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Chapter 2 Pins and Connections
Figure 2-3. 16-Pin TSSOP
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Chapter 3 Modes of Operation
Most background commands are not available in stop mode. The memory-access-with-status commands 
do not allow memory access, but they report an error indicating that the MCU is in either stop or wait 
mode. The BACKGROUND command can be used to wake the MCU from stop and enter active 
background mode if the ENBDM bit is set. After entering background debug mode, all background 
commands are available.

3.6.2 Stop2 Mode
Stop2 mode is entered by executing a STOP instruction under the conditions as shown in Table 3-1. Most 
of the internal circuitry of the MCU is powered off in stop2 with the exception of the RAM. Upon entering 
stop2, all I/O pin control signals are latched so that the pins retain their states during stop2.

Exit from stop2 is performed by asserting the wake-up pin (PTA5/IRQ/TCLK/RESET) on the MCU.

In addition, the real-time counter (RTC) can wake the MCU from stop2, if enabled.

Upon wake-up from stop2 mode, the MCU starts up as from a power-on reset (POR): 
• All module control and status registers are reset
• The LVD reset function is enabled and the MCU remains in the reset state if VDD is below the LVD 

trip point (low trip point selected due to POR)
• The CPU takes the reset vector

In addition to the above, upon waking up from stop2, the PPDF bit in SPMSC2 is set. This flag is used to 
direct user code to go to a stop2 recovery routine. PPDF remains set and the I/O pin states remain latched 
until a 1 is written to PPDACK in SPMSC2. 

To maintain I/O states for pins that were configured as general-purpose I/O before entering stop2, the user 
must restore the contents of the I/O port registers, which have been saved in RAM, to the port registers 
before writing to the PPDACK bit. If the port registers are not restored from RAM before writing to 
PPDACK, then the pins will switch to their reset states when PPDACK is written. 

For pins that were configured as peripheral I/O, the user must reconfigure the peripheral module that 
interfaces to the pin before writing to the PPDACK bit. If the peripheral module is not enabled before 
writing to PPDACK, the pins will be controlled by their associated port control registers when the I/O 
latches are opened.

3.6.3 On-Chip Peripheral Modules in Stop Modes
When the MCU enters any stop mode, system clocks to the internal peripheral modules are stopped. Even 
in the exception case (ENBDM = 1), where clocks to the background debug logic continue to operate, 
clocks to the peripheral systems are halted to reduce power consumption. Refer to Section 3.6.2, “Stop2 
Mode,” and Section 3.6.1, “Stop3 Mode,” for specific information on system behavior in stop modes.
MC9S08SH32 Series Data Sheet, Rev. 3

34 Freescale Semiconductor



Chapter 5 Resets, Interrupts, and General System Control
When an interrupt condition occurs, an associated flag bit becomes set. If the associated local interrupt 
enable is 1, an interrupt request is sent to the CPU. Within the CPU, if the global interrupt mask (I bit in 
the CCR) is 0, the CPU will finish the current instruction; stack the PCL, PCH, X, A, and CCR CPU 
registers; set the I bit; and then fetch the interrupt vector for the highest priority pending interrupt. 
Processing then continues in the interrupt service routine.

Table 5-2. Vector Summary

Vector 
Priority

Vector 
Number

Address
(High/Low)

Vector 
Name Module Source Enable Description

Lowest 

Highest

31 0xFFC0/0xFFC1 — — — — —

30 0xFFC2/0xFFC3 Vacmp ACMP ACF ACIE Analog comparator 

29 0xFFC4/0xFFC5 — — — — —
28 0xFFC6/0xFFC7 — — — — —

27 0xFFC8/0xFFC9 — — — — —

26 0xFFCA/0xFFCB Vmtim MTIM TOF TOIE MTIM overflow
25 0xFFCC/0xFFCD Vrtc RTC RTIF RTIE Real-time interrupt

24 0xFFCE/0xFFCF Viic IIC IICIS IICIE IIC control

23 0xFFD0/0xFFD1 Vadc ADC COCO AIEN ADC
22 0xFFD2/0xFFD3 — — — — —

21 0xFFD4/0xFFD5 Vportb Port B PTBIF PTBIE Port B Pins

20 0xFFD6/0xFFD7 Vporta Port A PTAIF PTAIE Port A Pins
19 0xFFD8/0xFFD9 — — — — —

18 0xFFDA/0xFFDB Vscitx SCI TDRE, TC TIE, TCIE SCI transmit

17
0xFFDC/0xFFDD Vscirx SCI

IDLE, RDRF,
LDBKDIF,
RXEDGIF

ILIE, RIE,
LBKDIE,

RXEDGIE
SCI receive

16 0xFFDE/0xFFDF Vscierr SCI
OR, NF,
FE, PF

ORIE, NFIE,
FEIE, PFIE

SCI error

15 0xFFE0/0xFFE1 Vspi SPI
SPIF, MODF,

SPTEF
SPIE, SPIE, SPTIE SPI 

14 0xFFE2/0xFFE3 Vtpm2ovf TPM2 TOF TOIE TPM2 overflow

13 0xFFE4/0xFFE5 Vtpm2ch1 TPM2 CH1F CH1IE TPM2 channel 1
12 0xFFE6/0xFFE7 Vtpm2ch0 TPM2 CH0F CH0IE TPM2 channel 0

