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Chapter 4 Memory
The first byte of a series of sequential bytes being programmed in burst mode will take the same amount 
of time to program as a byte programmed in standard mode. Subsequent bytes will program in the burst 
program time provided that the conditions above are met. In the case the next sequential address is the 
beginning of a new row, the program time for that byte will be the standard time instead of the burst time. 
This is because the high voltage to the array must be disabled and then enabled again. If a new burst 
command has not been queued before the current command completes, then the charge pump will be 
disabled and high voltage removed from the array.

Figure 4-3. FLASH Burst Program Flowchart
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Chapter 5 Resets, Interrupts, and General System Control
The status flag corresponding to the interrupt source must be acknowledged (cleared) before returning 
from the ISR. Typically, the flag is cleared at the beginning of the ISR so that if another interrupt is 
generated by this same source, it will be registered so it can be serviced after completion of the current ISR.

5.5.2 External Interrupt Request Pin (IRQ)
External interrupts are managed by the IRQ status and control register, IRQSC. When the IRQ function is 
enabled, synchronous logic monitors the pin for edge-only or edge-and-level events. When the MCU is in 
stop mode and system clocks are shut down, a separate asynchronous path is used so the IRQ (if enabled) 
can wake the MCU.

5.5.2.1 Pin Configuration Options
The IRQ pin enable (IRQPE) control bit in IRQSC must be 1 in order for the IRQ pin to act as the interrupt 
request (IRQ) input. As an IRQ input, the user can choose the polarity of edges or levels detected 
(IRQEDG), whether the pin detects edges-only or edges and levels (IRQMOD), and whether an event 
causes an interrupt or only sets the IRQF flag which can be polled by software.

The IRQ pin, when enabled, defaults to use an internal pull device (IRQPDD = 0), the device is a pull-up 
or pull-down depending on the polarity chosen. If the user desires to use an external pull-up or pull-down, 
the IRQPDD can be written to a 1 to turn off the internal device.

BIH and BIL instructions may be used to detect the level on the IRQ pin when the pin is configured to act 
as the IRQ input.

NOTE
This pin does not contain a clamp diode to VDD and should not be driven 
above VDD.

The voltage measured on the internally pulled up IRQ pin will not be pulled 
to VDD. The internal gates connected to this pin are pulled to VDD. If the 
IRQ pin is required to drive to a VDD level an external pullup should be 
used.

5.5.2.2 Edge and Level Sensitivity
The IRQMOD control bit reconfigures the detection logic so it detects edge events and pin levels. In the 
edge and level detection mode, the IRQF status flag becomes set when an edge is detected (when the IRQ 
pin changes from the deasserted to the asserted level), but the flag is continuously set (and cannot be 
cleared) as long as the IRQ pin remains at the asserted level.

5.5.3 Interrupt Vectors, Sources, and Local Masks
Table 5-2 provides a summary of all interrupt sources. Higher-priority sources are located toward the 
bottom of the table. The high-order byte of the address for the interrupt service routine is located at the 
first address in the vector address column, and the low-order byte of the address for the interrupt service 
routine is located at the next higher address.
MC9S08SH32 Series Data Sheet, Rev. 3
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Chapter 5 Resets, Interrupts, and General System Control
When an interrupt condition occurs, an associated flag bit becomes set. If the associated local interrupt 
enable is 1, an interrupt request is sent to the CPU. Within the CPU, if the global interrupt mask (I bit in 
the CCR) is 0, the CPU will finish the current instruction; stack the PCL, PCH, X, A, and CCR CPU 
registers; set the I bit; and then fetch the interrupt vector for the highest priority pending interrupt. 
Processing then continues in the interrupt service routine.

Table 5-2. Vector Summary

Vector 
Priority

Vector 
Number

Address
(High/Low)

Vector 
Name Module Source Enable Description

Lowest 

Highest

31 0xFFC0/0xFFC1 — — — — —

30 0xFFC2/0xFFC3 Vacmp ACMP ACF ACIE Analog comparator 

29 0xFFC4/0xFFC5 — — — — —
28 0xFFC6/0xFFC7 — — — — —

27 0xFFC8/0xFFC9 — — — — —

26 0xFFCA/0xFFCB Vmtim MTIM TOF TOIE MTIM overflow
25 0xFFCC/0xFFCD Vrtc RTC RTIF RTIE Real-time interrupt

24 0xFFCE/0xFFCF Viic IIC IICIS IICIE IIC control

23 0xFFD0/0xFFD1 Vadc ADC COCO AIEN ADC
22 0xFFD2/0xFFD3 — — — — —

21 0xFFD4/0xFFD5 Vportb Port B PTBIF PTBIE Port B Pins

20 0xFFD6/0xFFD7 Vporta Port A PTAIF PTAIE Port A Pins
19 0xFFD8/0xFFD9 — — — — —

