

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	508
Core Size	8-Bit
Speed	50MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, PWM, WDT
Number of I/O	22
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08qe16cwl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 MCU Block Diagram

The block diagram, Figure 1, shows the structure of the MC9S08QE32 MCU.

pins not available on 28-pin or 32-pin packages

□ pins not available on 28-pin, 32-pin, or 44-pin packages

Notes: When PTA5 is configured as RESET, pin becomes bi-directional with output being open-drain drive containing an internal pullup device. When PTA4 is configured as BKGD, pin becomes bi-directional.

For the 28-pin packages, V_{SSAD}/V_{REFL} and V_{DDAD}/V_{REFH} are double bonded to V_{SS} and V_{DD} respectively.

The 48-pin package is the only package with the option of having the SPI pins (SS, MISO, MOSI, and SPSCK) available on PTE3-0 pins.

Figure 1. MC9S08QE32 Series Block Diagram

Pin Assignments

2 Pin Assignments

This section shows the pin assignments for the MC9S08QE32 series devices.

Pins in **bold** are lost in the next lower pin count package.

Figure 2. 48-Pin QFN

Figure 3. 44-Pin LQFP

Pin Assignments

Pins in **bold** are lost in the next lower pin count package.

Figure 4. 32-Pin LQFP/QFN

Pin Assignments

Figure 5. 28-Pin SOIC

Table 1. MC9S08QE32 Series Pin Assignment by Package and Pin Sharing Priority

Pin Number			< Lowest	Priority	> Highest			
48	44	32	28	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
1	1	1	_	PTD1	KBI2P1			
2	2	2		PTD0	KBI2P0			
3	3	_		PTE7	TPM3CLK			
4	4	3	5					V _{DD}
5	5	4	6					V _{DDAD}
6	6							V _{REFH}
7	7	5	7					V _{REFL}
8	8							V _{SSAD}
9	9	6	8					V _{SS}
10	10	7	9	PTB7	SCL ¹			EXTAL
11	11	8	10	PTB6	SDA ¹			XTAL
12		—	_	PTE6				
13		—	_	PTE5				
14	12	9	11	PTB5	TPM1CH1	SS ²		
15	13	10	12	PTB4	TPM2CH1	MISO ²		
16	14	11	13	PTC3	TPM3CH3			
17	15	12	14	PTC2	TPM3CH2			
18	16	_	_	PTD7	KBI2P7			

Pin Assignments

Pin Number			< Lowest	Priority	> Highest			
48	44	32	28	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
19	17	—	_	PTD6	KBI2P6			
20	18	—		PTD5	KBI2P5			
21	19	13	15	PTC1	TPM3CH1			
22	20	14	16	PTC0	TPM3CH0			
23	21	15	17	PTB3	KBI1P7	MOSI ²		ADP7
24	22	16	18	PTB2	KBI1P6	SPSCK ²		ADP6
25	23	17	19	PTB1	KBI1P5	TxD1		ADP5
26	24	18	20	PTB0	KBI1P4	RxD1		ADP4
27	25	19	21	PTA7	TPM2CH2			ADP9
28	26	20	22	PTA6	TPM1CH2			ADP8
29		—		PTE4				
30	27	—						V _{DD}
31	28	_						V _{SS}
32	29	—		PTD4	KBI2P4			
33	30	21		PTD3	KBI2P3			
34	31	22		PTD2	KBI2P2			
35	32	23	23	PTA3	KBI1P3	SCL ¹		ADP3
36	33	24	24	PTA2	KBI1P2	SDA ¹		ADP2
37	34	25	25	PTA1	KBI1P1	TPM2CH0	ADP1 ³	ACMP1-3
38	35	26	26	PTA0	KBI1P0	TPM1CH0	ADP0 ³	ACMP1+ ³
39	36	27	27	PTC7	TxD2			ACMP2-
40	37	28	28	PTC6	RxD2			ACMP2+
41	_	_		PTE3	SS ²			
42	38	—	_	PTE2	MISO ²			
43	39	—	_	PTE1	MOSI ²			
44	40	_		PTE0	TPM2CLK	SPSCK ²		
45	41	29	1	PTC5	TPM3CH5			ACMP2O
46	42	30	2	PTC4	TPM3CH4			
47	43	31	3	PTA5	IRQ	TPM1CLK	RESET	
48	44	32	4	PTA4	ACMP10	BKGD	MS	

Table 1. MC9S08QE32 Series Pin Assignment by Package and Pin Sharing Priority (continued)

¹ IIC pins, SCL and SDA can be repositioned using IICPS in SOPT2; default reset locations are PTA3 and PTA2.