11 0xFFE8/0xFFE9 Vtpm1ovf TPM1 TOF TOIE TPM1 overflow

10 0xFFEA/0xFFEB — — — — —
9 0xFFEC/0xFFED — — — — —

8 0xFFEE/0xFFEF — — — — —

7 0xFFF0/0xFFF1 — — — — —
6 0xFFF2/0xFFF3 Vtpm1ch1 TPM1 CH1F CH1IE TPM1 channel 1

5 0xFFF4/0xFFF5 Vtpm1ch0 TPM1 CH0F CH0IE TPM1 channel 0

4 0xFFF6/0xFFF7 — — — — —

3 0xFFF8/0xFFF9 Vlvd
System
control

LVWF LVWIE Low-voltage warning

2 0xFFFA/0xFFFB Virq IRQ IRQF IRQIE IRQ pin

1 0xFFFC/0xFFFD Vswi Core SWI Instruction — Software interrupt

0 0xFFFE/0xFFFF Vreset
System
control

COP,
LVD,

RESET pin,
Illegal opcode,
Illegal address

COPE
LVDRE

—
—
—

Watchdog timer
Low-voltage detect

External pin
Illegal opcode
Illegal address
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Chapter 5 Resets, Interrupts, and General System Control
5.7.1 Interrupt Pin Request Status and Control Register (IRQSC)
This direct page register includes status and control bits, which are used to configure the IRQ function, 
report status, and acknowledge IRQ events.

 7 6 5 4 3 2 1 0

R 0
IRQPDD IRQEDG IRQPE

IRQF 0
IRQIE IRQMOD

W IRQACK

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-2. Interrupt Request Status and Control Register (IRQSC)

Table 5-3. IRQSC Register Field Descriptions

Field Description

6
IRQPDD

Interrupt Request (IRQ) Pull Device Disable — This read/write control bit is used to disable the internal pullup 
device when the IRQ pin is enabled (IRQPE = 1) allowing for an external device to be used.
0 IRQ pull device enabled if IRQPE = 1.
1 IRQ pull device disabled if IRQPE = 1.

5
IRQEDG

Interrupt Request (IRQ) Edge Select — This read/write control bit is used to select the polarity of edges or 
levels on the IRQ pin that cause IRQF to be set. The IRQMOD control bit determines whether the IRQ pin is 
sensitive to both edges and levels or only edges. When the IRQ pin is enabled as the IRQ input and is configured 
to detect rising edges. When IRQEDG = 1 and the internal pull device is enabled, the pull-up device is 
reconfigured as an optional pull-down device.
0 IRQ is falling edge or falling edge/low-level sensitive.
1 IRQ is rising edge or rising edge/high-level sensitive.

4
IRQPE

IRQ Pin Enable — This read/write control bit enables the IRQ pin function. When this bit is set the IRQ pin can 
be used as an interrupt request.
0 IRQ pin function is disabled.
1 IRQ pin function is enabled.

3
IRQF

IRQ Flag — This read-only status bit indicates when an interrupt request event has occurred.
0 No IRQ request.
1 IRQ event detected.

2
IRQACK

IRQ Acknowledge — This write-only bit is used to acknowledge interrupt request events (write 1 to clear IRQF). 
Writing 0 has no meaning or effect. Reads always return 0. If edge-and-level detection is selected (IRQMOD = 1), 
IRQF cannot be cleared while the IRQ pin remains at its asserted level.

1
IRQIE

IRQ Interrupt Enable — This read/write control bit determines whether IRQ events generate an interrupt 
request.
0 Interrupt request when IRQF set is disabled (use polling).
1 Interrupt requested whenever IRQF = 1.

0
IRQMOD

IRQ Detection Mode — This read/write control bit selects either edge-only detection or edge-and-level 
detection. The IRQEDG control bit determines the polarity of edges and levels that are detected as interrupt 
request events. See Section 5.5.2.2, “Edge and Level Sensitivity,” for more details.
0 IRQ event on falling edges or rising edges only.
1 IRQ event on falling edges and low levels or on rising edges and high levels.
MC9S08SH32 Series Data Sheet, Rev. 3
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Chapter 5 Resets, Interrupts, and General System Control
5.7.2 System Reset Status Register (SRS)
This high page register includes read-only status flags to indicate the source of the most recent reset. When 
a debug host forces reset by writing 1 to BDFR in the SBDFR register, none of the status bits in SRS will 
be set. Writing any value to this register address causes a COP reset when the COP is enabled except the 
values 0x55 and 0xAA. Writing a 0x55-0xAA sequence to this address clears the COP watchdog timer 
without affecting the contents of this register. The reset state of these bits depends on what caused the 
MCU to reset.

