

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08sh16mwl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

Section Number

Page

Chapter 1 Device Overview

1.1	Devices in the MC9S08SH32 Series.	
1.2	MCU Block Diagram	
1.3	System Clock Distribution	

Chapter 2 Pins and Connections

2.1	Device	Pin Assignment					
2.2	2 Recommended System Connections						
	2.2.1	Power					
	2.2.2	Oscillator (XOSC)					
	2.2.3	RESET					
	2.2.4	Background / Mode Select (BKGD/MS)					
	2.2.5	General-Purpose I/O and Peripheral Ports					
		1 1					

Chapter 3 Modes of Operation

-

Chapter 4 Memory

4.1	MC9S0	8SH32 Series Memory Map	. 37				
4.2	Reset an	nd Interrupt Vector Assignments	. 38				
4.3	Register Addresses and Bit Assignments						
4.4	RAM	~	. 46				
4.5	FLASH		. 46				
	4.5.1	Features	. 47				
	4.5.2	Program and Erase Times	. 47				

MC9S08SH32 Series Data Sheet, Rev. 3

Nonvolatile FLASH registers, shown in Table 4-4, are located in the FLASH memory. These registers include an 8-byte backdoor key, NVBACKKEY, which can be used to gain access to secure memory resources. During reset events, the contents of NVPROT and NVOPT in the nonvolatile register area of the FLASH memory are transferred into corresponding FPROT and FOPT working registers in the high-page registers to control security and block protection options.

Table 4-4. Nonvolatile Register Summary

Provided the key enable (KEYEN) bit is 1, the 8-byte comparison key can be used to temporarily disengage memory security. This key mechanism can be accessed only through user code running in secure memory. (A security key cannot be entered directly through background debug commands.) This security key can be disabled completely by programming the KEYEN bit to 0. If the security key is disabled, the only way to disengage security is by mass erasing the FLASH if needed (normally through the background debug interface) and verifying that FLASH is blank. To avoid returning to secure mode after the next reset, program the security bits (SEC) to the unsecured state (1:0).

4.5.5 Access Errors

An access error occurs whenever the command execution protocol is violated.

Any of the following specific actions will cause the access error flag (FACCERR) in FSTAT to be set. FACCERR must be cleared by writing a 1 to FACCERR in FSTAT before any command can be processed.

- Writing to a FLASH address before the internal FLASH clock frequency has been set by writing to the FCDIV register
- Writing to a FLASH address while FCBEF is not set (A new command cannot be started until the command buffer is empty.)
- Writing a second time to a FLASH address before launching the previous command (There is only one write to FLASH for every command.)
- Writing a second time to FCMD before launching the previous command (There is only one write to FCMD for every command.)
- Writing to any FLASH control register other than FCMD after writing to a FLASH address
- Writing any command code other than the five allowed codes (0x05, 0x20, 0x25, 0x40, or 0x41) to FCMD
- Writing any FLASH control register other than the write to FSTAT (to clear FCBEF and launch the command) after writing the command to FCMD
- The MCU enters stop mode while a program or erase command is in progress (The command is aborted.)
- Writing the byte program, burst program, or page erase command code (0x20, 0x25, or 0x40) with a background debug command while the MCU is secured (The background debug controller can only do blank check and mass erase commands when the MCU is secure.)
- Writing 0 to FCBEF to cancel a partial command

4.5.6 FLASH Block Protection

The block protection feature prevents the protected region of FLASH from program or erase changes. Block protection is controlled through the FLASH protection register (FPROT). When enabled, block protection begins at any 512 byte boundary below the last address of FLASH, 0xFFFF. (See Section 4.7.4, "FLASH Protection Register (FPROT and NVPROT)").

After exit from reset, FPROT is loaded with the contents of the NVPROT location, which is in the nonvolatile register block of the FLASH memory. FPROT cannot be changed directly from application software so a runaway program cannot alter the block protection settings. Because NVPROT is within the last 512 bytes of FLASH, if any amount of memory is protected, NVPROT is itself protected and cannot be altered (intentionally or unintentionally) by the application software. FPROT can be written through background debug commands, which allows a way to erase and reprogram a protected FLASH memory.

The block protection mechanism is illustrated in Figure 4-4. The FPS bits are used as the upper bits of the last address of unprotected memory. This address is formed by concatenating FPS7:FPS1 with logic 1 bits as shown. For example, to protect the last 1536 bytes of memory (addresses 0xFA00 through 0xFFFF), the FPS bits must be set to 1111 100, which results in the value 0xF9FF as the last address of unprotected memory. In addition to programming the FPS bits to the appropriate value, FPDIS (bit 0 of NVPROT)

The COP counter is initialized by the first writes to the SOPT1 and SOPT2 registers after any system reset. Subsequent writes to SOPT1 and SOPT2 have no effect on COP operation. Even if the application will use the reset default settings of COPT, COPCLKS, and COPW bits, the user should write to the write-once SOPT1 and SOPT2 registers during reset initialization to lock in the settings. This will prevent accidental changes if the application program gets lost.

The write to SRS that services (clears) the COP counter should not be placed in an interrupt service routine (ISR) because the ISR could continue to be executed periodically even if the main application program fails.

If the bus clock source is selected, the COP counter does not increment while the MCU is in background debug mode or while the system is in stop mode. The COP counter resumes when the MCU exits background debug mode or stop mode.

If the 1-kHz clock source is selected, the COP counter is re-initialized to zero upon entry to either background debug mode or stop mode and begins from zero upon exit from background debug mode or stop mode.

5.5 Interrupts

Interrupts provide a way to save the current CPU status and registers, execute an interrupt service routine (ISR), and then restore the CPU status so processing resumes where it left off before the interrupt. Other than the software interrupt (SWI), which is a program instruction, interrupts are caused by hardware events such as an edge on the IRQ pin or a timer-overflow event. The debug module can also generate an SWI under certain circumstances.

