
Microchip Technology - ATMEGA168-15AD Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 23

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 150°C (TA)

Mounting Type Surface Mount

Package / Case 32-TQFP

Supplier Device Package 32-TQFP (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega168-15ad

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega168-15ad-4411502
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

● I/O and packages

● 23 programmable I/O lines
● Green/ROHS 32-lead TQFP and 32-pad QFN

● Operating voltage:

● 2.7 - 5.5V

● Temperature range:

● –40°C to 150°C

● Speed grade:

● ATmega88/168: 0 to 8MHz at 2.7 to 5.5V, 0 - 16MHz at 4.5 to 5.5V

● Low power consumption

● Active mode:
● 4MHz, 3.0V: 1.8mA

● Power-down mode:
● 5µA at 3.0V

● AEC-Q100 Grade 0 qualified
ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

2

• Bit 5 - PRTIM0: Power Reduction Timer/Counter0

Writing a logic one to this bit shuts down the Timer/Counter0 module. When the Timer/Counter0 is enabled, operation will
continue like before the shutdown.

• Bit 4 - Res: Reserved bit

This bit is reserved in Atmel® ATmega88/168 and will always read as zero.

• Bit 3 - PRTIM1: Power Reduction Timer/Counter1

Writing a logic one to this bit shuts down the Timer/Counter1 module. When the Timer/Counter1 is enabled, operation will
continue like before the shutdown.

• Bit 2 - PRSPI: Power Reduction Serial Peripheral Interface

If using debugWIRE on-chip debug system, this bit should not be written to one. Writing a logic one to this bit shuts down the
serial peripheral interface by stopping the clock to the module. When waking up the SPI again, the SPI should be
re-initialized to ensure proper operation.

• Bit 1 - PRUSART0: Power Reduction USART0

Writing a logic one to this bit shuts down the USART by stopping the clock to the module. When waking up the USART
again, the USART should be re-initialized to ensure proper operation.

• Bit 0 - PRADC: Power Reduction ADC

Writing a logic one to this bit shuts down the ADC. The ADC must be disabled before shut down. The analog comparator
cannot use the ADC input MUX when the ADC is shut down.

7.8 Minimizing Power Consumption

There are several possibilities to consider when trying to minimize the power consumption in an AVR® controlled system. In
general, sleep modes should be used as much as possible, and the sleep mode should be selected so that as few as
possible of the device’s functions are operating. All functions not needed should be disabled. In particular, the following
modules may need special consideration when trying to achieve the lowest possible power consumption.

7.8.1 Analog to Digital Converter

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be disabled before entering any
sleep mode. When the ADC is turned off and on again, the next conversion will be an extended conversion. Refer to Section
21. “Analog-to-Digital Converter” on page 204 for details on ADC operation.

7.8.2 Analog Comparator

When entering idle mode, the analog comparator should be disabled if not used. When entering ADC noise reduction mode,
the analog comparator should be disabled. In other sleep modes, the analog comparator is automatically disabled. However,
if the analog comparator is set up to use the internal voltage reference as input, the analog comparator should be disabled in
all sleep modes. Otherwise, the internal voltage reference will be enabled, independent of sleep mode. Refer to
Section 20. “Analog Comparator” on page 201 for details on how to configure the analog comparator.

7.8.3 Brown-out Detector

If the brown-out detector is not needed by the application, this module should be turned off. If the brown-out detector is
enabled by the BODLEVEL fuses, it will be enabled in all sleep modes, and hence, always consume power. In the deeper
sleep modes, this will contribute significantly to the total current consumption. Refer to
Section 8.5 “Brown-out Detection” on page 41 for details on how to configure the brown-out detector.
ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

36

Figure 8-1. Reset Logic

8.3 Power-on Reset

A power-on reset (POR) pulse is generated by an on-chip detection circuit. The detection level is defined in
Table 8-1 on page 40. The POR is activated whenever VCC is below the detection level. The POR circuit can be used to
trigger the start-up Reset, as well as to detect a failure in supply voltage.

A power-on reset (POR) circuit ensures that the device is reset from power-on. Reaching the power-on reset threshold
voltage invokes the delay counter, which determines how long the device is kept in RESET after VCC rise. The RESET signal
is activated again, without any delay, when VCC decreases below the detection level.

Power-on Reset
Circuit

Brown-out
Reset Circuit

MCU Status
Register (MCUSR)

Reset Circuit
Pull-up Resistor

BODLEVEL [2 to 0]

S
Q

R

DATA BUS

CK

SUT[1:0]

CKSEL[3:0]

RSTDISBL C
O

U
N

TE
R

 R
E

S
E

T IN
TE

R
N

A
L

R
E

S
E

T

TIMEOUT

SPIKE
FILTERRESET

VCC

Delay Counters

Watchdog
Timer

Watchdog
Oscillator

Clock
Generator

P
O

R
F

B
O

R
F

W
D

R
F

E
X

TR
F

39ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

When the BOOTRST fuse is unprogrammed, the boot section size set to 2K bytes and the IVSEL bit in the MCUCR register
is set before any interrupts are enabled, the most typical and general program setup for the reset and interrupt vector
addresses in ATmega168 is:

Address Labels Code Comments
0x0000 RESET: ldi r16,high(RAMEND); Main program start
0x0001 out SPH,r16 ; Set Stack Pointer to top of RAM
0x0002 ldi r16,low(RAMEND)
0x0003 out SPL,r16
0x0004 sei ; Enable interrupts
0x0005 <instr> xxx
;
.org 0xC02
0x1C02 jmp EXT_INT0 ; IRQ0 Handler
0x1C04 jmp EXT_INT1 ; IRQ1 Handler
... ;
0x1C32 jmp SPM_RDY ; Store Program Memory Ready Handler

When the BOOTRST fuse is programmed and the boot section size set to 2Kbytes, the most typical and general program
setup for the reset and interrupt vector addresses in Atmel® ATmega168 is:

Address Labels Code Comments
.org 0x0002
0x0002 jmp EXT_INT0 ; IRQ0 Handler
0x0004 jmp EXT_INT1 ; IRQ1 Handler
... ;
0x0032 jmp SPM_RDY ; Store Program Memory Ready Handler
;
.org 0x1C00
0x1C00 RESET: ldi r16,high(RAMEND); Main program start
0x1C01 out SPH,r16 ; Set Stack Pointer to top of RAM
0x1C02 ldi r16,low(RAMEND)
0x1C03 out SPL,r16
0x1C04 sei ; Enable interrupts
0x1C05 <instr> xxx

When the BOOTRST Fuse is programmed, the Boot section size set to 2K bytes and the IVSEL bit in the MCUCR Register
is set before any interrupts are enabled, the most typical and general program setup for the Reset and Interrupt Vector
Addresses in ATmega168 is:

Address Labels Code Comments
;
.org 0x1C00
0x1C00 jmp RESET ; Reset handler
0x1C02 jmp EXT_INT0 ; IRQ0 Handler
0x1C04 jmp EXT_INT1 ; IRQ1 Handler
... ;
0x1C32 jmp SPM_RDY ; Store Program Memory Ready Handler
;
0x1C33 RESET: ldi r16,high(RAMEND); Main program start
0x1C34 out SPH,r16 ; Set Stack Pointer to top of RAM
0x1C35 ldi r16,low(RAMEND)
0x1C36 out SPL,r16
0x1C37 sei ; Enable interrupts
0x1C38 <instr> xxx
53ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

When reading back a software assigned pin value, a nop instruction must be inserted as indicated in Figure 10-4. The out
instruction sets the “SYNC LATCH” signal at the positive edge of the clock. In this case, the delay tpd through the
synchronizer is 1 system clock period.

Figure 10-4. Synchronization when Reading a Software Assigned Pin Value

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define the port pins from 4 to 7 as
input with pull-ups assigned to port pins 6 and 7. The resulting pin values are read back again, but as previously discussed,
a nop instruction is included to be able to read back the value recently assigned to some of the pins.

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-ups are set on pins
0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3 as low and redefining bits 0 and 1 as
strong high drivers.

Assembly Code Example(1)

...
; Define pull-ups and set outputs high
; Define directions for port pins
ldi r16,(1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)
ldi r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)
out PORTB,r16
out DDRB,r17
; Insert nop for synchronization
nop
; Read port pins
in r16,PINB
...

C Code Example

unsigned char i;
...
/* Define pull-ups and set outputs high */
/* Define directions for port pins */
PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);
DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);
/* Insert nop for synchronization*/
__no_operation();
/* Read port pins */
i = PINB;
...

SYSTEM CLK

INSTRUCTIOS

SYNC LATCH

PINxn

r16

r17

out PORTx, r16 nop

0x00 0xFF

0xFF

in r17, PINx

tpd
ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

58

12.1.1 Definitions

Many register and bit references in this section are written in general form. A lower case “n” replaces the Timer/Counter
number, in this case 0. A lower case “x” replaces the output compare unit, in this case compare unit A or compare unit B.
However, when using the register or bit defines in a program, the precise form must be used, i.e., TCNT0 for accessing
Timer/Counter0 counter value and so on.

The definitions in the following table are also used extensively throughout the document.

12.1.2 Registers

The Timer/Counter (TCNT0) and output compare registers (OCR0A and OCR0B) are 8-bit registers. Interrupt request
(abbreviated to int.req. in the figure) signals are all visible in the timer interrupt flag register (TIFR0). All interrupts are
individually masked with the timer interrupt mask register (TIMSK0). TIFR0 and TIMSK0 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the T0 pin. The clock select
logic block controls which clock source and edge the Timer/Counter uses to increment (or decrement) its value. The
Timer/Counter is inactive when no clock source is selected. The output from the clock select logic is referred to as the timer
clock (clkT0).