Figure 5-3. System Reset Status (SRS)

 7 6 5 4 3 2 1 0

R POR PIN COP ILOP ILAD 0 LVD 0

W Writing 0x55, 0xAA to SRS address clears COP watchdog timer.

POR: 1 0 0 0 0 0 1 0

LVR: u1

1 u = unaffected

0 0 0 0 0 1 0

Any other
reset:

0 Note2

2 Any of these reset sources that are active at the time of reset entry will cause the corresponding bit(s) to be set; bits 
corresponding to sources that are not active at the time of reset entry will be cleared.

Note2 Note2 Note2 0 0 0

Table 5-4. SRS Register Field Descriptions

Field Description

7
POR

Power-On Reset — Reset was caused by the power-on detection logic. Because the internal supply voltage was 
ramping up at the time, the low-voltage reset (LVD) status bit is also set to indicate that the reset occurred while 
the internal supply was below the LVD threshold.
0 Reset not caused by POR.
1 POR caused reset.

6
PIN

External Reset Pin — Reset was caused by an active-low level on the external reset pin.
0 Reset not caused by external reset pin.
1 Reset came from external reset pin.

5
COP

Computer Operating Properly (COP) Watchdog — Reset was caused by the COP watchdog timer timing out. 
This reset source can be blocked by COPE = 0.
0 Reset not caused by COP timeout.
1 Reset caused by COP timeout.

4
ILOP

Illegal Opcode — Reset was caused by an attempt to execute an unimplemented or illegal opcode. The STOP 
instruction is considered illegal if stop is disabled by STOPE = 0 in the SOPT register. The BGND instruction is 
considered illegal if active background mode is disabled by ENBDM = 0 in the BDCSC register.
0 Reset not caused by an illegal opcode.
1 Reset caused by an illegal opcode.
MC9S08SH32 Series Data Sheet, Rev. 3
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Chapter 6 Parallel Input/Output Control
6.6.1.4 Port A Slew Rate Enable Register (PTASE)

6.6.1.5 Port A Drive Strength Selection Register (PTADS)

 7 6 5 4 3 2 1 0

R
PTASE7 PTASE6 R PTASE4 PTASE3 PTASE2 PTASE1 PTASE0

W

Reset: 0 0 0 0 0 0 0 0

Figure 6-6. Slew Rate Enable for Port A Register (PTASE)

Table 6-5. PTASE Register Field Descriptions

Field Description

7:6,4:0
PTASE

[7:6, 4:0]

Output Slew Rate Enable for Port A Bits — Each of these control bits determines if the output slew rate control 
is enabled for the associated PTA pin. For port A pins that are configured as inputs, these bits have no effect.
0 Output slew rate control disabled for port A bit n.
1 Output slew rate control enabled for port A bit n.

5
Reserved

Reserved Bits — These bits are unused on this MCU, writes have no affect and could read as 1s or 0s.

 7 6 5 4 3 2 1 0

R
PTADS7 PTADS6 R PTADS4 PTADS3 PTADS2 PTADS1 PTADS0

W

Reset: 0 0 0 0 0 0 0 0

Figure 6-7. Drive Strength Selection for Port A Register (PTADS)

Table 6-6. PTADS Register Field Descriptions

Field Description

7:6, 4:0
PTADS

[7:6, 4:0]

Output Drive Strength Selection for Port A Bits — Each of these control bits selects between low and high 
output drive for the associated PTA pin. For port A pins that are configured as inputs, these bits have no effect.
0 Low output drive strength selected for port A bit n.
1 High output drive strength selected for port A bit n.

5
Reserved

Reserved Bits — These bits are unused on this MCU, writes have no affect and could read as 1s or 0s.
MC9S08SH32 Series Data Sheet, Rev. 3
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Chapter 7 Central Processor Unit (S08CPUV3)
7.2 Programmer’s Model and CPU Registers
Figure 7-1 shows the five CPU registers. CPU registers are not part of the memory map.

Figure 7-1. CPU Registers

7.2.1 Accumulator (A)
The A accumulator is a general-purpose 8-bit register. One operand input to the arithmetic logic unit 
(ALU) is connected to the accumulator and the ALU results are often stored into the A accumulator after 
arithmetic and logical operations. The accumulator can be loaded from memory using various addressing 
modes to specify the address where the loaded data comes from, or the contents of A can be stored to 
memory using various addressing modes to specify the address where data from A will be stored.

Reset has no effect on the contents of the A accumulator.

7.2.2 Index Register (H:X)
This 16-bit register is actually two separate 8-bit registers (H and X), which often work together as a 16-bit 
address pointer where H holds the upper byte of an address and X holds the lower byte of the address. All 
indexed addressing mode instructions use the full 16-bit value in H:X as an index reference pointer; 
however, for compatibility with the earlier M68HC05 Family, some instructions operate only on the 
low-order 8-bit half (X). 

