
Microchip Technology - ATMEGA88-15AD Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 23

Program Memory Size 8KB (4K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 150°C (TA)

Mounting Type Surface Mount

Package / Case 32-TQFP

Supplier Device Package 32-TQFP (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega88-15ad

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega88-15ad-4433639
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

In order to maximize performance and parallelism, the AVR® uses a Harvard architecture – with separate memories and
buses for program and data. Instructions in the program memory are executed with a single level pipelining. While one
instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions
to be executed in every clock cycle. The program memory is in-system reprogrammable flash memory.

The fast-access register file contains 32 x 8-bit general purpose working registers with a single clock cycle access time. This
allows single-cycle arithmetic logic unit (ALU) operation. In a typical ALU operation, two operands are output from the
register file, the operation is executed, and the result is stored back in the register file – in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for data space addressing – enabling
efficient address calculations. One of the these address pointers can also be used as an address pointer for look up tables in
flash program memory. These added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register
operations can also be executed in the ALU. After an arithmetic operation, the status register is updated to reflect
information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the whole
address space. Most AVR instructions have a single 16-bit word format. Every program memory address contains a 16- or
32-bit instruction.

Program flash memory space is divided in two sections, the boot program section and the application program section. Both
sections have dedicated lock bits for write and read/write protection. The SPM instruction that writes into the application flash
memory section must reside in the boot program section.

During interrupts and subroutine calls, the return address program counter (PC) is stored on the stack. The stack is
effectively allocated in the general data SRAM, and consequently the stack size is only limited by the total SRAM size and
the usage of the SRAM. All user programs must initialize the SP in the reset routine (before subroutines or interrupts are
executed). The stack pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed through
the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit in the status
register. All interrupts have a separate interrupt vector in the interrupt vector table. The interrupts have priority in accordance
with their interrupt vector position. The lower the interrupt vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as control registers, SPI, and other I/O functions.
The I/O memory can be accessed directly, or as the data space locations following those of the register file, 0x20 - 0x5F. In
addition, the ATmega88/168 has extended I/O space from 0x60 - 0xFF in SRAM where only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

4.3 ALU – Arithmetic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers. Within a
single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are
executed. The ALU operations are divided into three main categories – arithmetic, logical, and bit-functions. Some
implementations of the architecture also provide a powerful multiplier supporting both signed/unsigned multiplication and
fractional format. See the “Instruction Set” section for a detailed description.
9ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

The CKSEL0 fuse together with the SUT1..0 fuses select the start-up times as shown in Table 6-4.

6.4 Full Swing Crystal Oscillator

Pins XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be configured for use as an
on-chip oscillator, as shown in Figure 6-2 on page 25. Either a quartz crystal or a ceramic resonator may be used.

This crystal oscillator is a full swing oscillator, with rail-to-rail swing on the XTAL2 output. This is useful for driving other clock
inputs and in noisy environments. The current consumption is higher than the Section 6.3 “Low Power Crystal Oscillator” on
page 25. Note that the full swing crystal oscillator will only operate for VCC = 2.7 to 5.5V.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the capacitors depends on the
crystal or resonator in use, the amount of stray capacitance, and the electromagnetic noise of the environment. Some initial
guidelines for choosing capacitors for use with crystals are given in Table 6-6 on page 27. For ceramic resonators, the
capacitor values given by the manufacturer should be used.

The operating mode is selected by the fuses CKSEL3..1 as shown in Table 6-5.

Table 6-4. Start-up Times for the Low Power Crystal Oscillator Clock Selection

Oscillator Source / Power
Conditions

Start-up Time from Power-
down and Power-save

Additional Delay from
Reset (VCC = 5.0V) CKSEL0 SUT1..0

Ceramic resonator, fast rising
power

258CK 14CK + 4.1ms(1) 0 00

Ceramic resonator, slowly rising
power

258CK 14CK + 65ms(1) 0 01

Ceramic resonator, BOD enabled 1KCK 14CK(2) 0 10

Ceramic resonator, fast rising
power

1KCK 14CK + 4.1ms(2) 0 11

Ceramic resonator, slowly rising
power

1KCK 14CK + 65ms(2) 1 00

Crystal oscillator, BOD enabled 16KCK 14CK 1 01

Crystal oscillator, fast rising power 16KCK 14CK + 4.1ms 1 10

Crystal oscillator, slowly rising
power

16KCK 14CK + 65ms 1 11

Notes: 1. These options should only be used when not operating close to the maximum frequency of the device, and
only if frequency stability at start-up is not important for the application. These options are not suitable for
crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability at start-up.
They can also be used with crystals when not operating close to the maximum frequency of the device, and if
frequency stability at start-up is not important for the application.

Table 6-5. Full Swing Crystal Oscillator operating modes(2)

Frequency Range(1) (MHz) CKSEL3..1 Recommended Range for Capacitors C1 and C2 (pF)

0.4 - 20 011 12 - 22

Notes: 1. The frequency ranges are preliminary values. Actual values are TBD.

2. If 8MHz frequency exceeds the specification of the device (depends on VCC), the CKDIV8 fuse can be
programmed in order to divide the internal frequency by 8. It must be ensured that the resulting divided clock
meets the frequency specification of the device.
ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

26

14.6.2 Compare Match Blocking by TCNT1 Write

All CPU writes to the TCNT1 register will block any compare match that occurs in the next timer clock cycle, even when the
timer is stopped. This feature allows OCR1x to be initialized to the same value as TCNT1 without triggering an interrupt
when the Timer/Counter clock is enabled.