The double buffered output compare registers (OCR0A and OCR0B) are compared with the Timer/Counter value at all
times. The result of the compare can be used by the waveform generator to generate a PWM or variable frequency output on
the output compare pins (OC0A and OC0B). See Section 14.6.3 “Using the Output Compare Unit” on page 102 for details.
The compare match event will also set the compare flag (OCF0A or OCF0B) which can be used to generate an output
compare interrupt request.

12.2 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by the clock
select logic which is controlled by the clock select (CS02:0) bits located in the Timer/Counter control register (TCCR0B). For
details on clock sources and prescaler, see Section 13. “Timer/Counter0 and Timer/Counter1 Prescalers” on page 90.

12.3 Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 12-2 shows a block diagram
of the counter and its surroundings.

Figure 12-2. Counter Unit Block Diagram

Table 12-1. Definitions

Parameters Definitions

BOTTOM The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP
The counter reaches the TOP when it becomes equal to the highest value in the count sequence. The
TOP value can be assigned to be the fixed value 0xFF (MAX) or the value stored in the OCR0A register.
The assignment is dependent on the mode of operation.

topbottom

TOVn
(Int. Req.)DATA BUS

Control LogicTCNTn
clkTnclear

count

direction

Edge
Detector

(from Prescaler)

Clock Select

Tn
ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

76

12.8.6 Timer/Counter Interrupt Mask Register – TIMSK0

• Bits 7..3 – Res: Reserved Bits

These bits are reserved bits in the Atmel® ATmega88/168 and will always read as zero.

• Bit 2 – OCIE0B: Timer/Counter Output Compare Match B Interrupt Enable

When the OCIE0B bit is written to one, and the I-bit in the status register is set, the Timer/Counter compare match B interrupt
is enabled. The corresponding interrupt is executed if a compare match in Timer/Counter occurs, i.e., when the OCF0B bit is
set in the Timer/Counter interrupt flag register – TIFR0.

• Bit 1 – OCIE0A: Timer/Counter0 Output Compare Match A Interrupt Enable

When the OCIE0A bit is written to one, and the I-bit in the status register is set, the Timer/Counter0 compare match A
interrupt is enabled. The corresponding interrupt is executed if a compare match in Timer/Counter0 occurs, i.e., when the
OCF0A bit is set in the Timer/Counter 0 interrupt flag register – TIFR0.

• Bit 0 – TOIE0: Timer/Counter0 Overflow Interrupt Enable

When the TOIE0 bit is written to one, and the I-bit in the status register is set, the Timer/Counter0 overflow interrupt is
enabled. The corresponding interrupt is executed if an overflow in Timer/Counter0 occurs, i.e., when the TOV0 bit is set in
the Timer/Counter 0 interrupt flag register – TIFR0.

12.8.7 Timer/Counter 0 Interrupt Flag Register – TIFR0

• Bits 7..3 – Res: Reserved Bits

These bits are reserved bits in the Atmel ATmega88/168 and will always read as zero.

• Bit 2 – OCF0B: Timer/Counter 0 Output Compare B Match Flag

The OCF0B bit is set when a compare match occurs between the Timer/Counter and the data in OCR0B – output compare
register0 B. OCF0B is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively,
OCF0B is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE0B (Timer/Counter compare B match
interrupt enable), and OCF0B are set, the Timer/Counter compare match interrupt is executed.

• Bit 1 – OCF0A: Timer/Counter 0 Output Compare A Match Flag

The OCF0A bit is set when a compare match occurs between the Timer/Counter0 and the data in OCR0A – output compare
register0. OCF0A is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, OCF0A
is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE0A (Timer/Counter0 compare match interrupt
enable), and OCF0A are set, the Timer/Counter0 compare match interrupt is executed.

• Bit 0 – TOV0: Timer/Counter0 Overflow Flag

The bit TOV0 is set when an overflow occurs in Timer/Counter0. TOV0 is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, TOV0 is cleared by writing a logic one to the flag. When the
SREG I-bit, TOIE0 (Timer/Counter0 overflow interrupt enable), and TOV0 are set, the Timer/Counter0 overflow interrupt is
executed.

The setting of this flag is dependent of the WGM02:0 bit setting. Refer to Table 12-8 on page 87 in Section 12-8 “Waveform
Generation Mode Bit Description” on page 87.

Bit 7 6 5 4 3 2 1 0

– – – – – OCIE0B OCIE0A TOIE0 TIMSK0

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – – OCF0B OCF0A TOV0 TIFR0

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
89ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

• Bit 2 – OCIE1B: Timer/Counter1, Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the status register is set (interrupts globally enabled), the Timer/Counter1
output compare B match interrupt is enabled. The corresponding interrupt vector (see Section 9. “Interrupts” on page 48) is
executed when the OCF1B flag, located in TIFR1, is set.

• Bit 1 – OCIE1A: Timer/Counter1, Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the status register is set (interrupts globally enabled), the Timer/Counter1
output compare A match interrupt is enabled. The corresponding interrupt vector (see Section 9. “Interrupts” on page 48) is
executed when the OCF1A flag, located in TIFR1, is set.