Many instructions treat X as a second general-purpose 8-bit register that can be used to hold 8-bit data 
values. X can be cleared, incremented, decremented, complemented, negated, shifted, or rotated. Transfer 
instructions allow data to be transferred from A or transferred to A where arithmetic and logical operations 
can then be performed. 

For compatibility with the earlier M68HC05 Family, H is forced to 0x00 during reset. Reset has no effect 
on the contents of X.
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Chapter 9  
Analog-to-Digital Converter (S08ADCV1)

9.1 Introduction
The 10-bit analog-to-digital converter (ADC) is a successive approximation ADC designed for operation 
within an integrated microcontroller system-on-chip.

NOTE
• MC9S08SH32 Series devices operate at a higher voltage range (2.7 V to 

5.5 V) and do not include stop1 mode. Please ignore references to stop1.
• MC9S08SH32 Series devices have up to 16 analog inputs. 

Consequently, the APCTL3 register is not available on these devices.

The ADC channel assignments, alternate clock function, and hardware trigger function are configured as 
described below for the MC9S08SH32 Series family of devices.

9.1.1 Channel Assignments
The ADC channel assignments for the MC9S08SH32 Series devices are shown in Table 9-1. Reserved 
channels convert to an unknown value.This chapter shows bits for all S08ADCV1 channels. 
MC9S08SH32 Series MCUs do not use all of these channels. All bits corresponding to channels that are 
not available on a device are reserved. 

Table 9-1. ADC Channel Assignment

ADCH Channel Input ADCH Channel Input

00000 AD0 PTA0/AD0 10000 AD16 VSS

00001 AD1 PTA1/ADP1 10001 AD17 VSS

00010 AD2 PTA2/ADP2 10010 AD18 VSS

00011 AD3 PTA3/ADP3 10011 AD19 VSS

00100 AD4 PTB0/ADP4 10100 AD20 VSS

00101 AD5 PTB1/ADP5 10101 AD21 VSS

00110 AD6 PTB2/ADP6 10110 AD22 Reserved

00111 AD7 PTB3/ADP7 10111 AD23 Reserved

01000 AD8 PTC0/ADP8 11000 AD24 Reserved

01001 AD9 PTC1/ADP9 11001 AD25 Reserved

01010 AD10 PTC2/ADP10 11010 AD26 Temperature Sensor1

01011 AD11 PTC3/ADP11 11011 AD27 Internal Bandgap2

01100 AD12 PTC4/ADP12 11100 - Reserved

01101 AD13 PTC5/ADP13 11101 VREFH VDD

01110 AD14 PTC6/ADP14 11110 VREFL VSS
MC9S08SH32 Series Data Sheet, Rev. 3
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Chapter 9 Analog-to-Digital Converter (S08ADCV1) 
 

7 6 5 4 3 2 1 0

R COCO
AIEN ADCO ADCH

W

Reset: 0 0 0 1 1 1 1 1

= Unimplemented or Reserved

Figure 9-3.  Status and Control Register (ADCSC1)

Table 9-3. ADCSC1 Register Field Descriptions

Field Description

7
COCO

Conversion Complete Flag — The COCO flag is a read-only bit which is set each time a conversion is 
completed when the compare function is disabled (ACFE = 0). When the compare function is enabled (ACFE = 
1) the COCO flag is set upon completion of a conversion only if the compare result is true. This bit is cleared 
whenever ADCSC1 is written or whenever ADCRL is read.
0 Conversion not completed
1 Conversion completed

6
AIEN

Interrupt Enable — AIEN is used to enable conversion complete interrupts. When COCO becomes set while 
AIEN is high, an interrupt is asserted.
0 Conversion complete interrupt disabled
1 Conversion complete interrupt enabled

5
ADCO

Continuous Conversion Enable — ADCO is used to enable continuous conversions.
0 One conversion following a write to the ADCSC1 when software triggered operation is selected, or one 

conversion following assertion of ADHWT when hardware triggered operation is selected.
1 Continuous conversions initiated following a write to ADCSC1 when software triggered operation is selected. 

Continuous conversions are initiated by an ADHWT event when hardware triggered operation is selected.

4:0
ADCH

Input Channel Select — The ADCH bits form a 5-bit field which is used to select one of the input channels. The 
input channels are detailed in Figure 9-4.
The successive approximation converter subsystem is turned off when the channel select bits are all set to 1. 
This feature allows for explicit disabling of the ADC and isolation of the input channel from all sources. 
Terminating continuous conversions this way will prevent an additional, single conversion from being performed. 
It is not necessary to set the channel select bits to all 1s to place the ADC in a low-power state when continuous 
conversions are not enabled because the module automatically enters a low-power state when a conversion 
completes.

Figure 9-4. Input Channel Select

ADCH Input Select ADCH Input Select

00000 AD0 10000 AD16

00001 AD1 10001 AD17

00010 AD2 10010 AD18

00011 AD3 10011 AD19

00100 AD4 10100 AD20

00101 AD5 10101 AD21

00110 AD6 10110 AD22

00111 AD7 10111 AD23
MC9S08SH32 Series Data Sheet, Rev. 3
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Chapter 9 Analog-to-Digital Converter (S08ADCV1) 
9.4.4.2 Completing Conversions
A conversion is completed when the result of the conversion is transferred into the data result registers, 
ADCRH and ADCRL. This is indicated by the setting of COCO. An interrupt is generated if AIEN is high 
at the time that COCO is set.