If an event occurs in an enabled interrupt source, an associated read-only status flag will become set. The CPU will not respond unless the local interrupt enable is a 1 to enable the interrupt and the I bit in the CCR is 0 to allow interrupts. The global interrupt mask (I bit) in the CCR is initially set after reset which prevents all maskable interrupt sources. The user program initializes the stack pointer and performs other system setup before clearing the I bit to allow the CPU to respond to interrupts.

When the CPU receives a qualified interrupt request, it completes the current instruction before responding to the interrupt. The interrupt sequence obeys the same cycle-by-cycle sequence as the SWI instruction and consists of:

- Saving the CPU registers on the stack
- Setting the I bit in the CCR to mask further interrupts
- Fetching the interrupt vector for the highest-priority interrupt that is currently pending
- Filling the instruction queue with the first three bytes of program information starting from the address fetched from the interrupt vector locations

While the CPU is responding to the interrupt, the I bit is automatically set to avoid the possibility of another interrupt interrupting the ISR itself (this is called nesting of interrupts). Normally, the I bit is restored to 0 when the CCR is restored from the value stacked on entry to the ISR. In rare cases, the I bit can be cleared inside an ISR (after clearing the status flag that generated the interrupt) so that other interrupts can be serviced without waiting for the first service routine to finish. This practice is not

Chapter 6 Parallel Input/Output Control

6.6.2 Port B Registers

Port B is controlled by the registers listed below.

6.6.2.1 Port B Data Register (PTBD)

Figure 6-11. Port B Data Register (PTBD)

Table 6-10. PTBD Register Field Descriptions

Field	Description
7:0 PTBD[7:0]	Port B Data Register Bits — For port B pins that are inputs, reads return the logic level on the pin. For port B pins that are configured as outputs, reads return the last value written to this register. Writes are latched into all bits of this register. For port B pins that are configured as outputs, the logic level is driven out the corresponding MCU pin. Reset forces PTBD to all 0s, but these 0s are not driven out the corresponding pins because reset also configures all port pins as high-impedance inputs with pull-ups/pull-downs disabled.

6.6.2.2 Port B Data Direction Register (PTBDD)

	7	6	5	4	3	2	1	0
R W	PTBDD7	PTBDD6	PTBDD5	PTBDD4	PTBDD3	PTBDD2	PTBDD1	PTBDD0
Reset:	0	0	0	0	0	0	0	0

Figure 6-12. Port B Data Direction Register (PTBDD)

Table 6-11. PTBDD Register Field Descriptions

Field	Description
7:0 PTBDD[7:0]	Data Direction for Port B Bits — These read/write bits control the direction of port B pins and what is read for PTBD reads.
	 0 Input (output driver disabled) and reads return the pin value. 1 Output driver enabled for port B bit n and PTBD reads return the contents of PTBDn.

Source	Operation	dress lode	Object Code	/cles	Cyc-by-Cyc	Affect on CCR		
1 Onn		₽dA		රි	Details	V 11 H	INZC	
MOV opr8a,opr8a MOV opr8a,X+ MOV #opr8i,opr8a MOV ,X+,opr8a	$\begin{array}{l} \text{Move} \\ (\text{M})_{\text{destination}} \leftarrow (\text{M})_{\text{source}} \\ \text{In IX+/DIR and DIR/IX+ Modes,} \\ \text{H:X} \leftarrow (\text{H:X}) + \$0001 \end{array}$	DIR/DIR DIR/IX+ IMM/DIR IX+/DIR	4E dd dd 5E dd 6E ii dd 7E dd	5 5 4 5	rpwpp rfwpp pwpp rfwpp	011-	- \$ \$ -	
MUL	Unsigned multiply $X:A \leftarrow (X) \times (A)$	INH	42	5	ffffp	- 1 1 0	0	
NEG opr8a NEGA NEGX NEG oprx8,X NEG ,X NEG oprx8,SP	$\begin{array}{lll} \mbox{Negate} & \mbox{M} \leftarrow - (\mbox{M}) = \$00 - (\mbox{M}) \\ (\mbox{Two's Complement}) & \mbox{A} \leftarrow - (\mbox{A}) = \$00 - (\mbox{A}) \\ & \mbox{X} \leftarrow - (\mbox{X}) = \$00 - (\mbox{X}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = \$00 - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = \$00 - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = \$00 - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = \$00 - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = \$00 - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = \$00 - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = \$00 - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = \$00 - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = \$00 - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = \$00 - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = \$00 - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = \$00 - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = \$00 - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = \$00 - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = \$00 - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = \$00 - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = \$00 - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = \$00 - (\mbox{M}) \\ & \mbox{M} \leftarrow - (\mbox{M}) = \$0 - (\mbox{M}) $	DIR INH INH IX1 IX SP1	30 dd 40 50 60 ff 70 9E 60 ff	5 1 5 4 6	rfwpp p rfwpp rfwp prfwp	\$11−	- \$ \$ \$	
NOP	No Operation — Uses 1 Bus Cycle	INH	9D	1	p	- 1 1 -		
NSA	Nibble Swap Accumulator $A \leftarrow (A[3:0]:A[7:4])$	INH	62	1	p	- 1 1 -		
ORA #opr8i ORA opr8a ORA opr16a ORA oprx16,X ORA oprx8,X ORA ,X ORA oprx16,SP ORA oprx8,SP	Inclusive OR Accumulator and Memory $A \leftarrow (A) \mid (M)$	IMM DIR EXT IX2 IX1 IX SP2 SP1	AA ii BA dd CA hh 11 DA ee ff EA ff FA 9E DA ee ff 9E EA ff	2 3 4 3 3 5 4	pp rpp prpp rpp rpp rfp pprpp prpp	011-	- \$ \$ -	
PSHA	Push Accumulator onto Stack Push (A); SP \leftarrow (SP) – \$0001	INH	87	2	sp	- 1 1 -		
РЅНН	Push H (Index Register High) onto Stack Push (H); SP \leftarrow (SP) – \$0001	INH	8B	2	sp	- 1 1 -		
PSHX	Push X (Index Register Low) onto Stack Push (X); SP \leftarrow (SP) – \$0001	INH	89	2	sp	- 1 1 -		
PULA	Pull Accumulator from Stack SP \leftarrow (SP + \$0001); Pull (A)	INH	86	3	ufp	- 1 1 -		
PULH	Pull H (Index Register High) from Stack SP \leftarrow (SP + \$0001); Pull (H)	INH	8A	3	ufp	- 1 1 -		
PULX	Pull X (Index Register Low) from Stack SP \leftarrow (SP + \$0001); Pull (X)	INH	88	3	ufp	- 1 1 -		
ROL <i>opr8a</i> ROLA ROLX ROL <i>oprx8</i> ,X ROL ,X ROL <i>oprx8</i> ,SP	Rotate Left through Carry	DIR INH INH IX1 IX SP1	39 dd 49 59 69 ff 79 9E 69 ff	5 1 5 4 6	rfwpp p rfwpp rfwp prfwpp	↓11-	- ↓ ↓ ↓	
ROR opr8a RORA RORX ROR oprx8,X ROR ,X ROR oprx8,SP	Rotate Right through Carry	DIR INH INH IX1 IX SP1	36 dd 46 56 66 ff 76 9E 66 ff	5 1 1 5 4 6	rfwpp p rfwpp rfwp prfwpp	\$11-	- ↓ ↓ ↓	