18 0xFFDA/0xFFDB Vscitx SCI TDRE, TC TIE, TCIE SCI transmit

17
0xFFDC/0xFFDD Vscirx SCI

IDLE, RDRF,
LDBKDIF,
RXEDGIF

ILIE, RIE,
LBKDIE,

RXEDGIE
SCI receive

16 0xFFDE/0xFFDF Vscierr SCI
OR, NF,
FE, PF

ORIE, NFIE,
FEIE, PFIE

SCI error

15 0xFFE0/0xFFE1 Vspi SPI
SPIF, MODF,

SPTEF
SPIE, SPIE, SPTIE SPI 

14 0xFFE2/0xFFE3 Vtpm2ovf TPM2 TOF TOIE TPM2 overflow

13 0xFFE4/0xFFE5 Vtpm2ch1 TPM2 CH1F CH1IE TPM2 channel 1
12 0xFFE6/0xFFE7 Vtpm2ch0 TPM2 CH0F CH0IE TPM2 channel 0

11 0xFFE8/0xFFE9 Vtpm1ovf TPM1 TOF TOIE TPM1 overflow

10 0xFFEA/0xFFEB — — — — —
9 0xFFEC/0xFFED — — — — —

8 0xFFEE/0xFFEF — — — — —

7 0xFFF0/0xFFF1 — — — — —
6 0xFFF2/0xFFF3 Vtpm1ch1 TPM1 CH1F CH1IE TPM1 channel 1

5 0xFFF4/0xFFF5 Vtpm1ch0 TPM1 CH0F CH0IE TPM1 channel 0

4 0xFFF6/0xFFF7 — — — — —

3 0xFFF8/0xFFF9 Vlvd
System
control

LVWF LVWIE Low-voltage warning

2 0xFFFA/0xFFFB Virq IRQ IRQF IRQIE IRQ pin

1 0xFFFC/0xFFFD Vswi Core SWI Instruction — Software interrupt

0 0xFFFE/0xFFFF Vreset
System
control

COP,
LVD,

RESET pin,
Illegal opcode,
Illegal address

COPE
LVDRE

—
—
—

Watchdog timer
Low-voltage detect

External pin
Illegal opcode
Illegal address
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Chapter 6 Parallel Input/Output Control
6.6.3.5 Port C Drive Strength Selection Register (PTCDS)

6.6.3.6 Ganged Output Drive Control Register (GNGC)

 7 6 5 4 3 2 1 0

R
PTCDS7 PTCDS6 PTCDS5 PTCDS4 PTCDS3 PTCDS2 PTCDS1 PTCDS0

W

Reset: 0 0 0 0 0 0 0 0

Figure 6-23. Drive Strength Selection for Port C Register (PTCDS)

Table 6-22. PTCDS Register Field Descriptions

Field Description

7:0
PTCDS[7:0]

Output Drive Strength Selection for Port C Bits — Each of these control bits selects between low and high 
output drive for the associated PTC pin. For port C pins that are configured as inputs, these bits have no effect.
0 Low output drive strength selected for port C bit n.
1 High output drive strength selected for port C bit n.

 7 6 5 4 3 2 1 0

R
GNGPS7 GNGPS6 GNGPS5 GNGPS4 GNGPS3 GNGPS2 GNGPS1 GNGEN

W

Reset: 0 0 0 0 0 0 0 0

Figure 6-24. Ganged Output Drive Control Register (GNGC)

Table 6-23. GNGC Register Field Descriptions

Field Description

7:1
GNGP[7:1]

Ganged Output Pin Select Bits— These write-once control bits selects whether the associated pin (see 
Table 6-1for pins available) is enabled for ganged output. When GNGEN = 1, all enabled ganged output pins will 
be controlled by the data, drive strength and slew rate settings for PTCO.
0 Associated pin is not part of the ganged output drive.
1 Associated pin is part of the ganged output drive. Requires GNGEN = 1.

0
GNGEN

Ganged Output Drive Enable Bit— This write-once control bit selects whether the ganged output drive feature 
is enabled.
0 Ganged output drive disabled.
1 Ganged output drive enabled. PTC0 forced to output regardless of the value of PTCDD0 in PTCDD.
MC9S08SH32 Series Data Sheet, Rev. 3
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Chapter 7 Central Processor Unit (S08CPUV3)
7.3 Addressing Modes
Addressing modes define the way the CPU accesses operands and data. In the HCS08, all memory, status 
and control registers, and input/output (I/O) ports share a single 64-Kbyte linear address space so a 16-bit 
binary address can uniquely identify any memory location. This arrangement means that the same 
instructions that access variables in RAM can also be used to access I/O and control registers or nonvolatile 
program space.

Some instructions use more than one addressing mode. For instance, move instructions use one addressing 
mode to specify the source operand and a second addressing mode to specify the destination address. 
Instructions such as BRCLR, BRSET, CBEQ, and DBNZ use one addressing mode to specify the location 
of an operand for a test and then use relative addressing mode to specify the branch destination address 
when the tested condition is true. For BRCLR, BRSET, CBEQ, and DBNZ, the addressing mode listed in 
the instruction set tables is the addressing mode needed to access the operand to be tested, and relative 
addressing mode is implied for the branch destination.

7.3.1 Inherent Addressing Mode (INH)
In this addressing mode, operands needed to complete the instruction (if any) are located within CPU 
registers so the CPU does not need to access memory to get any operands.

7.3.2 Relative Addressing Mode (REL)
Relative addressing mode is used to specify the destination location for branch instructions. A signed 8-bit 
offset value is located in the memory location immediately following the opcode. During execution, if the 
branch condition is true, the signed offset is sign-extended to a 16-bit value and is added to the current 
contents of the program counter, which causes program execution to continue at the branch destination 
address.