A blocking mechanism prevents a new result from overwriting previous data in ADCRH and ADCRL if 
the previous data is in the process of being read while in 10-bit MODE (the ADCRH register has been read 
but the ADCRL register has not). When blocking is active, the data transfer is blocked, COCO is not set, 
and the new result is lost. In the case of single conversions with the compare function enabled and the 
compare condition false, blocking has no effect and ADC operation is terminated. In all other cases of 
operation, when a data transfer is blocked, another conversion is initiated regardless of the state of ADCO 
(single or continuous conversions enabled). 

If single conversions are enabled, the blocking mechanism could result in several discarded conversions 
and excess power consumption. To avoid this issue, the data registers must not be read after initiating a 
single conversion until the conversion completes.

9.4.4.3 Aborting Conversions
Any conversion in progress will be aborted when:

• A write to ADCSC1 occurs (the current conversion will be aborted and a new conversion will be 
initiated, if ADCH are not all 1s).

• A write to ADCSC2, ADCCFG, ADCCVH, or ADCCVL occurs. This indicates a mode of 
operation change has occurred and the current conversion is therefore invalid.

• The MCU is reset.

• The MCU enters stop mode with ADACK not enabled.

When a conversion is aborted, the contents of the data registers, ADCRH and ADCRL, are not altered but 
continue to be the values transferred after the completion of the last successful conversion. In the case that 
the conversion was aborted by a reset, ADCRH and ADCRL return to their reset states.

9.4.4.4 Power Control
The ADC module remains in its idle state until a conversion is initiated. If ADACK is selected as the 
conversion clock source, the ADACK clock generator is also enabled.

Power consumption when active can be reduced by setting ADLPC. This results in a lower maximum 
value for fADCK (see the electrical specifications).

9.4.4.5 Total Conversion Time
The total conversion time depends on the sample time (as determined by ADLSMP), the MCU bus 
frequency, the conversion mode (8-bit or 10-bit), and the frequency of the conversion clock (fADCK). After 
the module becomes active, sampling of the input begins. ADLSMP is used to select between short and 
long sample times.When sampling is complete, the converter is isolated from the input channel and a 
successive approximation algorithm is performed to determine the digital value of the analog signal. The 
MC9S08SH32 Series Data Sheet, Rev. 3
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Inter-Integrated Circuit (S08IICV2) 
Figure 10-2. IIC Functional Block Diagram

10.2 External Signal Description
This section describes each user-accessible pin signal.

10.2.1 SCL — Serial Clock Line
The bidirectional SCL is the serial clock line of the IIC system.

10.2.2 SDA — Serial Data Line
The bidirectional SDA is the serial data line of the IIC system.

10.3 Register Definition
This section consists of the IIC register descriptions in address order. 

Refer to the direct-page register summary in the memory chapter of this document for the absolute address 
assignments for all IIC registers. This section refers to registers and control bits only by their names. A 

Input
Sync

In/Out
Data
Shift

Register

Address
Compare

Interrupt

Clock
Control

Start
Stop

Arbitration
Control

CTRL_REG FREQ_REG ADDR_REG STATUS_REG DATA_REG

ADDR_DECODE DATA_MUX

Data Bus

SCL SDA

Address
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Inter-Integrated Circuit (S08IICV2) 
10.4.1.2 Slave Address Transmission
The first byte of data transferred immediately after the start signal is the slave address transmitted by the 
master. This is a seven-bit calling address followed by a R/W bit. The R/W bit tells the slave the desired 
direction of data transfer.

1 = Read transfer, the slave transmits data to the master.
0 = Write transfer, the master transmits data to the slave.

Only the slave with a calling address that matches the one transmitted by the master responds by sending 
back an acknowledge bit. This is done by pulling the SDA low at the ninth clock (see Figure 10-9).

No two slaves in the system may have the same address. If the IIC module is the master, it must not 
transmit an address equal to its own slave address. The IIC cannot be master and slave at the same time. 
However, if arbitration is lost during an address cycle, the IIC reverts to slave mode and operates correctly 
even if it is being addressed by another master.

10.4.1.3 Data Transfer
Before successful slave addressing is achieved, the data transfer can proceed byte-by-byte in a direction 
specified by the R/W bit sent by the calling master.

All transfers that come after an address cycle are referred to as data transfers, even if they carry sub-address 
information for the slave device

Each data byte is 8 bits long. Data may be changed only while SCL is low and must be held stable while 
SCL is high as shown in Figure 10-9. There is one clock pulse on SCL for each data bit, the msb being 
transferred first. Each data byte is followed by a 9th (acknowledge) bit, which is signalled from the 
receiving device. An acknowledge is signalled by pulling the SDA low at the ninth clock. In summary, one 
complete data transfer needs nine clock pulses.