Dit Moni	nulation	Branch		Baa	d Modify M	Irito			trol	· /		Pagisto	Momony		
DIL-IVIAIII		Branch		Rea	a-woury-w		70 1				D 0	Register	/wentory	150 0	50 0
DO 5	10 5 BSETO							80 51 9	90 3						
3 DIR	2 DIR	2 REI				2 181		1 INH	2 REI	2 IMM	2 DIR	3 FXT	3 122	2 111	
01 5	11 5	21 3	31 5	1 1	51 /	61 5	71 5	81 6	01 3	Δ1 2	B1 3		D1 4	E1 3	F1 3
BRCIRO	BCIRO	BRN	CBEO	CBEQA	CBEOX	CBEO	CBEO	RTS	ੈ BIT	CMP	CMP	CMP	CMP	CMP	CMP
3 DIR	2 DIR	2 REL	3 DIR	3 IMM	3 IMM	3 IX1+	2 IX+	1 INH	2 REL	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
02 5	12 5	22 3	32 5	42 5	52 6	62 1	72 1	82 5+	92 3	A2 2	B2 3	C2 4	D2 4	F2 3	F2 3
BRSET1	BSET1	BHI	LDHX	MUL		NSA .	DAA	BGND	BGT	SBC	SBC	SBC	SBC	SBC	SBC
3 DIR	2 DIR	2 REL	3 EXT	1 INH	1 INH	1 INH	1 INH	1 INH	2 REL	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
03 5	13 5	23 3	33 5	43 1	53 1	63 5	73 4	83 11	93 3	A3 2	B3 3	C3 4	D3 4	E3 3	F3 3
BRCLR1	BCLR1	BLS	COM	COMA	COMX	COM	COM	SWI	BLE	CPX	CPX	CPX	CPX	CPX	CPX
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	2 REL	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
04 5	14 5	24 3	34 5	44 1	54 1	64 5	74 4	84 1	94 2	A4 2	B4 3	C4 4	D4 4	E4 3	F4 3
BRSET2	BSET2	BCC	LSR	LSRA	LSRX	LSR	LSR	TAP	TXS	AND	AND	AND	AND	AND	AND
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
05 5	15 5	25 3	35 4	45 3	55 4	65 3	75 5	85 1	⁹⁵ 2	A5 2	B5 3	C5 4	D5 4	E5 3	F5 3
BRCLR2	BCLR2	BCS	SIHX			CPHX	CPHX	IPA	ISX	BII	BII	BII	BII	BII	BII
3 DIR	2 DIR	Z REL	Z DIR	3 11/11/1	Z DIR	3 11/11/1	Z DIR			2 111111	Z DIR	3 EAT	3 1/2		
	10 5 BCET2		3000			⁶⁶ 00 ⁵									
3 DIR	2 DIR	2 REI				2 181			3 FXT			3 FXT			
07 5	17 5	27 3	37 5	47 1	57 1	67 5	77 1	87 2	97 1	Δ7 2	B7 3		D7 4	E7 3	F7 2
BRCI R3	BCI R3	É BEQ	"ASR	"ASRA	ASRX'	"ASR	'ASR	PSHA	TAX	ais 1	STA	STA	l'sta	L'STA	'STA
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
08 5	18 5	28 3	38 5	48 1	58 1	68 5	78 4	88 3	98 1	A8 2	B8 3	C8 4	D8 4	E8 3	F8 3
BRSET4	BSET4	BHCC	LSL	LSLA	LSLX	LSL	LSL	PULX	CLC	EOR	EOR	EOR	EOR	EOR	EOR
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
09 5	19 5	29 3	39 5	49 1	59 1	69 5	79 4	89 2	99 1	A9 2	B9 3	C9 4	D9 4	E9 3	F9 3
BRCLR4	BCLR4	BHCS	ROL	ROLA	ROLX	ROL	ROL	PSHX	SEC	ADC	ADC	ADC	ADC	ADC	ADC
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
0A 5	1A 5	2A 3	3A 5	4A 1	5A 1	6A 5	7A 4	8A 3	9A 1	AA 2	BA 3	CA 4	DA 4	EA 3	FA 3
BRSEIS	BSE15	BPL	DEC	DECA		DEC	DEC	PULH		ORA	ORA	ORA	ORA	ORA	ORA
3 DIR	2 DIR	Z REL	Z DIR								Z DIR	3 EAT	3 1/2		
3 DIR	2 DIR	2 REI				3 1X1		1 INH				3 FXT	3 122	2 111	
	10 5	2 112	30 5	40 1	50 1	60 5	70 1	80 1	9C 1	2 10101	BC 3			EC 3	FC 3
BRSET	BSET	BMC	INC	INCA	UNCX	INC	Í INC	CIRH	[°] RSP [']		JMP	JMP	.IMP	L.IMP	JMP
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH		2 DIR	3 EXT	3 IX2	2 IX1	1 IX
0D 5	1D 5	2D 3	3D 4	4D 1	5D 1	6D 4	7D 3		9D 1	AD 5	BD 5	CD 6	DD 6	ED 5	FD 5
BRCLR6	BCLR6	BMS	TST	TSTA	TSTX	TST	TST		NOP	BSR	JSR	JSR	JSR	JSR	JSR
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX		1 INH	2 REL	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
0E 5	1E 5	2E 3	3E 6	4E 5	5E 5	6E 4	7E 5	8E 2+	9E	AE 2	BE 3	CE 4	DE 4	EE 3	FE 3
BRSET7	BSET7	BIL	CPHX	MOV	MOV	MOV	MOV	STOP	Page 2	LDX	LDX	LDX	LDX	LDX	LDX
3 DIR	2 DIR	2 REL	3 EXT	3 DD	2 DIX+	3 IMD	2 IX+D	1 INH		2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
OF 5	1F 5	2F 3	3F 5	4F 1	5F 1	6F 5	7F 4	8F 2+	9F1	AF 2	BF 3	CF 4	DF 4	EF 3	FF 2
BRCLR/	BCLK/	N RIH		CLRA		CLR	CLR	WAII		AIX	SIX	SIX	SIX	SIX	SIX
JS DIR		Z KEL	∠ DIR	LI INH	LI INH	∠ IX1	LI 1X	LI INH	LI INH	∠ IIVIIVI			13 1AZ	∠ IA1	<u>X</u> 1