7.3.3 Immediate Addressing Mode (IMM)
In immediate addressing mode, the operand needed to complete the instruction is included in the object 
code immediately following the instruction opcode in memory. In the case of a 16-bit immediate operand, 
the high-order byte is located in the next memory location after the opcode, and the low-order byte is 
located in the next memory location after that.

7.3.4 Direct Addressing Mode (DIR)
In direct addressing mode, the instruction includes the low-order eight bits of an address in the direct page 
(0x0000–0x00FF). During execution a 16-bit address is formed by concatenating an implied 0x00 for the 
high-order half of the address and the direct address from the instruction to get the 16-bit address where 
the desired operand is located. This is faster and more memory efficient than specifying a complete 16-bit 
address for the operand.
MC9S08SH32 Series Data Sheet, Rev. 3
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Chapter 7 Central Processor Unit (S08CPUV3)
7.3.6.7 SP-Relative, 16-Bit Offset (SP2)
This variation of indexed addressing uses the 16-bit value in the stack pointer (SP) plus a 16-bit offset 
included in the instruction as the address of the operand needed to complete the instruction.

7.4 Special Operations
The CPU performs a few special operations that are similar to instructions but do not have opcodes like 
other CPU instructions. In addition, a few instructions such as STOP and WAIT directly affect other MCU 
circuitry. This section provides additional information about these operations.

7.4.1 Reset Sequence
Reset can be caused by a power-on-reset (POR) event, internal conditions such as the COP (computer 
operating properly) watchdog, or by assertion of an external active-low reset pin. When a reset event 
occurs, the CPU immediately stops whatever it is doing (the MCU does not wait for an instruction 
boundary before responding to a reset event). For a more detailed discussion about how the MCU 
recognizes resets and determines the source, refer to the Resets, Interrupts, and System Configuration 
chapter.

The reset event is considered concluded when the sequence to determine whether the reset came from an 
internal source is done and when the reset pin is no longer asserted. At the conclusion of a reset event, the 
CPU performs a 6-cycle sequence to fetch the reset vector from 0xFFFE and 0xFFFF and to fill the 
instruction queue in preparation for execution of the first program instruction.

7.4.2 Interrupt Sequence
When an interrupt is requested, the CPU completes the current instruction before responding to the 
interrupt. At this point, the program counter is pointing at the start of the next instruction, which is where 
the CPU should return after servicing the interrupt. The CPU responds to an interrupt by performing the 
same sequence of operations as for a software interrupt (SWI) instruction, except the address used for the 
vector fetch is determined by the highest priority interrupt that is pending when the interrupt sequence 
started.

The CPU sequence for an interrupt is: 
1. Store the contents of PCL, PCH, X, A, and CCR on the stack, in that order.
2. Set the I bit in the CCR.
3. Fetch the high-order half of the interrupt vector.
4. Fetch the low-order half of the interrupt vector.
5. Delay for one free bus cycle.
6. Fetch three bytes of program information starting at the address indicated by the interrupt vector 

to fill the instruction queue in preparation for execution of the first instruction in the interrupt 
service routine. 

After the CCR contents are pushed onto the stack, the I bit in the CCR is set to prevent other interrupts 
while in the interrupt service routine. Although it is possible to clear the I bit with an instruction in the 
MC9S08SH32 Series Data Sheet, Rev. 3
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Chapter 8 Analog Comparator (S08ACMPV3)
8.7 Functional Description
The analog comparator can be used to compare two analog input voltages applied to ACMP+ and ACMP-; 
or it can be used to compare an analog input voltage applied to ACMP- with an internal bandgap reference 
voltage. ACBGS is used to select between the bandgap reference voltage or the ACMP+ pin as the input 
to the non-inverting input of the analog comparator. The comparator output is high when the non-inverting 
input is greater than the inverting input, and is low when the non-inverting input is less than the inverting 
input. ACMOD is used to select the condition which will cause ACF to be set. ACF can be set on a rising 
edge of the comparator output, a falling edge of the comparator output, or either a rising or a falling edge 
(toggle). The comparator output can be read directly through ACO. The comparator output can be driven 
onto the ACMPO pin using ACOPE.
MC9S08SH32 Series Data Sheet, Rev. 3
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Chapter 9 Analog-to-Digital Converter (S08ADCV1)
9.3.2 Status and Control Register 2 (ADCSC2)
The ADCSC2 register is used to control the compare function, conversion trigger and conversion active 
of the ADC module.