14.6.3 Using the Output Compare Unit

Since writing TCNT1 in any mode of operation will block all compare matches for one timer clock cycle, there are risks
involved when changing TCNT1 when using any of the output compare channels, independent of whether the Timer/Counter
is running or not. If the value written to TCNT1 equals the OCR1x value, the compare match will be missed, resulting in
incorrect waveform generation. Do not write the TCNT1 equal to TOP in PWM modes with variable TOP values. The
compare match for the TOP will be ignored and the counter will continue to 0xFFFF. Similarly, do not write the TCNT1 value
equal to BOTTOM when the counter is downcounting.

The setup of the OC1x should be performed before setting the data direction register for the port pin to output. The easiest
way of setting the OC1x value is to use the force output compare (FOC1x) strobe bits in normal mode. The OC1x register
keeps its value even when changing between waveform generation modes.

Be aware that the COM1x1:0 bits are not double buffered together with the compare value. Changing the COM1x1:0 bits will
take effect immediately.

14.7 Compare Match Output Unit

The compare output mode (COM1x1:0) bits have two functions. The waveform generator uses the COM1x1:0 bits for
defining the output compare (OC1x) state at the next compare match. Secondly the COM1x1:0 bits control the OC1x pin
output source. Figure 14-5 shows a simplified schematic of the logic affected by the COM1x1:0 bit setting. The I/O registers,
I/O bits, and I/O pins in the figure are shown in bold. Only the parts of the general I/O port control registers (DDR and PORT)
that are affected by the COM1x1:0 bits are shown. When referring to the OC1x state, the reference is for the internal OC1x
register, not the OC1x pin. If a system reset occur, the OC1x register is reset to “0”.

Figure 14-5. Compare Match Output Unit, Schematic

D
AT

A
B

U
S

0

1

QD

COMnx1

COMnx0

FOCn

OCnx

Waveform
Generator

QD

PORT

QD

DDR

OCnx
Pin

clkI/O
ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

102

The general I/O port function is overridden by the output compare (OC1x) from the waveform generator if either of the
COM1x1:0 bits are set. However, the OC1x pin direction (input or output) is still controlled by the data direction register
(DDR) for the port pin. The data direction register bit for the OC1x pin (DDR_OC1x) must be set as output before the OC1x
value is visible on the pin. The port override function is generally independent of the waveform generation mode, but there
are some exceptions. Refer to Table 14-2 on page 111, Table 14-3 on page 112 and Table 14-4 on page 112 for details.

The design of the output compare pin logic allows initialization of the OC1x state before the output is enabled. Note that
some COM1x1:0 bit settings are reserved for certain modes of operation.
See Section 14.10 “16-bit Timer/Counter Register Description” on page 111

The COM1x1:0 bits have no effect on the input capture unit.

14.7.1 Compare Output Mode and Waveform Generation

The waveform generator uses the COM1x1:0 bits differently in normal, CTC, and PWM modes. For all modes, setting the
COM1x1:0 = 0 tells the waveform generator that no action on the OC1x register is to be performed on the next compare
match. For compare output actions in the non-PWM modes refer to Table 14-2 on page 111. For fast PWM mode refer to
Table 14-3 on page 112, and for phase correct and phase and frequency correct PWM refer to Table 14-4 on page 112.

A change of the COM1x1:0 bits state will have effect at the first compare match after the bits are written. For non-PWM
modes, the action can be forced to have immediate effect by using the FOC1x strobe bits.

14.8 Modes of Operation

The mode of operation, i.e., the behavior of the Timer/Counter and the output compare pins, is defined by the combination of
the waveform generation mode (WGM13:0) and compare output mode (COM1x1:0) bits. The compare output mode bits do
not affect the counting sequence, while the waveform generation mode bits do. The COM1x1:0 bits control whether the
PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes the COM1x1:0 bits
control whether the output should be set, cleared or toggle at a compare match
(see Section 14.7 “Compare Match Output Unit” on page 102)

For detailed timing information refer to Section 14.9 “Timer/Counter Timing Diagrams” on page 109.

14.8.1 Normal Mode

The simplest mode of operation is the normal mode (WGM13:0 = 0). In this mode the counting direction is always up
(incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 16-bit value
(MAX = 0xFFFF) and then restarts from the BOTTOM (0x0000). In normal operation the Timer/Counter overflow flag (TOV1)
will be set in the same timer clock cycle as the TCNT1 becomes zero. The TOV1 flag in this case behaves like a 17th bit,
except that it is only set, not cleared. However, combined with the timer overflow interrupt that automatically clears the TOV1
flag, the timer resolution can be increased by software. There are no special cases to consider in the normal mode, a new
counter value can be written anytime.

The input capture unit is easy to use in normal mode. However, observe that the maximum interval between the external
events must not exceed the resolution of the counter. If the interval between events are too long, the timer overflow interrupt
or the prescaler must be used to extend the resolution for the capture unit.

The output compare units can be used to generate interrupts at some given time. Using the output compare to generate
waveforms in normal mode is not recommended, since this will occupy too much of the CPU time.

14.8.2 Clear Timer on Compare Match (CTC) Mode

In clear timer on compare or CTC mode (WGM13:0 = 4 or 12), the OCR1A or ICR1 register are used to manipulate the
counter resolution. In CTC mode the counter is cleared to zero when the counter value (TCNT1) matches either the OCR1A
(WGM13:0 = 4) or the ICR1 (WGM13:0 = 12). The OCR1A or ICR1 define the top value for the counter, hence also its
resolution. This mode allows greater control of the compare match output frequency. It also simplifies the operation of
counting external events.