 $^2\,$ SPI pins ($\overline{SS},$ MISO, MOSI, and SPSCK) can be repositioned using SPIPS in SOPT2. Default locations are PTB5, PTB4, PTB3, and PTB2.

³ If ADC and ACMP1 are enabled, both modules will have access to the pin.

3.1 Introduction

This section contains electrical and timing specifications for the MC9S08QE32 series of microcontrollers available at the time of publication.

3.2 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Ρ	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.3 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 3 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pull-up resistor associated with the pin is enabled.

	Rating	Symbol	value	Unit
Operating temperature range (packaged)		T _A	T _L to T _H –40 to 85	°C
Maxim	um junction temperature	T _{JM}	95	°C
Therma Sing	al resistance Jle-layer board			
	48-pin QFN		81	
	44-pin LQFP	θ _{JA}	68	
	32-pin LQFP		66	°C/W
	32-pin QFN		92	
	28-pin SOIC		57	
Therma Four	al resistance r-layer board	<u> </u>		
	48-pin QFN		26	
	ting temperature range aged) num junction temperature nal resistance gle-layer board 48-pin QFN 44-pin LQFP 32-pin LQFP 32-pin QFN 28-pin SOIC nal resistance ur-layer board 48-pin QFN 44-pin LQFP 32-pin LQFP 32-pin LQFP 32-pin QFN 44-pin LQFP 32-pin QFN 44-pin SOIC		46	
	32-pin LQFP	θ_{JA}	54	°C/W
Four-la – – –	32-pin QFN		33	
	28-pin SOIC		42	

Table 4.	Thermal	Characteristics
		•

The average chip-jun

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 T_A = Ambient temperature, °C θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W $P_D = P_{int} + P_{I/O}$ $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power $P_{1/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$\mathbf{K} = \mathbf{P}_{\mathbf{D}} \times (\mathbf{T}_{\mathbf{A}} + \mathbf{273^{\circ}C}) + \theta_{\mathbf{JA}} \times (\mathbf{P}_{\mathbf{D}})^{2} \qquad \qquad Eqn. 3$$

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A. Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions must be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
Human Body	Series resistance	R1	1500	Ω
	Storage capacitance	С	100	pF
	Number of pulses per pin	—	3	
Machine	Series resistance	R1	0	Ω
	Storage capacitance	С	200	pF
	Number of pulses per pin	—	3	
Latch-up	Minimum input voltage limit		-2.5	V
	Maximum input voltage limit		7.5	V

Table 5. ESD and Latch-up Test Conditions

Table 6. ESD and Latch-Up Protection Characteristics

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	±2000	_	V
2	Machine model (MM)	V _{MM}	±200		V
3	Charge device model (CDM)	V _{CDM}	±500	_	V
4	Latch-up current at $T_A = 85^{\circ}C$	I _{LAT}	±100		mA

¹ Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

3.6 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Figure 10. Typical High-Side (Source) Characteristics — High Drive (PTxDSn = 1)

3.7 Supply Current Characteristics

This section includes information about power supply current in various operating modes.