Table 7-3. Opcode Map (Sheet 1 of 2)

	Inhoront
	Innerent
IMM	Immediate
DIR	Direct
EXT	Extended
DD	DIR to DIR
IX+D	IX+ to DIR

REL IX IX1 IX2 IMD DIX+

Relative Indexed, No Offset Indexed, 8-Bit Offset Indexed, 16-Bit Offset IMM to DIR DIR to IX+

Stack Pointer, 8-Bit Offset Stack Pointer, 16-Bit Offset Indexed, No Offset with Post Increment Indexed, 1-Byte Offset with Post Increment

SP1 SP2 IX+

IX1+

MC9S08SH32 Series Data Sheet, Rev. 3

Opcode in Hexadecimal F0 3 SUB 1 IX HCS08 Cycles Instruction Mnemonic Addressing Mode

Chapter 8 Analog Comparator (S08ACMPV3)

Figure 8-2. Analog Comparator 5V (ACMP5) Block Diagram

Chapter 8 Analog Comparator (S08ACMPV3)

8.6.1.1 ACMP Status and Control Register (ACMPSC)

ACMPSC contains the status flag and control bits which are used to enable and configure the ACMP.

Figure 8-3. ACMP Status and Control Register

Table 8-2. ACMP Status and Control Register F	Field Descriptions
---	--------------------

Field	Description
7 ACME	 Analog Comparator Module Enable — ACME enables the ACMP module. 0 ACMP not enabled 1 ACMP is enabled
6 ACBGS	 Analog Comparator Bandgap Select — ACBGS is used to select between the bandgap reference voltage or the ACMP+ pin as the input to the non-inverting input of the analog comparatorr. 0 External pin ACMP+ selected as non-inverting input to comparator 1 Internal reference select as non-inverting input to comparator Note: refer to this chapter introduction to verify if any other config bits are necessary to enable the bandgap reference in the chip level.
5 ACF	 Analog Comparator Flag — ACF is set when a compare event occurs. Compare events are defined by ACMOD. ACF is cleared by writing a one to ACF. 0 Compare event has not occurred 1 Compare event has occurred
4 ACIE	 Analog Comparator Interrupt Enable — ACIE enables the interrupt from the ACMP. When ACIE is set, an interrupt will be asserted when ACF is set. 0 Interrupt disabled 1 Interrupt enabled
3 ACO	Analog Comparator Output — Reading ACO will return the current value of the analog comparator output. ACO is reset to a 0 and will read as a 0 when the ACMP is disabled (ACME = 0).
2 ACOPE	 Analog Comparator Output Pin Enable — ACOPE is used to enable the comparator output to be placed onto the external pin, ACMPO. 0 Analog comparator output not available on ACMPO 1 Analog comparator output is driven out on ACMPO
1:0 ACMOD	 Analog Comparator Mode — ACMOD selects the type of compare event which sets ACF. 00 Encoding 0 — Comparator output falling edge 01 Encoding 1 — Comparator output rising edge 10 Encoding 2 — Comparator output falling edge 11 Encoding 3 — Comparator output rising or falling edge

Figure 9-7. Data Result Low Register (ADCRL)

9.3.5 Compare Value High Register (ADCCVH)

This register holds the upper two bits of the 10-bit compare value. These bits are compared to the upper two bits of the result following a conversion in 10-bit mode when the compare function is enabled. In 8-bit operation, ADCCVH is not used during compare.