The timing diagram for the CTC mode is shown in Figure 14-6 on page 104. The counter value (TCNT1) increases until a
compare match occurs with either OCR1A or ICR1, and then counter (TCNT1) is cleared.
103ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

15.9 Asynchronous operation of the Timer/Counter

15.9.1 Asynchronous Operation of Timer/Counter2

When Timer/Counter2 operates asynchronously, some considerations must be taken.

● Warning: When switching between asynchronous and synchronous clocking of Timer/Counter2, the timer registers
TCNT2, OCR2x, and TCCR2x might be corrupted. A safe procedure for switching clock source is:

a. Disable the Timer/Counter2 interrupts by clearing OCIE2x and TOIE2.

b. Select clock source by setting AS2 as appropriate.

c. Write new values to TCNT2, OCR2x, and TCCR2x.

d. To switch to asynchronous operation: Wait for TCN2xUB, OCR2xUB, and TCR2xUB.

e. Clear the Timer/Counter2 interrupt flags.

f. Enable interrupts, if needed.

● The CPU main clock frequency must be more than four times the oscillator frequency.

● When writing to one of the registers TCNT2, OCR2x, or TCCR2x, the value is transferred to a temporary register, and
latched after two positive edges on TOSC1. The user should not write a new value before the contents of the
temporary register have been transferred to its destination. Each of the five mentioned registers have their individual
temporary register, which means that e.g. writing to TCNT2 does not disturb an OCR2x write in progress. To detect
that a transfer to the destination register has taken place, the asynchronous status register – ASSR has been
implemented.

● When entering power-save or ADC noise reduction mode after having written to TCNT2, OCR2x, or TCCR2x, the
user must wait until the written register has been updated if Timer/Counter2 is used to wake up the device. Otherwise,
the MCU will enter sleep mode before the changes are effective. This is particularly important if any of the output
compare2 interrupt is used to wake up the device, since the output compare function is disabled during writing to
OCR2x or TCNT2. If the write cycle is not finished, and the MCU enters sleep mode before the corresponding
OCR2xUB bit returns to zero, the device will never receive a compare match interrupt, and the MCU will not wake up.

● If Timer/Counter2 is used to wake the device up from power-save or ADC noise reduction mode, precautions must be
taken if the user wants to re-enter one of these modes: The interrupt logic needs one TOSC1 cycle to be reset. If the
time between wake-up and re-entering sleep mode is less than one TOSC1 cycle, the interrupt will not occur, and the
device will fail to wake up. If the user is in doubt whether the time before re-entering power-save or ADC noise
reduction mode is sufficient, the following algorithm can be used to ensure that one TOSC1 cycle has elapsed:

a. Write a value to TCCR2x, TCNT2, or OCR2x.

b. Wait until the corresponding update busy flag in ASSR returns to zero.

c. Enter power-save or ADC noise reduction mode.

● When the asynchronous operation is selected, the 32.768kHz oscillator for Timer/Counter2 is always running, except
in power-down and standby modes. After a power-up reset or wake-up from power-down or standby mode, the user
should be aware of the fact that this oscillator might take as long as one second to stabilize. The user is advised to
wait for at least one second before using Timer/Counter2 after power-up or wake-up from power-down or standby
mode. The contents of all Timer/Counter2 registers must be considered lost after a wake-up from power-down or
standby mode due to unstable clock signal upon start-up, no matter whether the oscillator is in use or a clock signal is
applied to the TOSC1 pin.

● Description of wake up from power-save or ADC noise reduction mode when the timer is clocked asynchronously:
When the interrupt condition is met, the wake up process is started on the following cycle of the timer clock, that is,
the timer is always advanced by at least one before the processor can read the counter value. After wake-up, the
MCU is halted for four cycles, it executes the interrupt routine, and resumes execution from the instruction following
SLEEP.
ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

132

• Bit 5..1 – Res: Reserved Bits

These bits are reserved bits in the Atmel® ATmega88/168 and will always read as zero.

• Bit 0 – SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK frequency) will be doubled when the SPI is in master mode
(see Table 16-4 on page 141). This means that the minimum SCK period will be two CPU clock periods. When the SPI is
configured as Slave, the SPI is only guaranteed to work at fosc/4 or lower.

The SPI interface on the Atmel ATmega88/168 is also used for program memory and EEPROM downloading or uploading.
See Section 24.8 “Serial Downloading” on page 248 for serial programming and verification.

16.1.5 SPI Data Register – SPDR

The SPI data register is a read/write register used for data transfer between the register file and the SPI shift register. Writing
to the register initiates data transmission. Reading the register causes the shift register receive buffer to be read.

16.2 Data Modes

There are four combinations of SCK phase and polarity with respect to serial data, which are determined by control bits
CPHA and CPOL. The SPI data transfer formats are shown in Figure 16-3 on page 143 and Figure 16-4 on page 143. Data
bits are shifted out and latched in on opposite edges of the SCK signal, ensuring sufficient time for data signals to stabilize.
This is clearly seen by summarizing Figure 16-2 on page 140 and Table 16-3 on page 141, as done below.

Bit 7 6 5 4 3 2 1 0

MSB LSB SPDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X Undefined

Table 16-5. CPOL Functionality

Leading Edge Trailing eDge SPI Mode

CPOL=0, CPHA=0 Sample (rising) Setup (falling) 0

CPOL=0, CPHA=1 Setup (rising) Sample (falling) 1

CPOL=1, CPHA=0 Sample (falling) Setup (rising) 2

CPOL=1, CPHA=1 Setup (falling) Sample (rising) 3
ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

142

17.1 Overview

A simplified block diagram of the USART Transmitter is shown in Figure 17-1. CPU accessible I/O Registers and I/O pins are
shown in bold.