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp (°C)	
	Ρ			25 165 MHz		13	14		-40 to 25	
	Ρ	Dur curati curat		20.100 10112		14	15		85	
1	Т	FEI mode, all modules on	RI _{DD}	20 MHz	3	13.75	—	mA		
	Т			8 MHz		5.59	—		-40 to 85	
	Т			1 MHz		1.03	—			
С 2 Т	С			25.165 MHz		11.5	12.3			
	Т	Run supply current	Blas	20 MHz	3	9.5	_	mA	-40 to 85	
	Т	FEI mode, all modules off	TUDD	8 MHz	5	4.6	_		-+0 10 05	
	Т			1 MHz		1.0	_			
3	Т	Run supply current LPRS = 0, all modules off	RI _{DD}	16 kHz FBILP	3	152	—	μA	-40 to 85	
0	3 T			16 kHz FBELP		115	—		10 10 00	
4	Т	Run supply current LPRS = 1, all modules off, running from Flash	DI	16 kHz FBELP	2 16 kHz EBELP 3	SELP 3	21.9	_	μΔ	-40 to 85
	Т	Run supply current LPRS = 1, all modules off, running from RAM	00		0	7.3	_	- μΑ	-40 10 85	
	С			25.165 MHz		5.74	6.00	- mA		
5	Т	Wait mode supply current	14/1	20 MHz	З	4.57			40 to 85	
5	Т	FEI mode, all modules off	DD	8 MHz	5	2				
	Т			1 MHz		0.73	—			

Table 8. Supply Current Characteristics

Num	С	Para	ameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp (°C)
6	Р				_		0.35	0.65		-40 to 25C
	С				_	3	0.8	1.0		70
	Р	Ston? mode su	upply current	521	_		2.0	4.5		85
0	С		ipply current	021 _{DD}	_		0.25	0.50	μΛ	-40 to 25
	С				_	2	0.65	0.85		70
	С				_		1.5	3.5		85
	Р				_		0.45	1.00		-40 to 25
	С			621	_	3	1.5	2.3		70
7	Р	Stop3 mode su	pply current		_		4	8		85
/	С	no clocks active			_	2	0.35	0.70	μΛ	-40 to 25
	С				_		1	2		70
	С				_		3.5	6.0		85
8	Т		EREFSTEN=1		32 kHz		500		nA	
9	Т		IREFSTEN=1		32 kHz		70		μA	
10	Т		TPM PWM		100 Hz		12	_	μA	
11	Т	1.	SCI, SPI, or IIC		300 bps		15	_	μA	
12	Т	Low power mode adders:	RTC using LPO		1 kHz	3	200	_	nA	-40 to 85
13	т		RTC using ICSERCLK		32 kHz		1	_	μA	
14	Т	1	LVD		n/a	1	100		μA	
15	Т		ACMP		n/a		20	_	μA	

Table 8.	Supply	Current	Characteristics	(continued))
	Cappij	ounone	0110100100100	(oomada)	,

¹ Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value.

Table 9. Stop Mode Adders

Num	C	Parameter	Condition		Tempe	erature		Unite
Num	C	Farameter	Condition	-40 °C	25 °C	70 °C	85 °C	Units
1	Т	LPO	—	50	75	100	150	nA
2	Т	ERREFSTEN	RANGE = HGO = 0	1000	1000	1100	1500	nA
3	Т	IREFSTEN ¹	—	63	70	77	81	μA
4	Т	RTC	Does not include clock source current	50	75	100	150	nA
5	Т	LVD ¹	LVDSE = 1	90	100	110	115	μA
6	Т	ACMP ¹	Not using the bandgap (BGBE = 0)	18	20	22	23	μA
7	Т	ADC ¹	ADLPC = ADLSMP = 1 Not using the bandgap (BGBE = 0)	95	106	114	120	μA

¹ Not available in stop2 mode.

3.8 External Oscillator (XOSCVLP) Characteristics

Reference Figure 11 and Figure 12 for crystal or resonator circuits.

Table 10. XOSC and ICS Specifications (Temperature Range = -40 to 85°C Ambient)

Num	С	Characteristic	Symbol	Min	Typical ¹	Max	Unit
1	с	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1), high gain (HGO = 1) High range (RANGE = 1), low power (HGO = 0)	f _{lo} f _{hi} f _{hi}	32 1 1		38.4 16 8	kHz MHz MHz
2	D	Load capacitors Low range (RANGE=0), low power (HGO=0) Other oscillator settings	C ₁ C ₂		See N See N	ote ² ote ³	
3	D	Feedback resistor Low range, low power (RANGE=0, HGO=0) ² Low range, High Gain (RANGE=0, HGO=1) High range (RANGE=1, HGO=X)	R _F		— 10 1		MΩ
4	D	Series resistor — Low range, low power (RANGE = 0, HGO = 0) ² Low range, high gain (RANGE = 0, HGO = 1) High range, low power (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz	R _S	 	 100 0 0 0 0	 0 10 20	kΩ
5	С	Crystal start-up time ⁴ Low range, low power Low range, high power High range, low power High range, high power	^t CSTL ^t CSTH	 	200 400 5 15	 	ms
6	D	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE mode FBE or FBELP mode	f _{extal}	0.03125 0		40 40	MHz MHz

¹ Data in Typical column is characterized at 3.0 V, 25 °C or is typical recommended value.