• Bit 0 – TOIE1: Timer/Counter1, Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the status register is set (interrupts globally enabled), the Timer/Counter1
overflow interrupt is enabled. The corresponding interrupt vector (see Section 8.9 “Watchdog Timer” on page 44) is executed
when the TOV1 flag, located in TIFR1, is set.

14.10.9 Timer/Counter1 Interrupt Flag Register – TIFR1

• Bit 7, 6 – Res: Reserved Bits

These bits are unused bits in the Atmel ATmega88/168, and will always read as zero.

• Bit 5 – ICF1: Timer/Counter1, Input Capture Flag

This flag is set when a capture event occurs on the ICP1 pin. When the input capture register (ICR1) is set by the WGM13:0
to be used as the TOP value, the ICF1 flag is set when the counter reaches the TOP value.

ICF1 is automatically cleared when the input capture interrupt vector is executed. Alternatively, ICF1 can be cleared by
writing a logic one to its bit location.

• Bit 4, 3 – Res: Reserved Bits

These bits are unused bits in the Atmel ATmega88/168, and will always read as zero.

• Bit 2 – OCF1B: Timer/Counter1, Output Compare B Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the output compare register B (OCR1B).

Note that a forced output compare (FOC1B) strobe will not set the OCF1B flag.

OCF1B is automatically cleared when the output compare match B interrupt vector is executed. Alternatively, OCF1B can be
cleared by writing a logic one to its bit location.

• Bit 1 – OCF1A: Timer/Counter1, Output Compare A Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the output compare register A (OCR1A).

Note that a forced output compare (FOC1A) strobe will not set the OCF1A flag.

OCF1A is automatically cleared when the output compare match A interrupt vector is executed. Alternatively, OCF1A can be
cleared by writing a logic one to its bit location.

• Bit 0 – TOV1: Timer/Counter1, Overflow Flag

The setting of this flag is dependent of the WGM13:0 bits setting. In normal and CTC modes, the TOV1 flag is set when the
timer overflows. Refer to Table 14-5 on page 112 for the TOV1 flag behavior when using another WGM13:0 bit setting.

TOV1 is automatically cleared when the Timer/Counter1 overflow interrupt vector is executed. Alternatively, TOV1 can be
cleared by writing a logic one to its bit location.

Bit 7 6 5 4 3 2 1 0

– – ICF1 – – OCF1B OCF1A TOV1 TIFR1

Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

116

Signal description (internal signals):
count Increment or decrement TCNT2 by 1.

direction Selects between increment and decrement.

clear Clear TCNT2 (set all bits to zero).

clkTn Timer/Counter clock, referred to as clkT2 in the following.

top Signalizes that TCNT2 has reached maximum value.

bottom Signalizes that TCNT2 has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or decremented at each timer clock (clkT2).
clkT2 can be generated from an external or internal clock source, selected by the clock select bits (CS22:0). When no clock
source is selected (CS22:0 = 0) the timer is stopped. However, the TCNT2 value can be accessed by the CPU, regardless of
whether clkT2 is present or not. A CPU write overrides (has priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits located in the Timer/Counter control
register (TCCR2A) and the WGM22 located in the Timer/Counter control register B (TCCR2B). There are close connections
between how the counter behaves (counts) and how waveforms are generated on the output compare outputs OC2A and
OC2B. For more details about advanced counting sequences and waveform generation, see Section 15.6 “Modes of
Operation” on page 121.

The Timer/Counter overflow flag (TOV2) is set according to the mode of operation selected by the WGM22:0 bits. TOV2 can
be used for generating a CPU interrupt.

15.4 Output Compare Unit

The 8-bit comparator continuously compares TCNT2 with the output compare register (OCR2A and OCR2B). Whenever
TCNT2 equals OCR2A or OCR2B, the comparator signals a match. A match will set the output compare flag (OCF2A or
OCF2B) at the next timer clock cycle. If the corresponding interrupt is enabled, the output compare flag generates an output
compare interrupt. The output compare flag is automatically cleared when the interrupt is executed. Alternatively, the output
compare flag can be cleared by software by writing a logical one to its I/O bit location. The waveform generator uses the
match signal to generate an output according to operating mode set by the WGM22:0 bits and compare output mode
(COM2x1:0) bits. The max and bottom signals are used by the waveform generator for handling the special cases of the
extreme values in some modes of operation (Section 15.6 “Modes of Operation” on page 121).

Figure 15-3 shows a block diagram of the output compare unit.

Figure 15-3. Output Compare Unit, Block Diagram

OCFnx (Int. Req.)

= (8-bit Comparator)

OCRnx

Waveform Generator

TCNTn

OCnx

top

bottom

FOCn

WGMn1:0 COMnX1:0

DATA BUS
119ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

15.6.1 Normal Mode

The simplest mode of operation is the normal mode (WGM22:0 = 0). In this mode the counting direction is always up
(incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 8-bit value
(TOP = 0xFF) and then restarts from the bottom (0x00). In normal operation the Timer/Counter overflow flag (TOV2) will be
set in the same timer clock cycle as the TCNT2 becomes zero. The TOV2 flag in this case behaves like a ninth bit, except
that it is only set, not cleared. However, combined with the timer overflow interrupt that automatically clears the TOV2 flag,
the timer resolution can be increased by software. There are no special cases to consider in the normal mode, a new counter
value can be written anytime.

