
NXP USA Inc. - MC9S08SH16MWL Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor S08

Core Size 8-Bit

Speed 40MHz

Connectivity I²C, LINbus, SCI, SPI

Peripherals LVD, POR, PWM, WDT

Number of I/O 23

Program Memory Size 16KB (16K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 16x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 28-SOIC (0.295", 7.50mm Width)

Supplier Device Package 28-SOIC

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08sh16mwl

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc9s08sh16mwl-4449217
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Contents

Section Number Title Page
Chapter 1
Device Overview

1.1 Devices in the MC9S08SH32 Series... 19
1.2 MCU Block Diagram .. 20
1.3 System Clock Distribution .. 22

Chapter 2
Pins and Connections

2.1 Device Pin Assignment ... 23
2.2 Recommended System Connections ... 25

2.2.1 Power .. 26
2.2.2 Oscillator (XOSC) .. 26
2.2.3 RESET .. 27
2.2.4 Background / Mode Select (BKGD/MS).. 27
2.2.5 General-Purpose I/O and Peripheral Ports.. 28

Chapter 3
Modes of Operation

3.1 Introduction ... 31
3.2 Features ... 31
3.3 Run Mode.. 31
3.4 Active Background Mode ... 31
3.5 Wait Mode ... 32
3.6 Stop Modes.. 32

3.6.1 Stop3 Mode... 33
3.6.2 Stop2 Mode... 34
3.6.3 On-Chip Peripheral Modules in Stop Modes.. 34

Chapter 4
Memory

4.1 MC9S08SH32 Series Memory Map ... 37
4.2 Reset and Interrupt Vector Assignments ... 38
4.3 Register Addresses and Bit Assignments.. 39
4.4 RAM.. 46
4.5 FLASH .. 46

4.5.1 Features ... 47
4.5.2 Program and Erase Times ... 47
MC9S08SH32 Series Data Sheet, Rev. 3

Freescale Semiconductor 9

Chapter 4 Memory
Nonvolatile FLASH registers, shown in Table 4-4, are located in the FLASH memory. These registers
include an 8-byte backdoor key, NVBACKKEY, which can be used to gain access to secure memory
resources. During reset events, the contents of NVPROT and NVOPT in the nonvolatile register area of
the FLASH memory are transferred into corresponding FPROT and FOPT working registers in the
high-page registers to control security and block protection options.

Provided the key enable (KEYEN) bit is 1, the 8-byte comparison key can be used to temporarily
disengage memory security. This key mechanism can be accessed only through user code running in secure
memory. (A security key cannot be entered directly through background debug commands.) This security
key can be disabled completely by programming the KEYEN bit to 0. If the security key is disabled, the
only way to disengage security is by mass erasing the FLASH if needed (normally through the background
debug interface) and verifying that FLASH is blank. To avoid returning to secure mode after the next reset,
program the security bits (SEC) to the unsecured state (1:0).

Table 4-4. Nonvolatile Register Summary

Address Register Name Bit 7 6 5 4 3 2 1 Bit 0

0xFFAE NVFTRIM — — — — — — — FTRIM

0xFFAF NVTRIM TRIM

0xFFB0 –
0xFFB7

NVBACKKEY
8-Byte Comparison Key

0xFFB8 –
0xFFBC

Reserved
— — — — — — — —

0xFFBD NVPROT FPS FPDIS

0xFFBE Reserved — — — — — — — —

0xFFBF NVOPT KEYEN FNORED — — — — SEC
MC9S08SH32 Series Data Sheet, Rev. 3

Freescale Semiconductor 45

Chapter 4 Memory
4.5.5 Access Errors
An access error occurs whenever the command execution protocol is violated.

Any of the following specific actions will cause the access error flag (FACCERR) in FSTAT to be set.
FACCERR must be cleared by writing a 1 to FACCERR in FSTAT before any command can be processed.