² Load capacitors (C_1 , C_2), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE=HGO=0.

³ See crystal or resonator manufacturer's recommendation.

⁴ Proper PC board layout procedures must be followed to achieve specifications.

Figure 11. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain

3.9 Internal Clock Source (ICS) Characteristics

Table 11. ICS Frequency Specifications (Temperature Range = -40 to 85°C Ambient)

Num	С	Char	acteristic	Symbol	Min	Typical ¹	Max	Unit
1	Ρ	Average internal reference fre	equency — factory trimmed	f _{int_t}	_	32.768	_	kHz
2	С	Average internal reference fre	equency — untrimmed	f _{int_ut}	31.25	—	39.06	kHz
3	Т	Internal reference start-up time		t _{IRST}		5	10	μS
	Ρ	-DCO output frequency trimmed ²	Low range (DFR = 00)	f _{dco_u}	16	—	20	MHz
4	Ρ		Mid range (DFR = 01)		32	—	40	
	Ρ		High range (DFR = 10)		48	_	60	
	Ρ	DCO output frequency ² reference = 32768 Hz and	Low range (DFR = 00)	f _{dco_DMX32}		19.92	—	MHz
5	Ρ		Mid range (DFR = 01)			39.85	—	
	Ρ	DMX32 = 1	High range (DFR = 10)			59.77	—	
6	С	Resolution of trimmed DCO output frequency at fixed voltage and temperature (using FTRIM)		$\Delta f_{dco_res_t}$	_	±0.1	±0.2	%f _{dco}
7	С	Resolution of trimmed DCO of and temperature (not using F	output frequency at fixed voltage TRIM)	$\Delta f_{dco_res_t}$	_	±0.2	±0.4	%f _{dco}

Num	С	Characteristic	Symbol	Min	Typical ¹	Max	Unit
8	С	Total deviation of trimmed DCO output frequency over voltage and temperature	Δf_{dco_t}	_	0.5 -1.0	±2	%f _{dco}
9	С	Total deviation of trimmed DCO output frequency over fixed voltage and temperature range of 0 °C to 70 °C	Δf_{dco_t}	_	±0.5	±1	%f _{dco}
10	С	FLL acquisition time ³	t _{Acquire}	—	-	1	ms
11	С	Long term jitter of DCO output clock (averaged over 2-ms interval) ⁴	C _{Jitter}	_	0.02	0.2	%f _{dco}

Table 11. ICS Frequency Specifications (Temperature Range = -40 to 85°C Ambient) (continued)

 $^1\,$ Data in Typical column is characterized at 3.0 V, 25 °C or is typical recommended value.

² The resulting bus clock frequency must not exceed the maximum specified bus clock frequency of the device.

³ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

⁴ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

3.10 AC Characteristics

This section describes timing characteristics for each peripheral system.

3.10.1 Control Timing

Num	С	Rating	Symbol	Min	Typical ¹	Max	Unit
1	D	Bus frequency (t_{cyc} = 1/f_{Bus}) $ V_{DD} \leq 2.1 V \\ 2.1 {<} V_{DD} \leq 2.4 V \\ V_{DD} > 2.4 V s $	f _{Bus}	DC	_	10 20 25.165	MHz
2	D	Internal low power oscillator period	t _{LPO}	700	—	1300	μS
3	D	External reset pulse width ²	t _{extrst}	100	—	_	ns
4	D	Reset low drive	t _{rstdrv}	$34 imes t_{cyc}$	—	—	ns
5	D	BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes	t _{MSSU}	500	_	_	ns
6	D	BKGD/MS hold time after issuing background debug force reset to enter user or BDM modes ³	t _{MSH}	100	_	_	μS
7	D	IRQ pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH,} t _{IHIL}	100 1.5 × t _{cyc}	_	_	ns