The output compare unit can be used to generate interrupts at some given time. Using the output compare to generate
waveforms in normal mode is not recommended, since this will occupy too much of the CPU time.

15.6.2 Clear Timer on Compare Match (CTC) Mode

In clear timer on compare or CTC mode (WGM22:0 = 2), the OCR2A register is used to manipulate the counter resolution. In
CTC mode the counter is cleared to zero when the counter value (TCNT2) matches the OCR2A. The OCR2A defines the top
value for the counter, hence also its resolution. This mode allows greater control of the compare match output frequency. It
also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 15-5. The counter value (TCNT2) increases until a compare match
occurs between TCNT2 and OCR2A, and then counter (TCNT2) is cleared.

Figure 15-5. CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by using the OCF2A flag. If the interrupt
is enabled, the interrupt handler routine can be used for updating the TOP value. However, changing TOP to a value close to
BOTTOM when the counter is running with none or a low prescaler value must be done with care since the CTC mode does
not have the double buffering feature. If the new value written to OCR2A is lower than the current value of TCNT2, the
counter will miss the compare match. The counter will then have to count to its maximum value (0xFF) and wrap around
starting at 0x00 before the compare match can occur.

For generating a waveform output in CTC mode, the OC2A output can be set to toggle its logical level on each compare
match by setting the compare output mode bits to toggle mode (COM2A1:0 = 1). The OC2A value will not be visible on the
port pin unless the data direction for the pin is set to output. The waveform generated will have a maximum frequency of
fOC2A = fclk_I/O/2 when OCR2A is set to zero (0x00). The waveform frequency is defined by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the normal mode of operation, the TOV2 flag is set in the same timer clock cycle that the counter counts from MAX to
0x00.

1 2

TCNTn

(COMnx1:0 = 1)OCnx
(Toggle)

Period
3

OCnx Interrupt
Flag Set

4

fOCnx

fclk_I/O

2 N 1 OCRnx+  
---=
ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

122

7. The application software should now examine the value of TWSR, to make sure that the data packet was
successfully transmitted, and that the value of the ACK bit was as expected. If TWSR indicates otherwise, the
application software might take some special action, like calling an error routine. Assuming that the status code is
as expected, the application must write a specific value to TWCR, instructing the TWI hardware to transmit a
STOP condition. Which value to write is described later on. However, it is important that the TWINT bit is set in the
value written. Writing a one to TWINT clears the flag. The TWI will not start any operation as long as the TWINT bit
in TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate transmission of the
STOP condition. Note that TWINT is NOT set after a STOP condition has been sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions. These can be summarized as
follows:

● When the TWI has finished an operation and expects application response, the TWINT flag is set. The SCL line is
pulled low until TWINT is cleared.

● When the TWINT flag is set, the user must update all TWI registers with the value relevant for the next TWI bus cycle.
As an example, TWDR must be loaded with the value to be transmitted in the next bus cycle.

● After all TWI register updates and other pending application software tasks have been completed, TWCR is written.
When writing TWCR, the TWINT bit should be set. Writing a one to TWINT clears the flag. The TWI will then
commence executing whatever operation was specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that the code below assumes that several
definitions have been made, for example by using include-files.

Table 19-3. Code Example

No. Assembly Code Example C Example Comments

1
ldi r16, (1<<TWINT)|(1<<TWSTA)|
(1<<TWEN)
out TWCR, r16

TWCR = (1<<TWINT)|(1<<TWSTA)|
(1<<TWEN) Send START condition

2

wait1:
in r16,TWCR
sbrs r16,TWINT
rjmp wait1

while (!(TWCR & (1<<TWINT)));
Wait for TWINT flag set. This
indicates that the START
condition has been transmitted

3

in r16,TWSR
andi r16, 0xF8
cpi r16, START
brne ERROR

if ((TWSR & 0xF8) != START
ERROR();

Check value of TWI status
register. Mask prescaler bits. If
status different from START go
to ERROR

ldi r16, SLA_W
out TWDR, r16
ldi r16, (1<<TWINT) |
(1<<TWEN)
out TWCR, r16

TWDR = SLA_W;
TWCR = (1<<TWINT) |
(1<<TWEN);

Load SLA_W into TWDR
register. Clear TWINT bit in
TWCR to start transmission of
address

4

wait2:
in r16,TWCR
sbrs r16,TWINT
rjmp wait2

while (!(TWCR & (1<<TWINT)))
;

Wait for TWINT flag set. This
indicates that the SLA+W has
been transmitted, and
ACK/NACK has been received.