Figure 9-5. Status and Control Register 2 (ADCSC2)

 

01000 AD8 11000 AD24

01001 AD9 11001 AD25

01010 AD10 11010 AD26

01011 AD11 11011 AD27

01100 AD12 11100 Reserved

01101 AD13 11101 VREFH

01110 AD14 11110 VREFL

01111 AD15 11111 Module disabled

7 6 5 4 3 2 1 0

R ADACT
ADTRG ACFE ACFGT

0 0
R1

1 Bits 1 and 0 are reserved bits that must always be written to 0.

R1

W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 9-4. ADCSC2 Register Field Descriptions

Field Description

7
ADACT

Conversion Active — ADACT indicates that a conversion is in progress. ADACT is set when a conversion is 
initiated and cleared when a conversion is completed or aborted.
0 Conversion not in progress
1 Conversion in progress

6
ADTRG

Conversion Trigger Select — ADTRG is used to select the type of trigger to be used for initiating a conversion. 
Two types of trigger are selectable: software trigger and hardware trigger. When software trigger is selected, a 
conversion is initiated following a write to ADCSC1. When hardware trigger is selected, a conversion is initiated 
following the assertion of the ADHWT input.
0 Software trigger selected
1 Hardware trigger selected

Figure 9-4. Input Channel Select (continued)

ADCH Input Select ADCH Input Select
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Chapter 9 Analog-to-Digital Converter (S08ADCV1)
9.3.8 Pin Control 1 Register (APCTL1)
The pin control registers are used to disable the I/O port control of MCU pins used as analog inputs. 
APCTL1 is used to control the pins associated with channels 0–7 of the ADC module.

 

Table 9-8. Input Clock Select

ADICLK Selected Clock Source

00 Bus clock

01 Bus clock divided by 2

10 Alternate clock (ALTCLK)

11 Asynchronous clock (ADACK)

7 6 5 4 3 2 1 0

R
ADPC7 ADPC6 ADPC5 ADPC4 ADPC3 ADPC2 ADPC1 ADPC0

W

Reset: 0 0 0 0 0 0 0 0

Figure 9-11.  Pin Control 1 Register (APCTL1)

Table 9-9. APCTL1 Register Field Descriptions

Field Description

7
ADPC7

ADC Pin Control 7 — ADPC7 is used to control the pin associated with channel AD7.
0 AD7 pin I/O control enabled
1 AD7 pin I/O control disabled

6
ADPC6

ADC Pin Control 6 — ADPC6 is used to control the pin associated with channel AD6.
0 AD6 pin I/O control enabled
1 AD6 pin I/O control disabled

5
ADPC5

ADC Pin Control 5 — ADPC5 is used to control the pin associated with channel AD5.
0 AD5 pin I/O control enabled
1 AD5 pin I/O control disabled

4
ADPC4

ADC Pin Control 4 — ADPC4 is used to control the pin associated with channel AD4.
0 AD4 pin I/O control enabled
1 AD4 pin I/O control disabled

3
ADPC3

ADC Pin Control 3 — ADPC3 is used to control the pin associated with channel AD3.
0 AD3 pin I/O control enabled
1 AD3 pin I/O control disabled

2
ADPC2

ADC Pin Control 2 — ADPC2 is used to control the pin associated with channel AD2.
0 AD2 pin I/O control enabled
1 AD2 pin I/O control disabled
MC9S08SH32 Series Data Sheet, Rev. 3
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Chapter 9 Analog-to-Digital Converter (S08ADCV1)
are too fast, then the clock must be divided to the appropriate frequency. This divider is specified by the 
ADIV bits and can be divide-by 1, 2, 4, or 8.

9.4.2 Input Select and Pin Control
The pin control registers (APCTL3, APCTL2, and APCTL1) are used to disable the I/O port control of the 
pins used as analog inputs.When a pin control register bit is set, the following conditions are forced for the 
associated MCU pin:

• The output buffer is forced to its high impedance state.
• The input buffer is disabled. A read of the I/O port returns a zero for any pin with its input buffer 

disabled.
• The pullup is disabled.

9.4.3 Hardware Trigger
The ADC module has a selectable asynchronous hardware conversion trigger, ADHWT, that is enabled 
when the ADTRG bit is set. This source is not available on all MCUs. Consult the module introduction for 
information on the ADHWT source specific to this MCU. 

When ADHWT source is available and hardware trigger is enabled (ADTRG=1), a conversion is initiated 
on the rising edge of ADHWT. If a conversion is in progress when a rising edge occurs, the rising edge is 
ignored. In continuous convert configuration, only the initial rising edge to launch continuous conversions 
is observed. The hardware trigger function operates in conjunction with any of the conversion modes and 
configurations.

9.4.4 Conversion Control
Conversions can be performed in either 10-bit mode or 8-bit mode as determined by the MODE bits. 
Conversions can be initiated by either a software or hardware trigger. In addition, the ADC module can be 
configured for low power operation, long sample time, continuous conversion, and automatic compare of 
the conversion result to a software determined compare value.

9.4.4.1 Initiating Conversions
A conversion is initiated:

• Following a write to ADCSC1 (with ADCH bits not all 1s) if software triggered operation is 
selected.

• Following a hardware trigger (ADHWT) event if hardware triggered operation is selected.
• Following the transfer of the result to the data registers when continuous conversion is enabled.

If continuous conversions are enabled a new conversion is automatically initiated after the completion of 
the current conversion. In software triggered operation, continuous conversions begin after ADCSC1 is 
written and continue until aborted. In hardware triggered operation, continuous conversions begin after a 
hardware trigger event and continue until aborted.
MC9S08SH32 Series Data Sheet, Rev. 3
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Chapter 9 Analog-to-Digital Converter (S08ADCV1)
result of the conversion is transferred to ADCRH and ADCRL upon completion of the conversion 
algorithm.