If the slave receiver does not acknowledge the master in the ninth bit time, the SDA line must be left high 
by the slave. The master interprets the failed acknowledge as an unsuccessful data transfer.

If the master receiver does not acknowledge the slave transmitter after a data byte transmission, the slave 
interprets this as an end of data transfer and releases the SDA line. 

In either case, the data transfer is aborted and the master does one of two things:
• Relinquishes the bus by generating a stop signal.
• Commences a new calling by generating a repeated start signal.

10.4.1.4 Stop Signal
The master can terminate the communication by generating a stop signal to free the bus. However, the 
master may generate a start signal followed by a calling command without generating a stop signal first. 
This is called repeated start. A stop signal is defined as a low-to-high transition of SDA while SCL at 
logical 1 (see Figure 10-9).

The master can generate a stop even if the slave has generated an acknowledge at which point the slave 
must release the bus.
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Inter-Integrated Circuit (S08IICV2)
10.4.1.5 Repeated Start Signal
As shown in Figure 10-9, a repeated start signal is a start signal generated without first generating a stop 
signal to terminate the communication. This is used by the master to communicate with another slave or 
with the same slave in different mode (transmit/receive mode) without releasing the bus.

10.4.1.6 Arbitration Procedure
The IIC bus is a true multi-master bus that allows more than one master to be connected on it. If two or 
more masters try to control the bus at the same time, a clock synchronization procedure determines the bus 
clock, for which the low period is equal to the longest clock low period and the high is equal to the shortest 
one among the masters. The relative priority of the contending masters is determined by a data arbitration 
procedure, a bus master loses arbitration if it transmits logic 1 while another master transmits logic 0. The 
losing masters immediately switch over to slave receive mode and stop driving SDA output. In this case, 
the transition from master to slave mode does not generate a stop condition. Meanwhile, a status bit is set 
by hardware to indicate loss of arbitration.

10.4.1.7 Clock Synchronization
Because wire-AND logic is performed on the SCL line, a high-to-low transition on the SCL line affects all 
the devices connected on the bus. The devices start counting their low period and after a device’s clock has 
gone low, it holds the SCL line low until the clock high state is reached. However, the change of low to 
high in this device clock may not change the state of the SCL line if another device clock is still within its 
low period. Therefore, synchronized clock SCL is held low by the device with the longest low period. 
Devices with shorter low periods enter a high wait state during this time (see Figure 10-10). When all 
devices concerned have counted off their low period, the synchronized clock SCL line is released and 
pulled high. There is then no difference between the device clocks and the state of the SCL line and all the 
devices start counting their high periods. The first device to complete its high period pulls the SCL line 
low again.

Figure 10-10. IIC Clock Synchronization
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Chapter 13  
Real-Time Counter (S08RTCV1)

13.1 Introduction
The RTC module consists of one 8-bit counter, one 8-bit comparator, several binary-based and 
decimal-based prescaler dividers, two clock sources, and one programmable periodic interrupt. This 
module can be used for time-of-day, calendar or any task scheduling functions. It can also serve as a cyclic 
wake up from low power modes without the need of external components. 
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Chapter 14 Serial Communications Interface (S08SCIV4)
14.2.2 SCI Control Register 1 (SCIxC1)
This read/write register is used to control various optional features of the SCI system.

 7 6 5 4 3 2 1 0

R
SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0

W

Reset 0 0 0 0 0 1 0 0

Figure 14-5. SCI Baud Rate Register (SCIxBDL)

Table 14-2. SCIxBDL Field Descriptions

Field Description

7:0
SBR[7:0]

Baud Rate Modulo Divisor — These 13 bits in SBR[12:0] are referred to collectively as BR, and they set the 
modulo divide rate for the SCI baud rate generator. When BR = 0, the SCI baud rate generator is disabled to 
reduce supply current. When BR = 1 to 8191, the SCI baud rate = BUSCLK/(16×BR). See also BR bits in 
Table 14-1.

 7 6 5 4 3 2 1 0

R
LOOPS SCISWAI RSRC M WAKE ILT PE PT

W

Reset 0 0 0 0 0 0 0 0

Figure 14-6. SCI Control Register 1 (SCIxC1)

Table 14-3. SCIxC1 Field Descriptions

Field Description

7
LOOPS

Loop Mode Select — Selects between loop back modes and normal 2-pin full-duplex modes. When LOOPS = 1, 
the transmitter output is internally connected to the receiver input.
0 Normal operation — RxD and TxD use separate pins.
1 Loop mode or single-wire mode where transmitter outputs are internally connected to receiver input. (See 

RSRC bit.) RxD pin is not used by SCI.

6
SCISWAI

SCI Stops in Wait Mode
0 SCI clocks continue to run in wait mode so the SCI can be the source of an interrupt that wakes up the CPU.
1 SCI clocks freeze while CPU is in wait mode.