5

in r16,TWSR
andi r16, 0xF8
cpi r16, MT_SLA_ACK
brne ERROR

if ((TWSR & 0xF8) !=
MT_SLA_ACK)
ERROR();

Check value of TWI status
register. Mask prescaler bits. If
status different from
MT_SLA_ACK go to ERROR

ldi r16, DATA
out TWDR, r16
ldi r16, (1<<TWINT) |
(1<<TWEN)
out TWCR, r16

TWDR = DATA;
TWCR = (1<<TWINT) |
(1<<TWEN);

Load DATA into TWDR
register. Clear TWINT bit in
TWCR to start transmission of
data
185ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

To initiate the slave receiver mode, TWAR and TWCR must be initialized as follows:

The upper 7 bits are the address to which the 2-wire serial interface will respond when addressed by a master. If the LSB is
set, the TWI will respond to the general call address (0x00), otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable the acknowledgement of
the device’s own slave address or the general call address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own slave address (or the general
call address if enabled) followed by the data direction bit. If the direction bit is “0” (write), the TWI will operate in SR mode,
otherwise ST mode is entered. After its own slave address and the write bit have been received, the TWINT flag is set and a
valid status code can be read from TWSR. The status code is used to determine the appropriate software action. The
appropriate action to be taken for each status code is detailed in Table 19-6 on page 194. The slave receiver mode may also
be entered if arbitration is lost while the TWI is in the master mode (see states 0x68 and 0x78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”) to SDA after the next received data
byte. This can be used to indicate that the slave is not able to receive any more bytes. While TWEA is zero, the TWI does not
acknowledge its own slave address. However, the 2-wire serial bus is still monitored and address recognition may resume at
any time by setting TWEA. This implies that the TWEA bit may be used to temporarily isolate the TWI from the 2-wire serial
bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA bit is set, the interface can
still acknowledge its own slave address or the general call address by using the 2-wire serial bus clock as a clock source.
The part will then wake up from sleep and the TWI will hold the SCL clock low during the wake up and until the TWINT flag is
cleared (by writing it to one). Further data reception will be carried out as normal, with the AVR clocks running as normal.
Observe that if the AVR® is set up with a long start-up time, the SCL line may be held low for a long time, blocking other data
transmissions.

Note that the 2-wire serial interface data register – TWDR does not reflect the last byte present on the bus when waking up
from these sleep modes.

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

value Device’s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 0 1 0 0 0 1 0 X
193ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

21.6 ADC Conversion Result

After the conversion is complete (ADIF is high), the conversion result can be found in the ADC result registers (ADCL,
ADCH).

For single ended conversion, the result is:

where VIN is the voltage on the selected input pin and VREF the selected voltage reference (see Table 21-2 and
Table 21-3 on page 216). 0x000 represents analog ground, and 0x3FF represents the selected reference voltage minus one
LSB.

21.6.1 ADC Multiplexer Selection Register – ADMUX

• Bit 7:6 – REFS1:0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in Table 21-2. If these bits are changed during a conversion,
the change will not go in effect until this conversion is complete (ADIF in ADCSRA is set). The internal voltage reference
options may not be used if an external reference voltage is being applied to the AREF pin.

• Bit 5 – ADLAR: ADC Left Adjust Result

The ADLAR bit affects the presentation of the ADC conversion result in the ADC data register. Write one to ADLAR to left
adjust the result. Otherwise, the result is right adjusted. Changing the ADLAR bit will affect the ADC data register
immediately, regardless of any ongoing conversions. For a complete description of this bit, see Section 21.6.3 “The ADC
Data Register – ADCL and ADCH” on page 217.

• Bit 4 – Res: Reserved Bit

This bit is an unused bit in the Atmel® ATmega88/168, and will always read as zero.

• Bits 3:0 – MUX3:0: Analog Channel Selection Bits

The value of these bits selects which analog inputs are connected to the ADC. See Table 21-3 on page 216 for details. If
these bits are changed during a conversion, the change will not go in effect until this conversion is complete (ADIF in
ADCSRA is set).

ADC
VIN 1024

VREF
-------------------------=

Bit 7 6 5 4 3 2 1 0

REFS1 REFS0 ADLAR – MUX3 MUX2 MUX1 MUX0 ADMUX

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 21-2. Voltage Reference Selections for ADC

REFS1 REFS0 Voltage Reference Selection

0 0 AREF, Internal Vref turned off

0 1 AVCC with external capacitor at AREF pin

1 0 Reserved

1 1 Internal 1.1V Voltage Reference with external capacitor at AREF pin
215ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

22. debugWIRE On-chip Debug System

22.1 Features
● Complete program flow control

● Emulates all on-chip functions, both digital and analog, except RESET pin

● Real-time operation

● Symbolic debugging support (both at C and assembler source Level, or for other HLLs)

● Unlimited number of program break points (using software break points)

● Non-intrusive operation

● Electrical characteristics identical to real device

● Automatic configuration system

● High-speed operation

● Programming of non-volatile memories

22.2 Overview

The debugWIRE on-chip debug system uses a one-wire, bi-directional interface to control the program flow, execute AVR®
instructions in the CPU and to program the different non-volatile memories.