If the bus frequency is less than the fADCK frequency, precise sample time for continuous conversions 
cannot be guaranteed when short sample is enabled (ADLSMP=0). If the bus frequency is less than 1/11th 
of the fADCK frequency, precise sample time for continuous conversions cannot be guaranteed when long 
sample is enabled (ADLSMP=1).

The maximum total conversion time for different conditions is summarized in Table 9-12.

The maximum total conversion time is determined by the clock source chosen and the divide ratio selected. 
The clock source is selectable by the ADICLK bits, and the divide ratio is specified by the ADIV bits. For 
example, in 10-bit mode, with the bus clock selected as the input clock source, the input clock divide-by-1 
ratio selected, and a bus frequency of 8 MHz, then the conversion time for a single conversion is: 

NOTE
The ADCK frequency must be between fADCK minimum and fADCK 
maximum to meet ADC specifications.

Table 9-12. Total Conversion Time vs. Control Conditions

Conversion Type ADICLK ADLSMP Max Total Conversion Time

Single or first continuous 8-bit 0x, 10 0 20 ADCK cycles + 5 bus clock cycles

Single or first continuous 10-bit 0x, 10 0 23 ADCK cycles + 5 bus clock cycles

Single or first continuous 8-bit 0x, 10 1 40 ADCK cycles + 5 bus clock cycles

Single or first continuous 10-bit 0x, 10 1 43 ADCK cycles + 5 bus clock cycles

Single or first continuous 8-bit 11 0 5 μs + 20 ADCK + 5 bus clock cycles

Single or first continuous 10-bit 11 0 5 μs + 23 ADCK + 5 bus clock cycles

Single or first continuous 8-bit 11 1 5 μs + 40 ADCK + 5 bus clock cycles

Single or first continuous 10-bit 11 1 5 μs + 43 ADCK + 5 bus clock cycles

Subsequent continuous 8-bit; 
fBUS > fADCK

xx 0 17 ADCK cycles

Subsequent continuous 10-bit; 
fBUS > fADCK

xx 0 20 ADCK cycles

Subsequent continuous 8-bit; 
fBUS > fADCK/11

xx 1 37 ADCK cycles

Subsequent continuous 10-bit; 
fBUS > fADCK/11

xx 1 40 ADCK cycles

23 ADCK cyc
Conversion time = 8 MHz/1

Number of bus cycles = 3.5 μs x 8 MHz = 28 cycles

5 bus cyc
8 MHz+ = 3.5 μs
MC9S08SH32 Series Data Sheet, Rev. 3
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Chapter 9 Analog-to-Digital Converter (S08ADCV1) 
9.4.5 Automatic Compare Function
The compare function can be configured to check for either an upper limit or lower limit. After the input 
is sampled and converted, the result is added to the two’s complement of the compare value (ADCCVH 
and ADCCVL). When comparing to an upper limit (ACFGT = 1), if the result is greater-than or equal-to 
the compare value, COCO is set. When comparing to a lower limit (ACFGT = 0), if the result is less than 
the compare value, COCO is set. The value generated by the addition of the conversion result and the two’s 
complement of the compare value is transferred to ADCRH and ADCRL.

Upon completion of a conversion while the compare function is enabled, if the compare condition is not 
true, COCO is not set and no data is transferred to the result registers. An ADC interrupt is generated upon 
the setting of COCO if the ADC interrupt is enabled (AIEN = 1).

NOTE
The compare function can be used to monitor the voltage on a channel while 
the MCU is in either wait or stop3 mode. The ADC interrupt will wake the 
MCU when the compare condition is met.

9.4.6 MCU Wait Mode Operation
The WAIT instruction puts the MCU in a lower power-consumption standby mode from which recovery 
is very fast because the clock sources remain active. If a conversion is in progress when the MCU enters 
wait mode, it continues until completion. Conversions can be initiated while the MCU is in wait mode by 
means of the hardware trigger or if continuous conversions are enabled.

The bus clock, bus clock divided by two, and ADACK are available as conversion clock sources while in 
wait mode. The use of ALTCLK as the conversion clock source in wait is dependent on the definition of 
ALTCLK for this MCU. Consult the module introduction for information on ALTCLK specific to this 
MCU.

A conversion complete event sets the COCO and generates an ADC interrupt to wake the MCU from wait 
mode if the ADC interrupt is enabled (AIEN = 1).

9.4.7 MCU Stop3 Mode Operation
The STOP instruction is used to put the MCU in a low power-consumption standby mode during which 
most or all clock sources on the MCU are disabled.