5
RSRC

Receiver Source Select — This bit has no meaning or effect unless the LOOPS bit is set to 1. When 
LOOPS = 1, the receiver input is internally connected to the TxD pin and RSRC determines whether this 
connection is also connected to the transmitter output.
0 Provided LOOPS = 1, RSRC = 0 selects internal loop back mode and the SCI does not use the RxD pins.
1 Single-wire SCI mode where the TxD pin is connected to the transmitter output and receiver input.

4
M

9-Bit or 8-Bit Mode Select
0 Normal — start + 8 data bits (LSB first) + stop.
1 Receiver and transmitter use 9-bit data characters

start + 8 data bits (LSB first) + 9th data bit + stop.
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Chapter 14 Serial Communications Interface (S08SCIV4)
14.2.7 SCI Data Register (SCIxD)
This register is actually two separate registers. Reads return the contents of the read-only receive data 
buffer and writes go to the write-only transmit data buffer. Reads and writes of this register are also 
involved in the automatic flag clearing mechanisms for the SCI status flags.

14.3 Functional Description
The SCI allows full-duplex, asynchronous, NRZ serial communication among the MCU and remote 
devices, including other MCUs. The SCI comprises a baud rate generator, transmitter, and receiver block. 
The transmitter and receiver operate independently, although they use the same baud rate generator. 
During normal operation, the MCU monitors the status of the SCI, writes the data to be transmitted, and 
processes received data. The following describes each of the blocks of the SCI.

14.3.1 Baud Rate Generation
As shown in Figure 14-12, the clock source for the SCI baud rate generator is the bus-rate clock.

4
TXINV1

Transmit Data Inversion — Setting this bit reverses the polarity of the transmitted data output.
0 Transmit data not inverted
1 Transmit data inverted

3
ORIE

Overrun Interrupt Enable — This bit enables the overrun flag (OR) to generate hardware interrupt requests.
0 OR interrupts disabled (use polling).
1 Hardware interrupt requested when OR = 1.

2
NEIE

Noise Error Interrupt Enable — This bit enables the noise flag (NF) to generate hardware interrupt requests.
0 NF interrupts disabled (use polling).
1 Hardware interrupt requested when NF = 1.

1
FEIE

Framing Error Interrupt Enable — This bit enables the framing error flag (FE) to generate hardware interrupt 
requests.
0 FE interrupts disabled (use polling).
1 Hardware interrupt requested when FE = 1.

0
PEIE

Parity Error Interrupt Enable — This bit enables the parity error flag (PF) to generate hardware interrupt 
requests.
0 PF interrupts disabled (use polling).
1 Hardware interrupt requested when PF = 1.

1 Setting TXINV inverts the TxD output for all cases: data bits, start and stop bits, break, and idle.

 7 6 5 4 3 2 1 0

R R7 R6 R5 R4 R3 R2 R1 R0

W T7 T6 T5 T4 T3 T2 T1 T0

Reset 0 0 0 0 0 0 0 0

Figure 14-11. SCI Data Register (SCIxD)

Table 14-7. SCIxC3 Field Descriptions (continued)

Field Description
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Chapter 15 Serial Peripheral Interface (S08SPIV3) 
15.5 Functional Description
An SPI transfer is initiated by checking for the SPI transmit buffer empty flag (SPTEF = 1) and then 
writing a byte of data to the SPI data register (SPIxD) in the master SPI device. When the SPI shift register 
is available, this byte of data is moved from the transmit data buffer to the shifter, SPTEF is set to indicate 
there is room in the buffer to queue another transmit character if desired, and the SPI serial transfer starts.

During the SPI transfer, data is sampled (read) on the MISO pin at one SPSCK edge and shifted, changing 
the bit value on the MOSI pin, one-half SPSCK cycle later. After eight SPSCK cycles, the data that was 
in the shift register of the master has been shifted out the MOSI pin to the slave while eight bits of data 
were shifted in the MISO pin into the master’s shift register. At the end of this transfer, the received data 
byte is moved from the shifter into the receive data buffer and SPRF is set to indicate the data can be read 
by reading SPIxD. If another byte of data is waiting in the transmit buffer at the end of a transfer, it is 
moved into the shifter, SPTEF is set, and a new transfer is started.

Normally, SPI data is transferred most significant bit (MSB) first. If the least significant bit first enable 
(LSBFE) bit is set, SPI data is shifted LSB first.

When the SPI is configured as a slave, its SS pin must be driven low before a transfer starts and SS must 
stay low throughout the transfer. If a clock format where CPHA = 0 is selected, SS must be driven to a 
logic 1 between successive transfers. If CPHA = 1, SS may remain low between successive transfers. See 
Section 15.5.1, “SPI Clock Formats” for more details.

Because the transmitter and receiver are double buffered, a second byte, in addition to the byte currently 
being shifted out, can be queued into the transmit data buffer, and a previously received character can be 
in the receive data buffer while a new character is being shifted in. The SPTEF flag indicates when the 
transmit buffer has room for a new character. The SPRF flag indicates when a received character is 
available in the receive data buffer. The received character must be read out of the receive buffer (read 
SPIxD) before the next transfer is finished or a receive overrun error results.