Figure 17-1. USART Block Diagram(1)

Note: 1. Refer to Figure 1-1 on page 3 and Table 10-9 on page 67 for USART0 pin placement.

The dashed boxes in the block diagram separate the three main parts of the USART (listed from the top): clock generator,
transmitter and receiver. Control registers are shared by all units. The clock generation logic consists of synchronization
logic for external clock input used by synchronous slave operation, and the baud rate generator. The XCKn (transfer clock)
pin is only used by synchronous transfer mode. The transmitter consists of a single write buffer, a serial shift register, parity
generator and control logic for handling different serial frame formats. The write buffer allows a continuous transfer of data
without any delay between frames. The receiver is the most complex part of the USART module due to its clock and data
recovery units. The recovery units are used for asynchronous data reception. In addition to the recovery units, the receiver
includes a parity checker, control logic, a shift register and a two level receive buffer (UDRn). The receiver supports the
same frame formats as the transmitter, and can detect frame error, data overrun and parity errors.

Transmit Shift Register

Receive Shift Register
Data

Recoverc

Clock
Recoverc

Parity
Checker

Parity
Generator

Pin
Control

TX
Control

Pin
Control

Pin
Control

RX
Control

UDRn (Transmit)

Transmitter

Clock Generator

Receiver

UCSRnA UCSRnCUCSRnB

Sync Logic

OSC

UDRn (Receive)

D
AT

A
B

U
S

Baud Rate Generator

UBRRn [H:L]

XCKn

RxDn

TxDn
145ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

18.5 Data Transfer

Using the USART in MSPI mode requires the transmitter to be enabled, i.e. the TXENn bit in the UCSRnB register is set to
one. When the transmitter is enabled, the normal port operation of the TxDn pin is overridden and given the function as the
transmitter's serial output. Enabling the receiver is optional and is done by setting the RXENn bit in the UCSRnB register to
one. When the receiver is enabled, the normal pin operation of the RxDn pin is overridden and given the function as the
receiver's serial input. The XCKn will in both cases be used as the transfer clock.

After initialization the USART is ready for doing data transfers. A data transfer is initiated by writing to the UDRn I/O location.
This is the case for both sending and receiving data since the transmitter controls the transfer clock. The data written to
UDRn is moved from the transmit buffer to the shift register when the shift register is ready to send a new frame.

Note: To keep the input buffer in sync with the number of data bytes transmitted, the UDRn register must be read
once for each byte transmitted. The input buffer operation is identical to normal USART mode, i.e. if an
overflow occurs the character last received will be lost, not the first data in the buffer. This means that if four
bytes are transferred, byte 1 first, then byte 2, 3, and 4, and the UDRn is not read before all transfers are
completed, then byte 3 to be received will be lost, and not byte 1.

The following code examples show a simple USART in MSPIM mode transfer function based on polling of the data register
empty (UDREn) flag and the receive complete (RXCn) flag. The USART has to be initialized before the function can be used.
For the assembly code, the data to be sent is assumed to be stored in register R16 and the data received will be available in
the same register (R16) after the function returns.

The function simply waits for the transmit buffer to be empty by checking the UDREn flag, before loading it with new data to
be transmitted. The function then waits for data to be present in the receive buffer by checking the RXCn flag, before reading
the buffer and returning the value.

Note: 1. The example code assumes that the part specific header file is included. For I/O registers located in extended
I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must be replaced with instructions that allow
access to extended I/O. Typically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

Assembly Code Example(1)

USART_MSPIM_Transfer:
; Wait for empty transmit buffer
sbis UCSRnA, UDREn
rjmp USART_MSPIM_Transfer
; Put data (r16) into buffer, sends the data
out UDRn,r16
; Wait for data to be received

USART_MSPIM_Wait_RXCn:
sbis UCSRnA, RXCn
rjmp USART_MSPIM_Wait_RXCn
; Get and return received data from buffer
in r16, UDRn
ret

C Code Example(1)

unsigned char USART_Receive(void)
{

/* Wait for empty transmit buffer */
while (!(UCSRnA & (1<<UDREn)));
/* Put data into buffer, sends the data */
UDRn = data;
/* Wait for data to be received */
while (!(UCSRnA & (1<<RXCn)));
/* Get and return received data from buffer */
return UDRn;

}

169ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

19. 2-wire Serial Interface

19.1 Features
● Simple yet powerful and flexible communication interface, only two bus lines needed

● Both master and slave operation supported

● Device can operate as transmitter or receiver

● 7-bit address space allows up to 128 different slave addresses

● Multi-master arbitration support

● Up to 400kHz data transfer speed

● Slew-rate limited output drivers

● Noise suppression circuitry rejects spikes on bus lines

● Fully programmable slave address with general call support

● Address recognition causes wake-up when AVR® is in sleep mode

19.2 2-wire Serial Interface Bus Definition

The 2-wire serial interface (TWI) is ideally suited for typical microcontroller applications. The TWI protocol allows the
systems designer to interconnect up to 128 different devices using only two bi-directional bus lines, one for clock (SCL) and
one for data (SDA). The only external hardware needed to implement the bus is a single pull-up resistor for each of the TWI
bus lines. All devices connected to the bus have individual addresses, and mechanisms for resolving bus contention are
inherent in the TWI protocol.

Figure 19-1. TWI Bus Interconnection

19.2.1 TWI Terminology

The following definitions are frequently encountered in this section.