Figure 9-8. Compare Value High Register (ADCCVH)

9.3.6 Compare Value Low Register (ADCCVL)

This register holds the lower 8 bits of the 10-bit compare value, or all 8 bits of the 8-bit compare value. Bits ADCV7:ADCV0 are compared to the lower 8 bits of the result following a conversion in either 10-bit or 8-bit mode.

Figure 9-9. Compare Value Low Register(ADCCVL)

9.3.7 Configuration Register (ADCCFG)

ADCCFG is used to select the mode of operation, clock source, clock divide, and configure for low power or long sample time.

Inter-Integrated Circuit (S08IICV2)

10.3.3 IIC Control Register (IICC1)

Figure 10-5. IIC Control Register (IICC1)

Table 10-6. IICC1 Field Descriptions

Field	Description
7 IICEN	IIC Enable. The IICEN bit determines whether the IIC module is enabled.0 IIC is not enabled1 IIC is enabled
6 IICIE	 IIC Interrupt Enable. The IICIE bit determines whether an IIC interrupt is requested. IIC interrupt request not enabled IIC interrupt request enabled
5 MST	 Master Mode Select. The MST bit changes from a 0 to a 1 when a start signal is generated on the bus and master mode is selected. When this bit changes from a 1 to a 0 a stop signal is generated and the mode of operation changes from master to slave. 0 Slave mode 1 Master mode
4 TX	 Transmit Mode Select. The TX bit selects the direction of master and slave transfers. In master mode, this bit should be set according to the type of transfer required. Therefore, for address cycles, this bit is always high. When addressed as a slave, this bit should be set by software according to the SRW bit in the status register. Receive Transmit
3 ТХАК	 Transmit Acknowledge Enable. This bit specifies the value driven onto the SDA during data acknowledge cycles for master and slave receivers. 0 An acknowledge signal is sent out to the bus after receiving one data byte 1 No acknowledge signal response is sent
2 RSTA	Repeat start. Writing a 1 to this bit generates a repeated start condition provided it is the current master. This bit is always read as cleared. Attempting a repeat at the wrong time results in loss of arbitration.

10.3.4 IIC Status Register (IICS)

MC9S08SH32 Series Data Sheet, Rev. 3

Inter-Integrated Circuit (S08IICV2)

10.4.1.8 Handshaking

The clock synchronization mechanism can be used as a handshake in data transfer. Slave devices may hold the SCL low after completion of one byte transfer (9 bits). In such a case, it halts the bus clock and forces the master clock into wait states until the slave releases the SCL line.

10.4.1.9 Clock Stretching

The clock synchronization mechanism can be used by slaves to slow down the bit rate of a transfer. After the master has driven SCL low the slave can drive SCL low for the required period and then release it. If the slave SCL low period is greater than the master SCL low period then the resulting SCL bus signal low period is stretched.

10.4.2 10-bit Address

For 10-bit addressing, 0x11110 is used for the first 5 bits of the first address byte. Various combinations of read/write formats are possible within a transfer that includes 10-bit addressing.

10.4.2.1 Master-Transmitter Addresses a Slave-Receiver

The transfer direction is not changed (see Table 10-10). When a 10-bit address follows a start condition, each slave compares the first seven bits of the first byte of the slave address (11110XX) with its own address and tests whether the eighth bit (R/W direction bit) is 0. More than one device can find a match and generate an acknowledge (A1). Then, each slave that finds a match compares the eight bits of the second byte of the slave address with its own address. Only one slave finds a match and generates an acknowledge (A2). The matching slave remains addressed by the master until it receives a stop condition (P) or a repeated start condition (Sr) followed by a different slave address.

 Table 10-10. Master-Transmitter Addresses Slave-Receiver with a 10-bit Address

After the master-transmitter has sent the first byte of the 10-bit address, the slave-receiver sees an IIC interrupt. Software must ensure the contents of IICD are ignored and not treated as valid data for this interrupt.

10.4.2.2 Master-Receiver Addresses a Slave-Transmitter

The transfer direction is changed after the second R/W bit (see Table 10-11). Up to and including acknowledge bit A2, the procedure is the same as that described for a master-transmitter addressing a slave-receiver. After the repeated start condition (Sr), a matching slave remembers that it was addressed before. This slave then checks whether the first seven bits of the first byte of the slave address following Sr are the same as they were after the start condition (S) and tests whether the eighth (R/W) bit is 1. If there is a match, the slave considers that it has been addressed as a transmitter and generates acknowledge A3. The slave-transmitter remains addressed until it receives a stop condition (P) or a repeated start condition (Sr) followed by a different slave address.

11.3.1 ICS Control Register 1 (ICSC1)

Figure 11-3. ICS Control Register 1 (ICSC1)

Table 11-2	. ICS Control	Register 1	Field	Descriptions
------------	---------------	-------------------	-------	--------------