• Writing to a FLASH address before the internal FLASH clock frequency has been set by writing
to the FCDIV register

• Writing to a FLASH address while FCBEF is not set (A new command cannot be started until the
command buffer is empty.)

• Writing a second time to a FLASH address before launching the previous command (There is only
one write to FLASH for every command.)

• Writing a second time to FCMD before launching the previous command (There is only one write
to FCMD for every command.)

• Writing to any FLASH control register other than FCMD after writing to a FLASH address
• Writing any command code other than the five allowed codes (0x05, 0x20, 0x25, 0x40, or 0x41)

to FCMD
• Writing any FLASH control register other than the write to FSTAT (to clear FCBEF and launch the

command) after writing the command to FCMD
• The MCU enters stop mode while a program or erase command is in progress (The command is

aborted.)
• Writing the byte program, burst program, or page erase command code (0x20, 0x25, or 0x40) with

a background debug command while the MCU is secured (The background debug controller can
only do blank check and mass erase commands when the MCU is secure.)

• Writing 0 to FCBEF to cancel a partial command

4.5.6 FLASH Block Protection
The block protection feature prevents the protected region of FLASH from program or erase changes.
Block protection is controlled through the FLASH protection register (FPROT). When enabled, block
protection begins at any 512 byte boundary below the last address of FLASH, 0xFFFF. (See Section 4.7.4,
“FLASH Protection Register (FPROT and NVPROT)”).

After exit from reset, FPROT is loaded with the contents of the NVPROT location, which is in the
nonvolatile register block of the FLASH memory. FPROT cannot be changed directly from application
software so a runaway program cannot alter the block protection settings. Because NVPROT is within the
last 512 bytes of FLASH, if any amount of memory is protected, NVPROT is itself protected and cannot
be altered (intentionally or unintentionally) by the application software. FPROT can be written through
background debug commands, which allows a way to erase and reprogram a protected FLASH memory.

The block protection mechanism is illustrated in Figure 4-4. The FPS bits are used as the upper bits of the
last address of unprotected memory. This address is formed by concatenating FPS7:FPS1 with logic 1 bits
as shown. For example, to protect the last 1536 bytes of memory (addresses 0xFA00 through 0xFFFF), the
FPS bits must be set to 1111 100, which results in the value 0xF9FF as the last address of unprotected
memory. In addition to programming the FPS bits to the appropriate value, FPDIS (bit 0 of NVPROT)
MC9S08SH32 Series Data Sheet, Rev. 3

Freescale Semiconductor 51

Chapter 5 Resets, Interrupts, and General System Control
The COP counter is initialized by the first writes to the SOPT1 and SOPT2 registers after any system reset.
Subsequent writes to SOPT1 and SOPT2 have no effect on COP operation. Even if the application will use
the reset default settings of COPT, COPCLKS, and COPW bits, the user should write to the write-once
SOPT1 and SOPT2 registers during reset initialization to lock in the settings. This will prevent accidental
changes if the application program gets lost.

The write to SRS that services (clears) the COP counter should not be placed in an interrupt service routine
(ISR) because the ISR could continue to be executed periodically even if the main application program
fails.

If the bus clock source is selected, the COP counter does not increment while the MCU is in background
debug mode or while the system is in stop mode. The COP counter resumes when the MCU exits
background debug mode or stop mode.

If the 1-kHz clock source is selected, the COP counter is re-initialized to zero upon entry to either
background debug mode or stop mode and begins from zero upon exit from background debug mode or
stop mode.

5.5 Interrupts
Interrupts provide a way to save the current CPU status and registers, execute an interrupt service routine
(ISR), and then restore the CPU status so processing resumes where it left off before the interrupt. Other
than the software interrupt (SWI), which is a program instruction, interrupts are caused by hardware events
such as an edge on the IRQ pin or a timer-overflow event. The debug module can also generate an SWI
under certain circumstances.