The PRTWI bit in Section 7.7.1 “Power Reduction Register - PRR” on page 35 must be written to zero to enable the 2-wire
serial interface.

Device 1

SDA

SCL

VCC

Device 2 Device 3 Device n........ R1 R2

Table 19-1. TWI Terminology

Term Description

Master The device that initiates and terminates a transmission. The Master also generates the SCL clock.

Slave The device addressed by a Master.

Transmitter The device placing data on the bus.

Receiver The device reading data from the bus.
173ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

Figure 19-5. Data Packet Format

19.3.5 Combining Address and Data Packets into a Transmission

A transmission basically consists of a START condition, a SLA+R/W, one or more data packets and a STOP condition. An
empty message, consisting of a START followed by a STOP condition, is illegal. Note that the Wired-ANDing of the SCL line
can be used to implement handshaking between the master and the slave. The slave can extend the SCL low period by
pulling the SCL line low. This is useful if the clock speed set up by the master is too fast for the slave, or the slave needs
extra time for processing between the data transmissions. The slave extending the SCL low period will not affect the SCL
high period, which is determined by the master. As a consequence, the slave can reduce the TWI data transfer speed by
prolonging the SCL duty cycle.

Figure 19-6 shows a typical data transmission. Note that several data bytes can be transmitted between the SLA+R/W and
the STOP condition, depending on the software protocol implemented by the application software.

Figure 19-6. Typical Data Transmission

19.4 Multi-master Bus Systems, Arbitration and Synchronization

The TWI protocol allows bus systems with several masters. Special concerns have been taken in order to ensure that
transmissions will proceed as normal, even if two or more masters initiate a transmission at the same time. Two problems
arise in multi-master systems:

● An algorithm must be implemented allowing only one of the masters to complete the transmission. All other masters
should cease transmission when they discover that they have lost the selection process. This selection process is
called arbitration. When a contending master discovers that it has lost the arbitration process, it should immediately
switch to slave mode to check whether it is being addressed by the winning master. The fact that multiple masters
have started transmission at the same time should not be detectable to the slaves, i.e. the data being transferred on
the bus must not be corrupted.

● Different masters may use different SCL frequencies. A scheme must be devised to synchronize the serial clocks
from all masters, in order to let the transmission proceed in a lockstep fashion. This will facilitate the arbitration
process.

Aggregate
SDA

SDA from
Transmitter

SDA from
Receiver

SCL from
Master

Data MSB Data LSB ACK

1 2 7

Data Byte STOP, REPEATED
START or next

Data Byte

SLA + R/W

8 9

SDA

SCL

STOPSTART SLA + R/W Data Byte

Addr MSB Addr LSB Data MSB Data LSB ACKR/W ACK

1 2 7 8 9 1 2 7 8 9
ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

176

Figure 19-11. Interfacing the Application to the TWI in a Typical Transmission

1. The first step in a TWI transmission is to transmit a START condition. This is done by writing a specific value into
TWCR, instructing the TWI hardware to transmit a START condition. Which value to write is described later on.
However, it is important that the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The
TWI will not start any operation as long as the TWINT bit in TWCR is set. Immediately after the application has
cleared TWINT, the TWI will initiate transmission of the START condition.

2. When the START condition has been transmitted, the TWINT flag in TWCR is set, and TWSR is updated with a
status code indicating that the START condition has successfully been sent.

3. The application software should now examine the value of TWSR, to make sure that the START condition was
successfully transmitted. If TWSR indicates otherwise, the application software might take some special action,
like calling an error routine. Assuming that the status code is as expected, the application must load SLA+W into
TWDR. Remember that TWDR is used both for address and data. After TWDR has been loaded with the desired
SLA+W, a specific value must be written to TWCR, instructing the TWI hardware to transmit the SLA+W present in
TWDR. Which value to write is described later on. However, it is important that the TWINT bit is set in the value
written. Writing a one to TWINT clears the flag. The TWI will not start any operation as long as the TWINT bit in
TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate transmission of the
address packet.

4. When the address packet has been transmitted, the TWINT flag in TWCR is set, and TWSR is updated with a
status code indicating that the address packet has successfully been sent. The status code will also reflect
whether a slave acknowledged the packet or not.

5. The application software should now examine the value of TWSR, to make sure that the address packet was
successfully transmitted, and that the value of the ACK bit was as expected. If TWSR indicates otherwise, the
application software might take some special action, like calling an error routine. Assuming that the status code is
as expected, the application must load a data packet into TWDR. Subsequently, a specific value must be written to
TWCR, instructing the TWI hardware to transmit the data packet present in TWDR. Which value to write is
described later on. However, it is important that the TWINT bit is set in the value written. Writing a one to TWINT
clears the flag. The TWI will not start any operation as long as the TWINT bit in TWCR is set. Immediately after the
application has cleared TWINT, the TWI will initiate transmission of the data packet.

6. When the data packet has been transmitted, the TWINT flag in TWCR is set, and TWSR is updated with a status
code indicating that the data packet has successfully been sent. The status code will also reflect whether a slave
acknowledged the packet or not.

START

TW
I

H
ar

dw
ar

e
A

ct
io

n

A
pp

lic
at

io
n

A
ct

io
n

TWI bus

Indicates
TWINT set

SLA + W A A STOPData

1. Application
writes to TWCR to

initiate
transmission of

START

2. TWINT set.
Status code indicates
START condition sent

4. TWINT set.
Status code indicates

SLA + W sent,
ACK received

6. TWINT set.
Status code indicates

data sent, ACK received

3. Check TWSR to see if START was
sent. Application loads SLA + W into
TWDR, and loads appropriate control
signals into TWCR, makin sure that

TWINT is written to one,
and TWSTA is written to zero.