9.4.7.1 Stop3 Mode With ADACK Disabled
If the asynchronous clock, ADACK, is not selected as the conversion clock, executing a STOP instruction 
aborts the current conversion and places the ADC in its idle state. The contents of ADCRH and ADCRL 
are unaffected by stop3 mode.After exiting from stop3 mode, a software or hardware trigger is required to 
resume conversions. 
MC9S08SH32 Series Data Sheet, Rev. 3
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Chapter 10 Inter-Integrated Circuit (S08IICV2)

CMP–
CMP+
Figure 10-1. MC9S08SH32 Series Block Diagram Highlighting IIC Block and Pins

IIC MODULE (IIC)

SERIAL PERIPHERAL
 INTERFACE MODULE (SPI)USER FLASH
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HCS08 CORE

CPU BDC

PTB7/SCL/EXTAL

HCS08 SYSTEM CONTROL

RESETS AND INTERRUPTS
MODES OF OPERATION
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INTERFACE MODULE (SCI)
SERIAL COMMUNICATIONS

8-BIT MODULO TIMER
MODULE (MTIM)
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A

PTA1/PIA1/TPM2CH0/ADP1/A

DEBUG MODULE (DBG)

MISO

SCL

SDA
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SPSCK

RxD
TxD

LOW-POWER OSCILLATOR

40-MHz INTERNAL CLOCK
SOURCE (ICS)

31.25 kHz to 38.4 kHz
1 MHz to 16 MHz

(XOSC) 

EXTAL

XTAL

VSS

VDD

VSSA

VDDA

VREFL

VREFH

ANALOG-TO-DIGITAL
CONVERTER (ADC)

10-BIT

SS

PTB1/PIB1/TxD/ADP5

PTB0/PIB0/RxD/ADP4

TCLK

BKGD/MS

16-BIT TIMER/PWM
MODULE (TPM2)

TCLK

PTA5/IRQ/TCLK/RESET

PTA4/ACMPO/BKGD/MS

PTA3/PIA3/SCL/ADP3

PTA2/PIA2/SDA/ADP2

PTA0/PIA0/TPM1CH0/ADP0/A

REAL-TIME COUNTER (RTC)

(MC9S08SH32 = 32,768 BYTES)
(MC9S08SH16 = 16,384 BYTES) 

(MC9S08SH32/16 = 1024 BYTES)

VDDA/VREFH

VSSA/VREFL

ANALOG COMPARATOR
(ACMP)
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PTC6/ADP14

16-BIT TIMER/PWM
MODULE (TPM1)

TCLK
TPM1CH0
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= Pin can be enabled as part of the ganged output drive feature
NOTE: - PTC7-PTC0 and PTA7-PTA6 not available on 16--pin Packages
 - PTC7-PTC4 and PTA7-PTA6 not available on 20-pin Packages

IRQ

IRQ

- For the 16-pin and 20-pin packages: VDDA/VREFH and VSSA/VREFL , are double bonded to VDD and VSS respectively.
- When PTA4 is configured as BKGD, pin becomes bi-directional.
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Inter-Integrated Circuit (S08IICV2)
10.4.1.5 Repeated Start Signal
As shown in Figure 10-9, a repeated start signal is a start signal generated without first generating a stop 
signal to terminate the communication. This is used by the master to communicate with another slave or 
with the same slave in different mode (transmit/receive mode) without releasing the bus.

10.4.1.6 Arbitration Procedure
The IIC bus is a true multi-master bus that allows more than one master to be connected on it. If two or 
more masters try to control the bus at the same time, a clock synchronization procedure determines the bus 
clock, for which the low period is equal to the longest clock low period and the high is equal to the shortest 
one among the masters. The relative priority of the contending masters is determined by a data arbitration 
procedure, a bus master loses arbitration if it transmits logic 1 while another master transmits logic 0. The 
losing masters immediately switch over to slave receive mode and stop driving SDA output. In this case, 
the transition from master to slave mode does not generate a stop condition. Meanwhile, a status bit is set 
by hardware to indicate loss of arbitration.

10.4.1.7 Clock Synchronization
Because wire-AND logic is performed on the SCL line, a high-to-low transition on the SCL line affects all 
the devices connected on the bus. The devices start counting their low period and after a device’s clock has 
gone low, it holds the SCL line low until the clock high state is reached. However, the change of low to 
high in this device clock may not change the state of the SCL line if another device clock is still within its 
low period. Therefore, synchronized clock SCL is held low by the device with the longest low period. 
Devices with shorter low periods enter a high wait state during this time (see Figure 10-10). When all 
devices concerned have counted off their low period, the synchronized clock SCL line is released and 
pulled high. There is then no difference between the device clocks and the state of the SCL line and all the 
devices start counting their high periods. The first device to complete its high period pulls the SCL line 
low again.

Figure 10-10. IIC Clock Synchronization

SCL1

SCL2

SCL

Internal Counter Reset

Delay Start Counting High Period
MC9S08SH32 Series Data Sheet, Rev. 3

Freescale Semiconductor 161
 



Chapter 14 Serial Communications Interface (S08SCIV4) 
Table 14-5. SCIxS1 Field Descriptions

Field Description

7
TDRE

Transmit Data Register Empty Flag — TDRE is set out of reset and when a transmit data value transfers from 
the transmit data buffer to the transmit shifter, leaving room for a new character in the buffer. To clear TDRE, read 
SCIxS1 with TDRE = 1 and then write to the SCI data register (SCIxD).
0 Transmit data register (buffer) full.
1 Transmit data register (buffer) empty.