Field	Description
7:6 CLKS	Clock Source Select — Selects the clock source that controls the bus frequency. The actual bus frequency depends on the value of the BDIV bits. 00 Output of FLL is selected. 01 Internal reference clock is selected. 10 External reference clock is selected. 11 Reserved, defaults to 00.
5:3 RDIV	 Reference Divider — Selects the amount to divide down the FLL reference clock selected by the IREFS bits. Resulting frequency must be in the range 31.25 kHz to 39.0625 kHz. 000 Encoding 0 — Divides reference clock by 1 (reset default) 001 Encoding 1 — Divides reference clock by 2 010 Encoding 2 — Divides reference clock by 4 011 Encoding 3 — Divides reference clock by 8 100 Encoding 4 — Divides reference clock by 16 101 Encoding 5 — Divides reference clock by 32 110 Encoding 6 — Divides reference clock by 64 111 Encoding 7 — Divides reference clock by 128
2 IREFS	Internal Reference Select — The IREFS bit selects the reference clock source for the FLL. 1 Internal reference clock selected 0 External reference clock selected
1 IRCLKEN	Internal Reference Clock Enable — The IRCLKEN bit enables the internal reference clock for use as ICSIRCLK. 1 ICSIRCLK active 0 ICSIRCLK inactive
0 IREFSTEN	 Internal Reference Stop Enable — The IREFSTEN bit controls whether or not the internal reference clock remains enabled when the ICS enters stop mode. 1 Internal reference clock stays enabled in stop if IRCLKEN is set or if ICS is in FEI, FBI, or FBILP mode before entering stop 0 Internal reference clock is disabled in stop

12.4 Functional Description

The MTIM is composed of a main 8-bit up-counter with an 8-bit modulo register, a clock source selector, and a prescaler block with nine selectable values. The module also contains software selectable interrupt logic.

The MTIM counter (MTIMCNT) has three modes of operation: stopped, free-running, and modulo. Out of reset, the counter is stopped. If the counter is started without writing a new value to the modulo register, then the counter will be in free-running mode. The counter is in modulo mode when a value other than \$00 is in the modulo register while the counter is running.

After any MCU reset, the counter is stopped and reset to \$00, and the modulus is set to \$00. The bus clock is selected as the default clock source and the prescale value is divide by 1. To start the MTIM in free-running mode, simply write to the MTIM status and control register (MTIMSC) and clear the MTIM stop bit (TSTP).

Four clock sources are software selectable: the internal bus clock, the fixed frequency clock (XCLK), and an external clock on the TCLK pin, selectable as incrementing on either rising or falling edges. The MTIM clock select bits (CLKS1:CLKS0) in MTIMSC are used to select the desired clock source. If the counter is active (TSTP = 0) when a new clock source is selected, the counter will continue counting from the previous value using the new clock source.

Nine prescale values are software selectable: clock source divided by 1, 2, 4, 8, 16, 32, 64, 128, or 256. The prescaler select bits (PS[3:0]) in MTIMSC select the desired prescale value. If the counter is active (TSTP = 0) when a new prescaler value is selected, the counter will continue counting from the previous value using the new prescaler value.

The MTIM modulo register (MTIMMOD) allows the overflow compare value to be set to any value from \$01 to \$FF. Reset clears the modulo value to \$00, which results in a free running counter.

When the counter is active (TSTP = 0), the counter increments at the selected rate until the count matches the modulo value. When these values match, the counter overflows to \$00 and continues counting. The MTIM overflow flag (TOF) is set whenever the counter overflows. The flag sets on the transition from the modulo value to \$00. Writing to MTIMMOD while the counter is active resets the counter to \$00 and clears TOF.

Clearing TOF is a two-step process. The first step is to read the MTIMSC register while TOF is set. The second step is to write a 0 to TOF. If another overflow occurs between the first and second steps, the clearing process is reset and TOF will remain set after the second step is performed. This will prevent the second occurrence from being missed. TOF is also cleared when a 1 is written to TRST or when any value is written to the MTIMMOD register.

The MTIM allows for an optional interrupt to be generated whenever TOF is set. To enable the MTIM overflow interrupt, set the MTIM overflow interrupt enable bit (TOIE) in MTIMSC. TOIE should never be written to a 1 while TOF = 1. Instead, TOF should be cleared first, then the TOIE can be set to 1.

14.3.5.2 Stop Mode Operation

During all stop modes, clocks to the SCI module are halted.

In stop1 and stop2 modes, all SCI register data is lost and must be re-initialized upon recovery from these two stop modes. No SCI module registers are affected in stop3 mode.

The receive input active edge detect circuit is still active in stop3 mode, but not in stop2. An active edge on the receive input brings the CPU out of stop3 mode if the interrupt is not masked (RXEDGIE = 1).

Note, because the clocks are halted, the SCI module will resume operation upon exit from stop (only in stop3 mode). Software should ensure stop mode is not entered while there is a character being transmitted out of or received into the SCI module.

14.3.5.3 Loop Mode

When LOOPS = 1, the RSRC bit in the same register chooses between loop mode (RSRC = 0) or single-wire mode (RSRC = 1). Loop mode is sometimes used to check software, independent of connections in the external system, to help isolate system problems. In this mode, the transmitter output is internally connected to the receiver input and the RxD pin is not used by the SCI, so it reverts to a general-purpose port I/O pin.

14.3.5.4 Single-Wire Operation

When LOOPS = 1, the RSRC bit in the same register chooses between loop mode (RSRC = 0) or single-wire mode (RSRC = 1). Single-wire mode is used to implement a half-duplex serial connection. The receiver is internally connected to the transmitter output and to the TxD pin. The RxD pin is not used and reverts to a general-purpose port I/O pin.

In single-wire mode, the TXDIR bit in SCIxC3 controls the direction of serial data on the TxD pin. When TXDIR = 0, the TxD pin is an input to the SCI receiver and the transmitter is temporarily disconnected from the TxD pin so an external device can send serial data to the receiver. When TXDIR = 1, the TxD pin is an output driven by the transmitter. In single-wire mode, the internal loop back connection from the transmitter to the receiver causes the receiver to receive characters that are sent out by the transmitter.