5. Check TWSR to see if SLA + W was
sent and ACK received.

Application loads data intoTWDR, and
loads appropriate control signals into

TWCR, makin sure that TWINT is
written to one

7. Check TWSR to see if data was sent
and ACK received.

Application loads appropriate control
signals to send STOP into TWCR,

makin sure that TWINT is
written to one
ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

184

19.8 Transmission Modes

The TWI can operate in one of four major modes. These are named master transmitter (MT), master receiver (MR), slave
transmitter (ST) and slave receiver (SR). Several of these modes can be used in the same application. As an example, the
TWI can use MT mode to write data into a TWI EEPROM, MR mode to read the data back from the EEPROM. If other
masters are present in the system, some of these might transmit data to the TWI, and then SR mode would be used. It is the
application software that decides which modes are legal.

The following sections describe each of these modes. Possible status codes are described along with figures detailing data
transmission in each of the modes. These figures contain the following abbreviations:

S: START condition

Rs: REPEATED START condition

R: Read bit (high level at SDA)

W: Write bit (low level at SDA)

A: Acknowledge bit (low level at SDA)

A: Not acknowledge bit (high level at SDA)

Data: 8-bit data byte

P: STOP condition

SLA: Slave address

In Figure 19-13 on page 189 to Figure 19-19 on page 198, circles are used to indicate that the TWINT flag is set. The
numbers in the circles show the status code held in TWSR, with the prescaler bits masked to zero. At these points, actions
must be taken by the application to continue or complete the TWI transfer. The TWI transfer is suspended until the TWINT
flag is cleared by software.

When the TWINT flag is set, the status code in TWSR is used to determine the appropriate software action. For each status
code, the required software action and details of the following serial transfer are given in Table 19-4 on page 188 to
Table 19-7 on page 197. Note that the prescaler bits are masked to zero in these tables.

19.8.1 Master Transmitter Mode

In the master transmitter mode, a number of data bytes are transmitted to a slave receiver (see Figure 19-12 on page 187).
In order to enter a master mode, a START condition must be transmitted. The format of the following address packet
determines whether master transmitter or master receiver mode is to be entered. If SLA+W is transmitted, MT mode is
entered, if SLA+R is transmitted, MR mode is entered. All the status codes mentioned in this section assume that the
prescaler bits are zero or are masked to zero

6

wait3:
in r16,TWCR
sbrs r16,TWINT
rjmp wait3

while (!(TWCR & (1<<TWINT)))
;

Wait for TWINT flag set. This
indicates that the DATA has
been transmitted, and
ACK/NACK has been received.

7

in r16,TWSR
andi r16, 0xF8
cpi r16, MT_DATA_ACK
brne ERROR

if ((TWSR & 0xF8) !=
MT_DATA_ACK)
ERROR();

Check value of TWI status
register. Mask prescaler bits. If
status different from
MT_DATA_ACK go to ERROR

ldi r16,
(1<<TWINT)|(1<<TWEN)|

1<<TWSTO)

out TWCR, r16

TWCR = (1<<TWINT)|(1<<TWEN)|
(1<<TWSTO);

Transmit STOP condition

Table 19-3. Code Example (Continued)

No. Assembly Code Example C Example Comments
ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

186

After a repeated START condition (state 0x10) the 2-wire serial interface can access the same slave again, or a new slave
without transmitting a STOP condition. Repeated START enables the master to switch between slaves, master transmitter
mode and master receiver mode without losing control of the bus.

Table 19-4. Status Codes for Master Transmitter Mode

Status Code
(TWSR)

Prescaler
Bits are 0

Status of the 2-wire
Serial Bus and 2-wire
Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware

To/from TWDR To TWCR

STA STO TWINT TWEA

0x08 A START condition has
been transmitted

Load SLA+W 0 0 1 X SLA+W will be transmitted;
ACK or NOT ACK will be received

0x10 A repeated START
condition has been
transmitted

Load SLA+W
or

Load SLA+R

0

0

0

0

1

1

X

X

SLA+W will be transmitted;
ACK or NOT ACK will be received
SLA+R will be transmitted;
logic will switch to master receiver mode

0x18 SLA+W has been
transmitted;
ACK has been received

Load data byte or
No TWDR action

or No TWDR
action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or
NOT ACK will be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START
condition will be transmitted and TWSTO
flag will be reset

0x20 SLA+W has been
transmitted;
NOT ACK has been
received

Load data byte or
No TWDR action

or No TWDR
action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or
NOT ACK will be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START
condition will be transmitted and TWSTO
flag will be reset

0x28 Data byte has been
transmitted;
ACK has been received

Load data byte or
No TWDR action

or No TWDR
action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or
NOT ACK will be received
repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START
condition will be transmitted and TWSTO flag
will be reset

0x30 Data byte has been
transmitted;
NOT ACK has been
received

Load data byte or
No TWDR action

or No TWDR
action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or
NOT ACK will be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START
condition will be transmitted and TWSTO flag
will be reset

0x38 Arbitration lost in SLA+W
or data bytes

No TWDR action
or

No TWDR action

0

1

0

0

1

1

X

X

2-wire serial bus will be released and not
addressed slave mode entered
A START condition will be transmitted when
the bus becomes free
ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

