------------	--------------------------------

1. Guaranteed by design.

Figure 12. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 1 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 29*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Table 29. HSE oscillator characteristics ⁽¹)(2	?)
--	-----	----

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{OSC_IN}	Oscillator frequency	-	1		24	MHz
R _F	Feedback resistor	-		200	-	kΩ

Symbol	Parameter	Condition	Тур	Max	Unit
		MSI range 0	-	40	
		MSI range 1	-	20	
		MSI range 2	-	10	
		MSI range 3	-	4	
t _{STAB(MSI)} ⁽²⁾	MSI oscillator stabilization time	MSI range 4	-	2.5	μs
		MSI range 5	-	2	
		MSI range 6, Voltage range 1 and 2	-	2	
		MSI range 3, Voltage Range 3	-	3	
f _{OVER(MSI)}	MSL oscillator frequency overshoot	Any range to range 5	-	4	MH-7
		Any range to range 6	-	6	IVITZ

Table 33. MSI oscillator characteristics (continued)

1. This is a deviation for an individual part, once the initial frequency has been measured.

2. Guaranteed by characterization results.

6.3.8 PLL characteristics

The parameters given in *Table 34* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

Table 34.	PLL	chara	cteris	stics
-----------	-----	-------	--------	-------

Symbol	Paramotor		Unit		
Symbol	Falameter	Min	Тур	Max ⁽¹⁾	Onic
f	PLL input clock ⁽²⁾	2	-	24	MHz
'PLL_IN	PLL input clock duty cycle	45	-	55	%
f _{PLL_OUT}	PLL output clock	2	-	32	MHz
t _{LOCK}	PLL lock time PLL input = 16 MHz PLL VCO = 96 MHz	-	115	160	μs
Jitter	Cycle-to-cycle jitter	-	-	± 600	ps
I _{DDA} (PLL)	Current consumption on V _{DDA}	-	220	450	
I _{DD} (PLL)	Current consumption on V _{DD}	-	120	150	μΑ

1. Guaranteed by characterization results.

2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by $f_{\mathsf{PLL}_\mathsf{OUT}}$.

6.3.9 Memory characteristics

The characteristics are given at $T_{\textrm{A}}$ = -40 to 85 °C unless otherwise specified.

RAM memory

Table	35.	RAM	and	hardware	registers
labic	00.	1.0-1111	una	nuiawuic	registers

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
VRM	Data retention mode ⁽¹⁾	STOP mode (or RESET)	1.8	-	-	V

1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode).

Flash memory and data EEPROM

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
V_{DD}	Operating voltage Read / Write / Erase	-	1.8	-	3.6	V
t _{prog}	Programming / erasing time for	Erasing	-	3.28	3.94	
	byte / word / double word / half- page	Programming	-	3.28	3.94	ms
I _{DD}	Average current during whole program/erase operation	T - 25 °C V - 3 6 V	-	300	-	μA
	Maximum current (peak) during program/erase operation	r _A – 25 °C, v _{DD} – 3.0 v	-	1.5	2.5	mA

Table 36. Flash memory and data EEPROM characteristics

1. Guaranteed by design.

Table 37. Flash memory, data EEPROM endurance and data retention

Symbol	Parameter	Conditions	Value			Unit
Symbol	Falainetei	Conditions	Min ⁽¹⁾	Тур	Max	Unit
N _{CYC} ⁽²⁾	Cycling (erase / write) Program memory	$T_A = -40^{\circ}C$ to	1	-	-	kovolos
	Cycling (erase / write) EEPROM data memory	85 °C	100	-	-	KCycles
↓ (2)	Data retention (program memory) after 1 kcycle at T _A = 85 °C	T = +85 °C	10	-	-	Vears
'RET` ´	Data retention (EEPROM data memory) after 100 kcycles at $T_A = 85 \ ^{\circ}C$	1 _{RET} - 105 C	10	-	-	years

1. Guaranteed by characterization results.

2. Characterization is done according to JEDEC JESD22-A117.

57

6.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during the device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 38*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25 °C, f _{HCLK} = 32 MHz conforms to IEC 61000-4-2	3B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3$ V, LQFP100, $T_A = +25$ °C, f _{HCLK} = 32 MHz conforms to IEC 61000-4-4	4A

Table 38. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions		Max vs			
			Monitored frequency band	4 MHz voltage Range 3	16 MHz voltage Range 2	32 MHz voltage Range 1	Unit
S _{EMI}	Peak level	$V_{DD} = 3.3 V,$ $T_A = 25 °C,$ LQFP100 package compliant with IEC 61967-2	0.1 to 30 MHz	-16	-7	-3	
			30 to 130 MHz	-12	2	12	dBµV
			130 MHz to 1GHz	-11	0	8	
			SAE EMI Level	1	1.5	2	-

Table 39. EMI characteristics

6.3.11 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114, ANSI/ESD STM5.3.1 standard.

Symbol	Ratings	Conditions	Packages	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25$ °C, conforming to JESD22-A114	All	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25$ °C, conforming to ANSI/ESD STM5.3.1	All	C4	500	V

Table 40. ESD absolute maximum ratings

1. Guaranteed by characterization results.

Symbol	Parameter	Conditions	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit		
Input leve	Input levels						
V _{DD}	USB operating voltage ⁽²⁾	-	3.0	3.6	V		
V _{DI} ⁽³⁾	Differential input sensitivity	I(USB_DP, USB_DM)	0.2	-			
V _{CM} ⁽³⁾	Differential common mode range	Includes V _{DI} range	0.8	2.5	V		
V _{SE} ⁽³⁾	Single ended receiver threshold	-	1.3	2.0			
Output levels							
V _{OL} ⁽⁴⁾	Static output level low	${\sf R}_{\sf L}$ of 1.5 k\Omega to 3.6 ${\sf V}^{(5)}$	-	0.3	V		
V _{OH} ⁽⁴⁾	Static output level high	${\sf R}_{\sf L}$ of 15 $k\Omega$ to ${\sf V}_{\sf SS}^{(5)}$	2.8	3.6	v		

Table 52. USB DC electrical characteristics

1. All the voltages are measured from the local ground potential.

2. To be compliant with the USB 2.0 full speed electrical specification, the USB_DP (D+) pin should be pulled up with a 1.5 k Ω resistor to a 3.0-to-3.6 V voltage range.

3. Guaranteed by characterization results.

4. Guaranteed by test in production.

5. $\ensuremath{\,R_L}$ is the load connected on the USB drivers.

Figure 21. USB timings: definition of data signal rise and fall time

Table 53. USB: full speed electrical characteristics

Driver characteristics ⁽¹⁾						
Symbol	Parameter	Conditions	Min	Max	Unit	
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns	
t _f	Fall Time ⁽²⁾	C _L = 50 pF	4	20	ns	
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%	
V _{CRS}	Output signal crossover voltage	-	1.3	2.0	V	

1. Guaranteed by design.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification section 7 (version 2.0).

8 Ordering information

Table 65. Ordering information scheme						
Example:	STM32	L 100 R B	Т	6	А	TR
Device family						
STM32 = ARM-based 32-bit microcontroller						
Product type						
L = Low power						
Device subfamily						
100						
Pin count						
C = 48 pins						
R = 64 pins						
Flash memory size						
6 = 32 Kbytes of Flash memory						
8 = 64 Kbytes of Flash memory						
B = 128 Kbytes of Flash memory						
Package						
T = LQFP						
U = UFQFPN						
Temperature range						
6 = Industrial temperature range, -40 to 85 °C						
Options						
A = Device generation A						
Packing						

TR = tape and reel

No character = tray or tube

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