16.1.3 Features

The TPM includes these distinctive features:

- One to eight channels:
 - Each channel may be input capture, output compare, or edge-aligned PWM
 - Rising-Edge, falling-edge, or any-edge input capture trigger
 - Set, clear, or toggle output compare action
 - Selectable polarity on PWM outputs
- Module may be configured for buffered, center-aligned pulse-width-modulation (CPWM) on all channels
- Timer clock source selectable as prescaled bus clock, fixed system clock, or an external clock pin
 - Prescale taps for divide-by 1, 2, 4, 8, 16, 32, 64, or 128
 - Fixed system clock source are synchronized to the bus clock by an on-chip synchronization circuit
 - External clock pin may be shared with any timer channel pin or a separated input pin
- 16-bit free-running or modulo up/down count operation
- Timer system enable
- One interrupt per channel plus terminal count interrupt

16.1.4 Modes of Operation

In general, TPM channels may be independently configured to operate in input capture, output compare, or edge-aligned PWM modes. A control bit allows the whole TPM (all channels) to switch to center-aligned PWM mode. When center-aligned PWM mode is selected, input capture, output compare, and edge-aligned PWM functions are not available on any channels of this TPM module.

When the microcontroller is in active BDM background or BDM foreground mode, the TPM temporarily suspends all counting until the microcontroller returns to normal user operating mode. During stop mode, all system clocks, including the main oscillator, are stopped; therefore, the TPM is effectively disabled until clocks resume. During wait mode, the TPM continues to operate normally. Provided the TPM does not need to produce a real time reference or provide the interrupt source(s) needed to wake the MCU from wait mode, the user can save power by disabling TPM functions before entering wait mode.

• Input capture mode

When a selected edge event occurs on the associated MCU pin, the current value of the 16-bit timer counter is captured into the channel value register and an interrupt flag bit is set. Rising edges, falling edges, any edge, or no edge (disable channel) may be selected as the active edge which triggers the input capture.

Output compare mode

When the value in the timer counter register matches the channel value register, an interrupt flag bit is set, and a selected output action is forced on the associated MCU pin. The output compare action may be selected to force the pin to zero, force the pin to one, toggle the pin, or ignore the pin (used for software timing functions).

16.3 Register Definition

This section consists of register descriptions in address order. A typical MCU system may contain multiple TPMs, and each TPM may have one to eight channels, so register names include placeholder characters to identify which TPM and which channel is being referenced. For example, TPMxCnSC refers to timer (TPM) x, channel n. TPM1C2SC would be the status and control register for channel 2 of timer 1.

16.3.1 TPM Status and Control Register (TPMxSC)

TPMxSC contains the overflow status flag and control bits used to configure the interrupt enable, TPM configuration, clock source, and prescale factor. These controls relate to all channels within this timer module.

Figure 16-7. TPM Status and Control Register (TPMxSC)

Table 16-3. TPMxSC Field Descriptions

Field	Description
7 TOF	Timer overflow flag. This read/write flag is set when the TPM counter resets to 0x0000 after reaching the modulo value programmed in the TPM counter modulo registers. Clear TOF by reading the TPM status and control register when TOF is set and then writing a logic 0 to TOF. If another TPM overflow occurs before the clearing sequence is complete, the sequence is reset so TOF would remain set after the clear sequence was completed for the earlier TOF. This is done so a TOF interrupt request cannot be lost during the clearing sequence for a previous TOF. Reset clears TOF. Writing a logic 1 to TOF has no effect. 0 TPM counter has not reached modulo value or overflow 1 TPM counter has overflowed
6 TOIE	Timer overflow interrupt enable. This read/write bit enables TPM overflow interrupts. If TOIE is set, an interrupt is generated when TOF equals one. Reset clears TOIE. 0 TOF interrupts inhibited (use for software polling) 1 TOF interrupts enabled
5 CPWMS	 Center-aligned PWM select. When present, this read/write bit selects CPWM operating mode. By default, the TPM operates in up-counting mode for input capture, output compare, and edge-aligned PWM functions. Setting CPWMS reconfigures the TPM to operate in up/down counting mode for CPWM functions. Reset clears CPWMS. 0 All channels operate as input capture, output compare, or edge-aligned PWM mode as selected by the MSnB:MSnA control bits in each channel's status and control register. 1 All channels operate in center-aligned PWM mode.

Chapter 16 Timer/PWM Module (S08TPMV3)

Input capture, output compare, and edge-aligned PWM functions do not make sense when the counter is operating in up/down counting mode so this implies that all active channels within a TPM must be used in CPWM mode when CPWMS=1.

The TPM may be used in an 8-bit MCU. The settings in the timer channel registers are buffered to ensure coherent 16-bit updates and to avoid unexpected PWM pulse widths. Writes to any of the registers TPMxMODH, TPMxMODL, TPMxCnVH, and TPMxCnVL, actually write to buffer registers.

In center-aligned PWM mode, the TPMxCnVH:L registers are updated with the value of their write buffer according to the value of CLKSB:CLKSA bits, so:

- If (CLKSB:CLKSA = 0:0), the registers are updated when the second byte is written
- If (CLKSB:CLKSA not = 0:0), the registers are updated after the both bytes were written, and the TPM counter changes from (TPMxMODH:TPMxMODL 1) to (TPMxMODH:TPMxMODL). If the TPM counter is a free-running counter, the update is made when the TPM counter changes from 0xFFFE to 0xFFFF.

When TPMxCNTH:TPMxCNTL=TPMxMODH:TPMxMODL, the TPM can optionally generate a TOF interrupt (at the end of this count).

Writing to TPMxSC cancels any values written to TPMxMODH and/or TPMxMODL and resets the coherency mechanism for the modulo registers. Writing to TPMxCnSC cancels any values written to the channel value registers and resets the coherency mechanism for TPMxCnVH:TPMxCnVL.

16.5 Reset Overview

16.5.1 General

The TPM is reset whenever any MCU reset occurs.