6
TC

Transmission Complete Flag — TC is set out of reset and when TDRE = 1 and no data, preamble, or break 
character is being transmitted. 
0 Transmitter active (sending data, a preamble, or a break).
1 Transmitter idle (transmission activity complete).
TC is cleared automatically by reading SCIxS1 with TC = 1 and then doing one of the following three things:

• Write to the SCI data register (SCIxD) to transmit new data
• Queue a preamble by changing TE from 0 to 1
• Queue a break character by writing 1 to SBK in SCIxC2

5
RDRF

Receive Data Register Full Flag — RDRF becomes set when a character transfers from the receive shifter into 
the receive data register (SCIxD). To clear RDRF, read SCIxS1 with RDRF = 1 and then read the SCI data 
register (SCIxD).
0 Receive data register empty.
1 Receive data register full.

4
IDLE

Idle Line Flag — IDLE is set when the SCI receive line becomes idle for a full character time after a period of 
activity. When ILT = 0, the receiver starts counting idle bit times after the start bit. So if the receive character is 
all 1s, these bit times and the stop bit time count toward the full character time of logic high (10 or 11 bit times 
depending on the M control bit) needed for the receiver to detect an idle line. When ILT = 1, the receiver doesn’t 
start counting idle bit times until after the stop bit. So the stop bit and any logic high bit times at the end of the 
previous character do not count toward the full character time of logic high needed for the receiver to detect an 
idle line.
To clear IDLE, read SCIxS1 with IDLE = 1 and then read the SCI data register (SCIxD). After IDLE has been 
cleared, it cannot become set again until after a new character has been received and RDRF has been set. IDLE 
will get set only once even if the receive line remains idle for an extended period.
0 No idle line detected.
1 Idle line was detected.

3
OR

Receiver Overrun Flag — OR is set when a new serial character is ready to be transferred to the receive data 
register (buffer), but the previously received character has not been read from SCIxD yet. In this case, the new 
character (and all associated error information) is lost because there is no room to move it into SCIxD. To clear 
OR, read SCIxS1 with OR = 1 and then read the SCI data register (SCIxD).
0 No overrun.
1 Receive overrun (new SCI data lost).

2
NF

Noise Flag — The advanced sampling technique used in the receiver takes seven samples during the start bit 
and three samples in each data bit and the stop bit. If any of these samples disagrees with the rest of the samples 
within any bit time in the frame, the flag NF will be set at the same time as the flag RDRF gets set for the character. 
To clear NF, read SCIxS1 and then read the SCI data register (SCIxD).
0 No noise detected.
1 Noise detected in the received character in SCIxD.
MC9S08SH32 Series Data Sheet, Rev. 3

210 Freescale Semiconductor
 



Chapter 16 Timer/PWM Module (S08TPMV3)
16.3.5 TPM Channel Value Registers (TPMxCnVH:TPMxCnVL)
These read/write registers contain the captured TPM counter value of the input capture function or the 
output compare value for the output compare or PWM functions. The channel registers are cleared by 
reset.

In input capture mode, reading either byte (TPMxCnVH or TPMxCnVL) latches the contents of both bytes 
into a buffer where they remain latched until the other half is read. This latching mechanism also resets 

0 00 01 Input capture Capture on rising edge 
only

10 Capture on falling edge 
only

11 Capture on rising or 
falling edge

01 01 Output compare Toggle output on 
compare

10 Clear output on 
compare

11 Set output on compare

1X 10 Edge-aligned 
PWM

High-true pulses (clear 
output on compare)

X1 Low-true pulses (set 
output on compare)

1 XX 10 Center-aligned 
PWM

High-true pulses (clear 
output on compare-up)

X1 Low-true pulses (set 
output on compare-up)

7 6 5 4 3 2 1 0

R
Bit 15 14 13 12 11 10 9 Bit 8

W

Reset 0 0 0 0 0 0 0 0

Figure 16-13. TPM Channel Value Register High (TPMxCnVH)

7 6 5 4 3 2 1 0

R
Bit 7 6 5 4 3 2 1 Bit 0

W

Reset 0 0 0 0 0 0 0 0

Figure 16-14. TPM Channel Value Register Low (TPMxCnVL)

Table 16-7.  Mode, Edge, and Level Selection

CPWMS MSnB:MSnA ELSnB:ELSnA Mode Configuration
MC9S08SH32 Series Data Sheet, Rev. 3

Freescale Semiconductor 251
 



Chapter 17 Development Support 
The SYNC command is unlike other BDC commands because the host does not necessarily know the 
correct communications speed to use for BDC communications until after it has analyzed the response to 
the SYNC command. 

To issue a SYNC command, the host:
• Drives the BKGD pin low for at least 128 cycles of the slowest possible BDC clock (The slowest 

clock is normally the reference oscillator/64 or the self-clocked rate/64.)
• Drives BKGD high for a brief speedup pulse to get a fast rise time (This speedup pulse is typically 

one cycle of the fastest clock in the system.)
• Removes all drive to the BKGD pin so it reverts to high impedance
• Monitors the BKGD pin for the sync response pulse

The target, upon detecting the SYNC request from the host (which is a much longer low time than would 
ever occur during normal BDC communications):

• Waits for BKGD to return to a logic high
• Delays 16 cycles to allow the host to stop driving the high speedup pulse
• Drives BKGD low for 128 BDC clock cycles
• Drives a 1-cycle high speedup pulse to force a fast rise time on BKGD
• Removes all drive to the BKGD pin so it reverts to high impedance

The host measures the low time of this 128-cycle sync response pulse and determines the correct speed for 
subsequent BDC communications. Typically, the host can determine the correct communication speed 
within a few percent of the actual target speed and the communication protocol can easily tolerate speed 
errors of several percent.