22.3 Physical Interface

When the debugWIRE enable (DWEN) fuse is programmed and lock bits are unprogrammed, the debugWIRE system within
the target device is activated. The RESET port pin is configured as a wire-AND (open-drain) bi-directional I/O pin with pull-up
enabled and becomes the communication gateway between target and emulator.

Figure 22-1. The debugWIRE Setup

Figure 22-1 shows the schematic of a target MCU, with debugWIRE enabled, and the emulator connector. The system clock
is not affected by debugWIRE and will always be the clock source selected by the CKSEL fuses.

When designing a system where debugWIRE will be used, the following observations must be made for correct operation:

● Pull-up resistors on the dW/(RESET) line must not be smaller than 10k. The pull-up resistor is not required for
debugWIRE functionality.

● Connecting the RESET pin directly to VCC will not work.

● Capacitors connected to the RESET pin must be disconnected when using debugWire.

● All external reset sources must be disconnected.

GND

2.7 - 5.5V

dw

VCC

dw(RESET)
219ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

Table 24-16. Serial Programming Instruction Set

Instruction

Instruction Format

OperationByte 1 Byte 2 Byte 3 Byte4

Programming enable 1010 1100 0101 0011 xxxx xxxx xxxx xxxx
Enable serial programming after
RESET goes low.

Chip erase 1010 1100 100x xxxx xxxx xxxx xxxx xxxx Chip erase EEPROM and flash.

Read program memory 0010 H000 000a aaaa bbbb bbbb oooo oooo
Read H (high or low) data o from
program memory at word address
a:b.

Load program memory page 0100 H000 000x xxxx xxbb bbbb iiii iiii

Write H (high or low) data i to
program memory page at word
address b. Data low byte must be
loaded before data high byte is
applied within the same address.

Write program memory page 0100 1100 000a aaaa bbxx xxxx xxxx xxxx
Write program memory page at
address a:b.

Read EEPROM memory 1010 0000 000x xxaa bbbb bbbb oooo oooo
Read data o from EEPROM memory
at address a:b.

Write EEPROM memory 1100 0000 000x xxaa bbbb bbbb iiii iiii
Write data i to EEPROM memory at
address a:b.

Load EEPROM memory
page (page access)

1100 0001 0000 0000 0000 00bb iiii iiii
Load data i to EEPROM memory
page buffer. After data is loaded,
program EEPROM page.

Write EEPROM memory
page (page access)

1100 0010 00xx xxaa bbbb bb00 xxxx xxxx Write EEPROM page at address a:b.

Read lock bits 0101 1000 0000 0000 xxxx xxxx xxoo oooo
Read lock bits. “0” = programmed, “1”
= unprogrammed. See
Table 24-1 on page 234 for details.

Write lock bits 1010 1100 111x xxxx xxxx xxxx 11ii iiii
Write lock bits. Set bits = “0” to
program lock bits. See
Table 24-1 on page 234 for details.

Read signature byte 0011 0000 000x xxxx xxxx xxbb oooo oooo Read signature byte o at address b.

Write fuse bits 1010 1100 1010 0000 xxxx xxxx iiii iiii
Set bits = “0” to program, “1” to
unprogram. See
Table 21-1 on page 209 for details.

Write fuse high bits 1010 1100 1010 1000 xxxx xxxx iiii iiii
Set bits = “0” to program, “1” to
unprogram. See
Table 21-1 on page 209 for details.

Write extended fuse bits 1010 1100 1010 0100 xxxx xxxx xxxx xxii
Set bits = “0” to program, “1” to
unprogram.

Read fuse bits 0101 0000 0000 0000 xxxx xxxx oooo oooo
Read Fuse bits. “0” = programmed,
“1” = unprogrammed. See
Table 21-1 on page 209 for details.

Read fuse high bits 0101 1000 0000 1000 xxxx xxxx oooo oooo

Read fuse high bits. “0” =
programmed, “1” = unprogrammed.
See Table 21-1 on page 209 for
details.

Note: a = address high bits, b = address low bits, H = 0 - low byte, 1 - high byte, o = data out, i = data in, x = don’t
care
ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

250

25.7 LIN Re-synchronization Algorithm

25.8 Synchronization Algorithm

The possibility to change the value of OSCCAL during the oscillator operation allows for in-situ calibration of the slave node
to entering Master frames. The principle of operation is to measure the TBit during the SYNCH byte and to change the
calibration value of OSCCAL to recover from local frequency drifts due to local voltage or temperature deviation. The
algorithm used for the synchronization of the internal RC oscillator is depicted in Figure 25-3 on page 255.

Figure 25-3. Dichotomic Algorithm Used for LIN Slave Clock Re-synchronization

Measuring
actual TBit

Y
STOP:
Oscillator
Calibrated

N

N

Increment
OSCCAL

Decrement
OSCCAL

-2% < Delta
(TBit) < 2%

Delta(TBit) < 2%

Delta(TBit) < -2%
255ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

26.1 SPI Timing Characteristics

See Figure 26-2 and Figure 26-3 for details.