188

Figure 21-6. ADC Timing Diagram, Auto Triggered Conversion

Figure 21-7. ADC Timing Diagram, Free Running Conversion

Table 21-1. ADC Conversion Time

Condition Sample & Hold (Cycles from Start of Conversion) Conversion Time (Cycles)

First conversion 13.5 25

Normal conversions, single ended 1.5 13

Auto triggered conversions 2 13.5

1 2 3 4 5 6 7 8 9 10 11 12 13 1 2Cycle Number

One Conversion

Sign and MSB of Result

LSB of Result

Next Conversion

MUX and REFS
Update

Prescaler
Reset

Prescaler
Reset

Conversion
Complete

ADC Clock

Trigger
Source

ADIF

ADATE

ADCH

ADCL

Sample and Hold

11 12 13 1 2 3 4Cycle Number

One Conversion

Sign and MSB of Result

LSB of Result

Next Conversion

MUX and REFS
Update

Conversion
Complete

ADC Clock

ADSC

ADIF

ADCH

ADCL

Sample and Hold
209ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

21.5.2 Analog Noise Canceling Techniques

Digital circuitry inside and outside the device generates EMI which might affect the accuracy of analog measurements. If
conversion accuracy is critical, the noise level can be reduced by applying the following techniques:

a. Keep analog signal paths as short as possible. Make sure analog tracks run over the analog ground plane, and
keep them well away from high-speed switching digital tracks.

b. The AVCC pin on the device should be connected to the digital VCC supply voltage via an LC network as shown in
Figure 21-9.

c. Use the ADC noise canceler function to reduce induced noise from the CPU.

d. If any ADC [3..0] port pins are used as digital outputs, it is essential that these do not switch while a conversion is
in progress. However, using the 2-wire interface (ADC4 and ADC5) will only affect the conversion on ADC4 and
ADC5 and not the other ADC channels.

Figure 21-9. ADC Power Connections
G

N
D

V
C

C

P
C

5
(A

D
C

5/
S

C
L)

P
C

4
(A

D
C

4/
S

D
A

)

P
C

3
(A

D
C

3)

P
C

2
(A

D
C

2)
PC1 (ADC1)

A
na

lo
g

G
ro

un
d

P
la

ne

PA0 (ADC0)

ADC7

GND

10
0n

F
10

μH

AVCC

ADC6

AREF

PB5
ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

212

23.7.14 ATmega168 Boot Loader Parameters

In Table 23-9 through Table 23-11, the parameters used in the description of the self programming are given.

For details about these two section, see Section 23.3.2 “NRWW – No Read-While-Write Section” on page 222 and
Section 23.3.1 “RWW – Read-While-Write Section” on page 222.

Table 23-9. Boot Size Configuration, ATmega168

BOOTSZ1 BOOTSZ0 Boot Size Pages
Application

Flash Section
Boot Loader

Flash Section
End Application

Section

Boot Reset
Address (Start
Boot Loader

Section)

1 1 128 words 2 0x0000 - 0x1F7F 0x1F80 - 0x1FFF 0x1F7F 0x1F80

1 0 256 words 4
0x0000 -
0x1EFF

0x1F00 - 0x1FFF 0x1EFF 0x1F00

0 1 512 words 8
0x0000 -
0x1DFF

0x1E00 -
0x1FFF

0x1DFF 0x1E00

0 0 1024 words 16
0x0000 -
0x1BFF

0x1C00 -
0x1FFF

0x1BFF 0x1C00

Note: The different BOOTSZ fuse configurations are shown in Figure 23-2 on page 223.

Table 23-10. Read-While-Write Limit, ATmega168

Section Pages Address

Read-while-write section (RWW) 112 0x0000 - 0x1BFF

No read-while-rite section (NRWW) 16 0x1C00 - 0x1FFF

Table 23-11. Explanation of Different Variables used in Figure 23-3 and the Mapping to the Z-pointer, ATmega168

Variable Corresponding Z-value(1) Description

PCMSB 12
Most significant bit in the program counter. (The program
counter is 12 bits PC[11:0])

PAGEMSB 5
Most significant bit which is used to address the words within
one page (64 words in a page requires 6 bits PC [5:0])

ZPCMSB Z13
Bit in Z-register that is mapped to PCMSB. Because Z0 is not
used, the ZPCMSB equals PCMSB + 1.

ZPAGEMSB Z6
Bit in Z-register that is mapped to PAGEMSB. Because Z0 is
not used, the ZPAGEMSB equals PAGEMSB + 1.

PCPAGE PC[12:6] Z13:Z7
Program counter page address: page select, for page erase
and page write

PCWORD PC[5:0] Z6:Z1
Program counter word address: Word select, for filling
temporary buffer (must be zero during page write operation)

Note: 1. Z15:Z14: always ignored
Z0: should be zero for all SPM commands, byte select for the LPM instruction. See Section 23.6 “Addressing
the Flash During Self-Programming” on page 226 for details about the use of Z-pointer during
self-Programming.
233ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

25.7 LIN Re-synchronization Algorithm

25.8 Synchronization Algorithm

The possibility to change the value of OSCCAL during the oscillator operation allows for in-situ calibration of the slave node
to entering Master frames. The principle of operation is to measure the TBit during the SYNCH byte and to change the
calibration value of OSCCAL to recover from local frequency drifts due to local voltage or temperature deviation. The
algorithm used for the synchronization of the internal RC oscillator is depicted in Figure 25-3 on page 255.