17.2.4 BDC Hardware Breakpoint
The BDC includes one relatively simple hardware breakpoint that compares the CPU address bus to a 
16-bit match value in the BDCBKPT register. This breakpoint can generate a forced breakpoint or a tagged 
breakpoint. A forced breakpoint causes the CPU to enter active background mode at the first instruction 
boundary following any access to the breakpoint address. The tagged breakpoint causes the instruction 
opcode at the breakpoint address to be tagged so that the CPU will enter active background mode rather 
than executing that instruction if and when it reaches the end of the instruction queue. This implies that 
tagged breakpoints can only be placed at the address of an instruction opcode while forced breakpoints can 
be set at any address.

The breakpoint enable (BKPTEN) control bit in the BDC status and control register (BDCSCR) is used to 
enable the breakpoint logic (BKPTEN = 1). When BKPTEN = 0, its default value after reset, the 
breakpoint logic is disabled and no BDC breakpoints are requested regardless of the values in other BDC 
breakpoint registers and control bits. The force/tag select (FTS) control bit in BDCSCR is used to select 
forced (FTS = 1) or tagged (FTS = 0) type breakpoints.

The on-chip debug module (DBG) includes circuitry for two additional hardware breakpoints that are more 
flexible than the simple breakpoint in the BDC module.
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Chapter 17 Development Support
17.4.3.5 Debug FIFO High Register (DBGFH)
This register provides read-only access to the high-order eight bits of the FIFO. Writes to this register have 
no meaning or effect. In the event-only trigger modes, the FIFO only stores data into the low-order byte 
of each FIFO word, so this register is not used and will read 0x00.

Reading DBGFH does not cause the FIFO to shift to the next word. When reading 16-bit words out of the 
FIFO, read DBGFH before reading DBGFL because reading DBGFL causes the FIFO to advance to the 
next word of information.

17.4.3.6 Debug FIFO Low Register (DBGFL)
This register provides read-only access to the low-order eight bits of the FIFO. Writes to this register have 
no meaning or effect.

Reading DBGFL causes the FIFO to shift to the next available word of information. When the debug 
module is operating in event-only modes, only 8-bit data is stored into the FIFO (high-order half of each 
FIFO word is unused). When reading 8-bit words out of the FIFO, simply read DBGFL repeatedly to get 
successive bytes of data from the FIFO. It isn’t necessary to read DBGFH in this case.

Do not attempt to read data from the FIFO while it is still armed (after arming but before the FIFO is filled 
or ARMF is cleared) because the FIFO is prevented from advancing during reads of DBGFL. This can 
interfere with normal sequencing of reads from the FIFO.

Reading DBGFL while the debugger is not armed causes the address of the most-recently fetched opcode 
to be stored to the last location in the FIFO. By reading DBGFH then DBGFL periodically, external host 
software can develop a profile of program execution. After eight reads from the FIFO, the ninth read will 
return the information that was stored as a result of the first read. To use the profiling feature, read the FIFO 
eight times without using the data to prime the sequence and then begin using the data to get a delayed 
picture of what addresses were being executed. The information stored into the FIFO on reads of DBGFL 
(while the FIFO is not armed) is the address of the most-recently fetched opcode.
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Appendix A Electrical Characteristics
Table A-12. ADC Characteristics 

# Characteristic Conditions C Symb Min Typ1 Max Unit Comment

1

ADLPC=1
ADLSMP=1
ADCO=1

T
IDD + 
IDDAD

— 133 — μA
ADC current 

only

ADLPC=1
ADLSMP=0
ADCO=1

T
IDD + 
IDDAD

— 218 — μA
ADC current 

only

Supply current ADLPC=0
ADLSMP=1
ADCO=1

T
IDD + 
IDDAD

— 327 — μA
ADC current 

only

ADLPC=0
ADLSMP=0
ADCO=1

P
IDD + 
IDDAD

—
0.58

2
1 mA

ADC current 
only

2
ADC 
asynchronous 
clock source

High speed (ADLPC=0)
P

fADACK

2 3.3 5
MHz

tADACK =
1/fADACKLow power (ADLPC=1) 1.25 2 3.3

3

Conversion 
time (including 
sample time)

Short sample 
(ADLSMP=0)

D tADC

— 20 —
ADCK 
cycles

See ADC 
Chapter for 
conversion 

time variances

Long sample 
(ADLSMP=1)

— 40 —

4

Sample time Short sample 
(ADLSMP=0)

D tADS

— 3.5 —
ADCK 
cyclesLong sample 

(ADLSMP=1)
— 23.5 —

5

28-pin packages only

Total 
unadjusted 
error (includes 
quantization)

10-bit mode

P ETUE

— ±1 ±2.5

LSB2
8-bit mode

— ±0.5 ±1

20-pin packages

10-bit mode
P ETUE

— ±.5 ±3.5
LSB2

8-bit mode — ±0.7 ±1.5

16-pin packages

10-bit mode
P ETUE

— ±.5 ±3.5
LSB2

8-bit mode — ±0.7 ±1.5
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