Figure 26-2. SPI Interface Timing Requirements (Master Mode)

Table 26-2. SPI Timing Parameters

No. Description Mode Min. Typ. Max. Unit

1 SCK period Master See Table 16-4

ns

2 SCK high/low Master 50% duty cycle

3 Rise/fall time Master 3.6

4 Setup Master 10

5 Hold Master 10

6 Out to SCK Master 0.5  tsck

7 SCK to out Master 10

8 SCK to out high Master 10

9 SS low to out Slave 15

10 SCK period Slave 4  tck

11 SCK high/low(1) Slave 2  tck

12 Rise/fall time Slave 1600

13 Setup Slave 10

14 Hold Slave tck

15 SCK to out Slave 15

16 SCK to SS high Slave 20

17 SS high to tri-state Slave 10

18 SS low to SCK Slave 20

Note: 1. In SPI programming mode the minimum SCK high/low period is:
– 2 tCLCL for fCK < 12MHz
– 3 tCLCL for fCK > 12MHz

6

MSB

SS

SCK
(CPOL = 0)

SCK
(CPOL = 1)

MISO
(Data Input)

MOSI
(Data Output)

MSB LSB

LSB...

...

4 5

87

1

2 2

3

259ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

27.6 BOD Thresholds and Analog Comparator Offset

Figure 27-19. BOD Threshold versus Temperature (BODLEVEL is 4.0V)

Figure 27-20. BOD Threshold versus Temperature (BODLEVEL is 2.7V)

Figure 27-21. Bandgap Voltage versus VCC

1601501401301201101009080706050403020100-10-20-30-50 -40

Temperature (°C)

4.3

4.2

4.1

4.6

4.5

4.4

4.0

Th
re

sh
ol

d
(V

)

0

1

1601501401301201101009080706050403020100-10-20-30-50 -40

Temperature (°C)

2.7

2.6

2.5

3.0

2.9

2.8

2.4

Th
re

sh
ol

d
(V

)

0

1

1.25

1.20

1.15

1.10

1.05

1.00

0.95

B
an

dg
ap

 V
ol

ta
ge

 (V
)

54.5 5.52 32.5 43.5
VCC (V)

-40°C
150°C
267ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

Figure 27-25. Analog to Digital Converter INL versus VCC

27.8 Grade 0 Qualification

The ATmega88/ATmega168 Automotive has been developed and manufactured according to the most stringent quality
assurance requirements of ISO-TS-16949 and verified during product qualification as per AEC-Q100 grade 0.

AEC-Q100 qualification relies on temperature accelerated stress testing. High temperature field usage however may result
in less significant stress test acceleration. In order to prevent the risk that ATmega88/ATmega168 Automotive lifetime would
not satisfy the application end-of-life reliability requirements, Atmel® has extended the testing, whenever applicable (High
Temperature Operating Life Test, High Temperature Storage Life, Data Retention, Thermal Cycles), far beyond the AEC-
Q100 requirements. Thereby, Atmel verified the ATmega88/ATmega168 Automotive has a long safe lifetime period after the
grade 0 qualification acceptance limits.

The valid domain calculation depends on the activation energy of the potential failure mechanism that is considered.
Examples are given in Figure 27-26. Therefore any temperature mission profile which could exceed the AEC-Q100
equivalence domain shall be submitted to Atmel for a thorough reliability analysis.

Figure 27-26. AEC-Q100 Lifetime Equivalence

4 STD

4 IDL

0.8

0.7

1.0

0.9

0.6
0.5
0.4

0.3

0.2
0.1

0
Er

ro
r (

LS
B

)
0 10075 1501255025-25-50

Temperature

Temperature (°C)

1

10000

1000000

100000

1000

100

HTSL 0.45eV
HTOL 0.59eV

10

200 40 60 80 100 120 140 160

H
ou

rs
269ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

ST Z, Rr Store indirect (Z)  Rr None 2

ST Z+, Rr Store indirect and post-inc. (Z)  Rr, Z  Z + 1 None 2

ST -Z, Rr Store ndirect and pre-dec. Z  Z – 1, (Z)  Rr None 2

STD Z+q,Rr Store indirect with displacement (Z + q)  Rr None 2

STS k, Rr Store direct to SRAM (k)  Rr None 2

LPM Load program memory R0  (Z) None 3

LPM Rd, Z Load program memory Rd  (Z) None 3

LPM Rd, Z+ Load program memory and post-inc Rd  (Z), Z  Z + 1 None 3

SPM Store program memory (Z)  R1:R0 None -

IN Rd, P In port Rd  P None 1

OUT P, Rr Out port P  Rr None 1

PUSH Rr Push register on stack STACK  Rr None 2

POP Rd Pop register from stack Rd  STACK None 2

MCU Control Instructions

NOP No operation None 1

SLEEP Sleep
(see specific description for
sleep function)

None 1

WDR Watchdog reset
(see specific description for
WDR/timer)

None 1

BREAK Break For on-chip debug Only None N/A

29. Instruction Set Summary (Continued)

Mnemonics Operands Description Operation Flags #Clocks

Note: 1. These instructions are only available in Atmel® ATmega168.
ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

280