Figure 25-3. Dichotomic Algorithm Used for LIN Slave Clock Re-synchronization

Measuring
actual TBit

Y
STOP:
Oscillator
Calibrated

N

N

Increment
OSCCAL

Decrement
OSCCAL

-2% < Delta
(TBit) < 2%

Delta(TBit) < 2%

Delta(TBit) < -2%
255ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

Figure 27-25. Analog to Digital Converter INL versus VCC

27.8 Grade 0 Qualification

The ATmega88/ATmega168 Automotive has been developed and manufactured according to the most stringent quality
assurance requirements of ISO-TS-16949 and verified during product qualification as per AEC-Q100 grade 0.

AEC-Q100 qualification relies on temperature accelerated stress testing. High temperature field usage however may result
in less significant stress test acceleration. In order to prevent the risk that ATmega88/ATmega168 Automotive lifetime would
not satisfy the application end-of-life reliability requirements, Atmel® has extended the testing, whenever applicable (High
Temperature Operating Life Test, High Temperature Storage Life, Data Retention, Thermal Cycles), far beyond the AEC-
Q100 requirements. Thereby, Atmel verified the ATmega88/ATmega168 Automotive has a long safe lifetime period after the
grade 0 qualification acceptance limits.

The valid domain calculation depends on the activation energy of the potential failure mechanism that is considered.
Examples are given in Figure 27-26. Therefore any temperature mission profile which could exceed the AEC-Q100
equivalence domain shall be submitted to Atmel for a thorough reliability analysis.

Figure 27-26. AEC-Q100 Lifetime Equivalence

4 STD

4 IDL

0.8

0.7

1.0

0.9

0.6
0.5
0.4

0.3

0.2
0.1

0
Er

ro
r (

LS
B

)
0 10075 1501255025-25-50

Temperature

Temperature (°C)

1

10000

1000000

100000

1000

100

HTSL 0.45eV
HTOL 0.59eV

10

200 40 60 80 100 120 140 160

H
ou

rs
269ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

(0x70) TIMSK2 – – – – – OCIE2B OCIE2A TOIE2 131

(0x6F) TIMSK1 – – ICIE1 – – OCIE1B OCIE1A TOIE1 115

(0x6E) TIMSK0 – – – – – OCIE0B OCIE0A TOIE0 89

(0x6D) PCMSK2 PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 74

(0x6C) PCMSK1 – PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 74

(0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 74

(0x6A) Reserved – – – – – – – –

(0x69) EICRA – – – – ISC11 ISC10 ISC01 ISC00 71

(0x68) PCICR – – – – – PCIE2 PCIE1 PCIE0

(0x67) Reserved – – – – – – – –

(0x66) OSCCAL Oscillator calibration register 29

(0x65) Reserved – – – – – – – –

(0x64) PRR PRTWI PRTIM2 PRTIM0 – PRTIM1 PRSPI PRUSART0 PRADC 35

(0x63) Reserved – – – – – – – –

(0x62) Reserved – – – – – – – –

(0x61) CLKPR CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 31

(0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 46

0x3F (0x5F) SREG I T H S V N Z C 10

0x3E (0x5E) SPH – – – – – (SP10)(5) SP9 SP8 12

0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 12

0x3C (0x5C) Reserved – – – – – – – –

0x3B (0x5B) Reserved – – – – – – – –

0x3A (0x5A) Reserved – – – – – – – –

0x39 (0x59) Reserved – – – – – – – –

0x38 (0x58) Reserved – – – – – – – –

0x37 (0x57) SPMCSR SPMIE (RWWSB)(5) – (RWWSRE)(5) BLBSET PGWRT PGERS SELFPRGEN 225

0x36 (0x56) Reserved – – – – – – – –

0x35 (0x55) MCUCR – – – PUD – – IVSEL IVCE

0x34 (0x54) MCUSR – – – – WDRF BORF EXTRF PORF

0x33 (0x53) SMCR – – – – SM2 SM1 SM0 SE 33

0x32 (0x52) Reserved – – – – – – – –

0x31 (0x51) Reserved – – – – – – – –

0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 202

0x2F (0x4F) Reserved – – – – – – – –

0x2E (0x4E) SPDR SPI Data Register 142

28. Register Summary (Continued)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

2. I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In
these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVR®, the CBI and
SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such status
flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega88/168 is a
complex microcontroller with more peripheral units than can be supported within the 64 location reserved in opcode for
the IN and OUT instructions. For the extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

5. Only valid for Atmel® ATmega88/168
ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

274

30. Ordering Information

30.1 ATmega88

Speed (MHz) Power Supply Ordering Code Package(1) Operation Range

16(2) 2.7V to 5.5V ATmega88-15MT2 PN Extended (–40C to +150C)

16(2) 2.7V to 5.5V ATmega88-15AD MA Extended (–40C to +150C)

Notes: 1. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also
halide free and fully green.

2. See Figure 25-1 on page 254.

30.2 ATmega168

Speed (MHz) Power Supply Ordering Code Package(1) Operation Range

16(2) 2.7V to 5.5V ATmega168-15MD PN Extended (–40C to +150C)

16(2) 2.7V to 5.5V ATmega168-15AD MA Extended (–40C to +150C)

Notes: 1. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also
halide free and fully green.

2. See Figure 25-1 on page 254.

30.3 Package information

Package Information

MA
32 - Lead, 7mm 7mm body size, 1.0mm body thickness 0.8mm lead pitch, thin profile plastic quad flat package
(TQFP)

PN
32-pad, 5  5 1.0mm body, lead pitch 0.50mm, quad flat no-lead/micro lead frame package (QFN/MLF): E2/D2 3.1
±0.1mm
281ATmega88/ATmega168 Automotive [DATASHEET]
9365A–AVR–02/16