Table 12. Control Timing

NOTES:

1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Electrical Characteristics

1. Not defined but normally MSB of character just received

1. Not defined but normally LSB of character just received

Figure 20. SPI Slave Timing (CPHA = 1)

3.11 Analog Comparator (ACMP) Electricals

Table 15. Analog Comparator Electrical Specifications

С	Characteristic	Symbol	Min	Typical	Мах	Unit
D	Supply voltage	V _{DD}	1.8	_	3.6	V
Ρ	Supply current (active)	I _{DDAC}	—	20	35	μA
D	Analog input voltage	V _{AIN}	V _{SS} – 0.3		V _{DD}	V
Р	Analog input offset voltage	V _{AIO}	—	20	40	mV
С	Analog comparator hysteresis	V _H	3.0	9.0	15.0	mV
Ρ	Analog input leakage current	I _{ALKG}	—		1.0	μA
С	Analog comparator initialization delay	t _{AINIT}	—	_	1.0	μs

3.12 ADC Characteristics

Table 16. 12-Bit ADC Operating Conditions

С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment
	Supply voltage	Absolute	V _{DDAD}	1.8	—	3.6	V	—
D		Delta to V _{DD} (V _{DD} – V _{DDAD}) ²	ΔV_{DDAD}	-100	0	100	mV	_
D	Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSAD}) ²	ΔV_{SSAD}	-100	0	100	mV	_
D	Input voltage	—	V _{ADIN}	V _{REFL}	_	V_{REFH}	V	—
с	Input capacitance	_	C _{ADIN}	—	4.5	5.5	pF	_
с	Input resistance	_	R _{ADIN}	_	5	7	kΩ	_
	Analog source resistance	12-bit mode f _{ADCK} > 4 MHz f _{ADCK} < 4 MHz		_		2 5		External to MCU
С		10-bit mode f _{ADCK} > 4 MHz f _{ADCK} < 4 MHz	R _{AS}			5 10	kΩ	
		8-bit mode (all valid f _{ADCK})		—	—	10		
	ADC	High speed (ADLPC = 0)	4	0.4	—	8.0		
	clock freq.	Low power (ADLPC = 1)	IADCK	0.4	_	4.0	MHZ	_

¹ Typical values assume V_{DDAD} = 3.0 V, Temp = 25 °C, f_{ADCK}=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

Figure 21. ADC Input Impedance Equivalency Diagram

С	Characteristic	Conditions	Symbol	Min	Typ ¹	Мах	Unit	Comment
т	Supply current ADLPC = 1 ADLSMP = 1 ADCO = 1		I _{DDAD}		120	_	μA	
т	Supply current ADLPC = 1 ADLSMP = 0 ADCO = 1		I _{DDAD}		202		μA	
т	Supply current ADLPC = 0 ADLSMP = 1 ADCO = 1		I _{DDAD}	_	288	_	μA	
Ρ	Supply current ADLPC = 0 ADLSMP = 0 ADCO = 1		I _{DDAD}	_	0.532	1	mA	
Ρ	ADC	High speed (ADLPC = 0)	£	2	3.3	5	N411-	t _{adack} =
	clock source	Low power (ADLPC = 1)	IADACK	1.25	2	3.3	MHZ	1/f _{ADACK}

able 17. ADC Characteristics	(V _{REFH} =	V _{DDAD} ,	V _{REFL} =	V _{SSAD})
------------------------------	----------------------	---------------------	---------------------	---------------------