16.5.2 Description of Reset Operation

Reset clears the TPMxSC register which disables clocks to the TPM and disables timer overflow interrupts (TOIE=0). CPWMS, MSnB, MSnA, ELSnB, and ELSnA are all cleared which configures all TPM channels for input-capture operation with the associated pins disconnected from I/O pin logic (so all MCU pins related to the TPM revert to general purpose I/O pins).

16.6 Interrupts

16.6.1 General

The TPM generates an optional interrupt for the main counter overflow and an interrupt for each channel. The meaning of channel interrupts depends on each channel's mode of operation. If the channel is configured for input capture, the interrupt flag is set each time the selected input capture edge is recognized. If the channel is configured for output compare or PWM modes, the interrupt flag is set each time the main timer counter matches the value in the 16-bit channel value register.

Chapter 17 Development Support

the host must perform ((8 - CNT) - 1) dummy reads of the FIFO to advance it to the first significant entry in the FIFO.

In most trigger modes, the information stored in the FIFO consists of 16-bit change-of-flow addresses. In these cases, read DBGFH then DBGFL to get one coherent word of information out of the FIFO. Reading DBGFL (the low-order byte of the FIFO data port) causes the FIFO to shift so the next word of information is available at the FIFO data port. In the event-only trigger modes (see Section 17.3.5, "Trigger Modes"), 8-bit data information is stored into the FIFO. In these cases, the high-order half of the FIFO (DBGFH) is not used and data is read out of the FIFO by simply reading DBGFL. Each time DBGFL is read, the FIFO is shifted so the next data value is available through the FIFO data port at DBGFL.

In trigger modes where the FIFO is storing change-of-flow addresses, there is a delay between CPU addresses and the input side of the FIFO. Because of this delay, if the trigger event itself is a change-of-flow address or a change-of-flow address appears during the next two bus cycles after a trigger event starts the FIFO, it will not be saved into the FIFO. In the case of an end-trace, if the trigger event is a change-of-flow, it will be saved as the last change-of-flow entry for that debug run.

The FIFO can also be used to generate a profile of executed instruction addresses when the debugger is not armed. When ARM = 0, reading DBGFL causes the address of the most-recently fetched opcode to be saved in the FIFO. To use the profiling feature, a host debugger would read addresses out of the FIFO by reading DBGFH then DBGFL at regular periodic intervals. The first eight values would be discarded because they correspond to the eight DBGFL reads needed to initially fill the FIFO. Additional periodic reads of DBGFH and DBGFL return delayed information about executed instructions so the host debugger can develop a profile of executed instruction addresses.

17.3.3 Change-of-Flow Information

To minimize the amount of information stored in the FIFO, only information related to instructions that cause a change to the normal sequential execution of instructions is stored. With knowledge of the source and object code program stored in the target system, an external debugger system can reconstruct the path of execution through many instructions from the change-of-flow information stored in the FIFO.

For conditional branch instructions where the branch is taken (branch condition was true), the source address is stored (the address of the conditional branch opcode). Because BRA and BRN instructions are not conditional, these events do not cause change-of-flow information to be stored in the FIFO.

Indirect JMP and JSR instructions use the current contents of the H:X index register pair to determine the destination address, so the debug system stores the run-time destination address for any indirect JMP or JSR. For interrupts, RTI, or RTS, the destination address is stored in the FIFO as change-of-flow information.

17.3.4 Tag vs. Force Breakpoints and Triggers

Tagging is a term that refers to identifying an instruction opcode as it is fetched into the instruction queue, but not taking any other action until and unless that instruction is actually executed by the CPU. This distinction is important because any change-of-flow from a jump, branch, subroutine call, or interrupt causes some instructions that have been fetched into the instruction queue to be thrown away without being executed.

17.3.6 Hardware Breakpoints

The BRKEN control bit in the DBGC register may be set to 1 to allow any of the trigger conditions described in Section 17.3.5, "Trigger Modes," to be used to generate a hardware breakpoint request to the CPU. TAG in DBGC controls whether the breakpoint request will be treated as a tag-type breakpoint or a force-type breakpoint. A tag breakpoint causes the current opcode to be marked as it enters the instruction queue. If a tagged opcode reaches the end of the pipe, the CPU executes a BGND instruction to go to active background mode rather than executing the tagged opcode. A force-type breakpoint causes the CPU to finish the current instruction and then go to active background mode.

If the background mode has not been enabled (ENBDM = 1) by a serial WRITE_CONTROL command through the BKGD pin, the CPU will execute an SWI instruction instead of going to active background mode.

17.4 Register Definition

This section contains the descriptions of the BDC and DBG registers and control bits.

Refer to the high-page register summary in the device overview chapter of this data sheet for the absolute address assignments for all DBG registers. This section refers to registers and control bits only by their names. A Freescale-provided equate or header file is used to translate these names into the appropriate absolute addresses.

17.4.1 BDC Registers and Control Bits

The BDC has two registers:

- The BDC status and control register (BDCSCR) is an 8-bit register containing control and status bits for the background debug controller.
- The BDC breakpoint match register (BDCBKPT) holds a 16-bit breakpoint match address.

These registers are accessed with dedicated serial BDC commands and are not located in the memory space of the target MCU (so they do not have addresses and cannot be accessed by user programs).

Some of the bits in the BDCSCR have write limitations; otherwise, these registers may be read or written at any time. For example, the ENBDM control bit may not be written while the MCU is in active background mode. (This prevents the ambiguous condition of the control bit forbidding active background mode while the MCU is already in active background mode.) Also, the four status bits (BDMACT, WS, WSF, and DVF) are read-only status indicators and can never be written by the WRITE_CONTROL serial BDC command. The clock switch (CLKSW) control bit may be read or written at any time.