In the case of a receive overrun, the new data is lost because the receive buffer still held the previous 
character and was not ready to accept the new data. There is no indication for such an overrun condition 
so the application system designer must ensure that previous data has been read from the receive buffer 
before a new transfer is initiated.

15.5.1 SPI Clock Formats
To accommodate a wide variety of synchronous serial peripherals from different manufacturers, the SPI 
system has a clock polarity (CPOL) bit and a clock phase (CPHA) control bit to select one of four clock 
formats for data transfers. CPOL selectively inserts an inverter in series with the clock. CPHA chooses 
between two different clock phase relationships between the clock and data.

Figure 15-10 shows the clock formats when CPHA = 1. At the top of the figure, the eight bit times are 
shown for reference with bit 1 starting at the first SPSCK edge and bit 8 ending one-half SPSCK cycle 
after the sixteenth SPSCK edge. The MSB first and LSB first lines show the order of SPI data bits 
depending on the setting in LSBFE. Both variations of SPSCK polarity are shown, but only one of these 
waveforms applies for a specific transfer, depending on the value in CPOL. The SAMPLE IN waveform 
applies to the MOSI input of a slave or the MISO input of a master. The MOSI waveform applies to the 
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Chapter 17 Development Support 
When no debugger pod is connected to the 6-pin BDM interface connector, the internal pullup on BKGD 
chooses normal operating mode. When a debug pod is connected to BKGD it is possible to force the MCU 
into active background mode after reset. The specific conditions for forcing active background depend 
upon the HCS08 derivative (refer to the introduction to this Development Support section). It is not 
necessary to reset the target MCU to communicate with it through the background debug interface.

17.2.2 Communication Details
The BDC serial interface requires the external controller to generate a falling edge on the BKGD pin to 
indicate the start of each bit time. The external controller provides this falling edge whether data is 
transmitted or received.

BKGD is a pseudo-open-drain pin that can be driven either by an external controller or by the MCU. Data 
is transferred MSB first at 16 BDC clock cycles per bit (nominal speed). The interface times out if 
512 BDC clock cycles occur between falling edges from the host. Any BDC command that was in progress 
when this timeout occurs is aborted without affecting the memory or operating mode of the target MCU 
system.

The custom serial protocol requires the debug pod to know the target BDC communication clock speed. 

The clock switch (CLKSW) control bit in the BDC status and control register allows the user to select the 
BDC clock source. The BDC clock source can either be the bus or the alternate BDC clock source. 

The BKGD pin can receive a high or low level or transmit a high or low level. The following diagrams 
show timing for each of these cases. Interface timing is synchronous to clocks in the target BDC, but 
asynchronous to the external host. The internal BDC clock signal is shown for reference in counting 
cycles.
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Chapter 17 Development Support
17.3.6 Hardware Breakpoints
The BRKEN control bit in the DBGC register may be set to 1 to allow any of the trigger conditions 
described in Section 17.3.5, “Trigger Modes,” to be used to generate a hardware breakpoint request to the 
CPU. TAG in DBGC controls whether the breakpoint request will be treated as a tag-type breakpoint or a 
force-type breakpoint. A tag breakpoint causes the current opcode to be marked as it enters the instruction 
queue. If a tagged opcode reaches the end of the pipe, the CPU executes a BGND instruction to go to active 
background mode rather than executing the tagged opcode. A force-type breakpoint causes the CPU to 
finish the current instruction and then go to active background mode.

If the background mode has not been enabled (ENBDM = 1) by a serial WRITE_CONTROL command 
through the BKGD pin, the CPU will execute an SWI instruction instead of going to active background 
mode.

17.4 Register Definition
This section contains the descriptions of the BDC and DBG registers and control bits.

Refer to the high-page register summary in the device overview chapter of this data sheet for the absolute 
address assignments for all DBG registers. This section refers to registers and control bits only by their 
names. A Freescale-provided equate or header file is used to translate these names into the appropriate 
absolute addresses.

17.4.1 BDC Registers and Control Bits
The BDC has two registers:

• The BDC status and control register (BDCSCR) is an 8-bit register containing control and status 
bits for the background debug controller. 

• The BDC breakpoint match register (BDCBKPT) holds a 16-bit breakpoint match address. 

These registers are accessed with dedicated serial BDC commands and are not located in the memory 
space of the target MCU (so they do not have addresses and cannot be accessed by user programs).

Some of the bits in the BDCSCR have write limitations; otherwise, these registers may be read or written 
at any time. For example, the ENBDM control bit may not be written while the MCU is in active 
background mode. (This prevents the ambiguous condition of the control bit forbidding active background 
mode while the MCU is already in active background mode.) Also, the four status bits (BDMACT, WS, 
WSF, and DVF) are read-only status indicators and can never be written by the WRITE_CONTROL serial 
BDC command. The clock switch (CLKSW) control bit may be read or written at any time.
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