С	Characteristic	Conditions	Symbol	Min	Typ ¹	Max	Unit	Comment
	Conversion	Short sample (ADLSMP = 0)		_	20	_	ADCK	See
Р	time (including sample time)	Long sample (ADLSMP = 1)	t _{ADC}	_	40	_	cycles	reference manual for
_	O a musica di mus	Short sample (ADLSMP = 0)		_	3.5		ADCK	conversion time
Р	Sample time	Long sample (ADLSMP = 1)	TADS	_	23.5	_	cycles	variances
_	Temp sensor	–40 °C− 25 °C	~		1.646	_	m)//°C	
	slope	25 °C– 85 °C	in .		1.769	_	mv/°C	
D	Temp sensor voltage	25 °C	V _{TEMP25}	_	701.2	_	mV	
Т		12-bit mode, 3.6> V _{DDAD} > 2.7			-1 to 3	-2.5 to 5.5		
т	Total unadjusted	12-bit mode, 2.7> V _{DDAD} > 1.8V	E _{TUE}	_	-1 to 3	-3.0 to 6.5	LSB ²	Includes quantization
Р	error	10-bit mode		_	±1	±2.5		
Р		8-bit mode			±0.5	±1.0		
Т		12-bit mode		_	±1.0	-1.5 to 2.0		
Ρ	Differential non-linearity	10-bit mode ³	DNL	_	±0.5	±1.0	LSB ²	
Р		8-bit mode ³		_	±0.3	±0.5		
т	Integral	12-bit mode		_	±1.5	–2.5 to 2.75	0	
Т	non-linearity	10-bit mode	INL		±0.5	±1.0	LSB ²	
Т		8-bit mode			±0.3	±0.5		
Т		12-bit mode			±1.5	±2.5		
Ρ	Zero-scale error	10-bit mode	E _{ZS}		±0.5	±1.5	LSB ²	V _{ADIN} = V _{SSAD}
Ρ		8-bit mode		_	±0.5	±0.5		00/15
Т		12-bit mode		_	±1.0	-3.5 to 1.0		
Р	Full-scale error	10-bit mode	E _{FS}	_	±0.5	±1	LSB ²	V _{ADIN} = V _{ADIN}
Р		8-bit mode		_	±0.5	±0.5		DDAD
		12-bit mode		_	-1 to 0	_		
D	Quantization error	10-bit mode	EQ	_	—	±0.5	LSB ²	
		8-bit mode			_	±0.5		
		12-bit mode			±2	—		Pad
D	Input leakage error	10-bit mode	EIL	_	±0.2	±4	LSB ²	leakage ⁴ *
	error	8-bit mode			±0.1	±1.2		H _{AS}

Table 17. ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$) (continued)

¹ Typical values assume V_{DDAD} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB =
$$(V_{REFH} - V_{REFL})/2^{N}$$

- ³ Monotonicity and No-missing-codes guaranteed in 10-bit and 8-bit modes
- ⁴ Based on input pad leakage current. Refer to pad electricals.

3.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see MC9S08QE32 Series Reference Manual Chapter 4 Memory.

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage for program/erase -40 °C to 85 °C	V _{prog/erase}	1.8	_	3.6	V
D	Supply voltage for read operation	V _{Read}	1.8	—	3.6	V
D	Internal FCLK frequency ¹	f _{FCLK}	150	—	200	kHz
D	Internal FCLK period (1/FCLK)	t _{Fcyc}	5	—	6.67	μS
Р	Byte program time (random location) ⁽²⁾	t _{prog}			t _{Fcyc}	
Р	Byte program time (burst mode) ⁽²⁾	t _{Burst}			t _{Fcyc}	
Р	Page erase time ²	t _{Page}			t _{Fcyc}	
Р	Mass erase time ⁽²⁾	t _{Mass}		20,000		t _{Fcyc}
	Byte program current ³	R _{IDDBP}	—	4	—	mA
	Page erase current ³	R _{IDDPE}	—	6	—	mA
С	Program/erase endurance ⁴ T_L to $T_H = -40$ °C to 85 °C T = 25 °C		10,000			cycles
С	Data retention ⁵	t _{D_ret}	15	100	—	years

Table 18. Flash Characteristics

¹ The frequency of this clock is controlled by software setting.

² These values are hardware state machine controlled. User code does not need to count cycles. This information is supplied for calculating approximate time to program and erase.

³ The program and erase currents are additional to the standard run I_{DD} . These values are measured at room temperatures with $V_{DD} = 3.0$ V, bus frequency = 4.0 MHz.

⁴ Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619, *Typical Endurance for Nonvolatile Memory.*

⁵ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618, *Typical Data Retention for Nonvolatile Memory.*