If an event occurs in an enabled interrupt source, an associated read-only status flag will become set. The
CPU will not respond unless the local interrupt enable is a 1 to enable the interrupt and the I bit in the CCR
is 0 to allow interrupts. The global interrupt mask (I bit) in the CCR is initially set after reset which
prevents all maskable interrupt sources. The user program initializes the stack pointer and performs other
system setup before clearing the I bit to allow the CPU to respond to interrupts.

When the CPU receives a qualified interrupt request, it completes the current instruction before responding
to the interrupt. The interrupt sequence obeys the same cycle-by-cycle sequence as the SWI instruction
and consists of:

• Saving the CPU registers on the stack
• Setting the I bit in the CCR to mask further interrupts
• Fetching the interrupt vector for the highest-priority interrupt that is currently pending
• Filling the instruction queue with the first three bytes of program information starting from the

address fetched from the interrupt vector locations

While the CPU is responding to the interrupt, the I bit is automatically set to avoid the possibility of
another interrupt interrupting the ISR itself (this is called nesting of interrupts). Normally, the I bit is
restored to 0 when the CCR is restored from the value stacked on entry to the ISR. In rare cases, the I bit
can be cleared inside an ISR (after clearing the status flag that generated the interrupt) so that other
interrupts can be serviced without waiting for the first service routine to finish. This practice is not
MC9S08SH32 Series Data Sheet, Rev. 3

Freescale Semiconductor 61

Chapter 6 Parallel Input/Output Control
6.6.2 Port B Registers
Port B is controlled by the registers listed below.

6.6.2.1 Port B Data Register (PTBD)

6.6.2.2 Port B Data Direction Register (PTBDD)

 7 6 5 4 3 2 1 0

R
PTBD7 PTBD6 PTBD5 PTBD4 PTBD3 PTBD2 PTBD1 PTBD0

W

Reset: 0 0 0 0 0 0 0 0

Figure 6-11. Port B Data Register (PTBD)

Table 6-10. PTBD Register Field Descriptions

Field Description

7:0
PTBD[7:0]

Port B Data Register Bits — For port B pins that are inputs, reads return the logic level on the pin. For port B
pins that are configured as outputs, reads return the last value written to this register.
Writes are latched into all bits of this register. For port B pins that are configured as outputs, the logic level is
driven out the corresponding MCU pin.
Reset forces PTBD to all 0s, but these 0s are not driven out the corresponding pins because reset also configures
all port pins as high-impedance inputs with pull-ups/pull-downs disabled.

 7 6 5 4 3 2 1 0

R
PTBDD7 PTBDD6 PTBDD5 PTBDD4 PTBDD3 PTBDD2 PTBDD1 PTBDD0

W

Reset: 0 0 0 0 0 0 0 0

Figure 6-12. Port B Data Direction Register (PTBDD)

Table 6-11. PTBDD Register Field Descriptions

Field Description

7:0
PTBDD[7:0]

Data Direction for Port B Bits — These read/write bits control the direction of port B pins and what is read for
PTBD reads.
0 Input (output driver disabled) and reads return the pin value.
1 Output driver enabled for port B bit n and PTBD reads return the contents of PTBDn.
MC9S08SH32 Series Data Sheet, Rev. 3

86 Freescale Semiconductor

Chapter 7 Central Processor Unit (S08CPUV3)
Table 7-2. Instruction Set Summary (Sheet 6 of 9)

MOV opr8a,opr8a
MOV opr8a,X+
MOV #opr8i,opr8a
MOV ,X+,opr8a

Move
(M)destination ← (M)source
In IX+/DIR and DIR/IX+ Modes,
H:X ← (H:X) + $0001

DIR/DIR
DIR/IX+
IMM/DIR
IX+/DIR

4E
5E
6E
7E

dd dd
dd
ii dd
dd

5
5
4
5

rpwpp
rfwpp
pwpp
rfwpp

0 1 1 – – ↕ ↕ –

MUL
Unsigned multiply
X:A ← (X) × (A)

INH 42 5 ffffp – 1 1 0 – – – 0

NEG opr8a
NEGA
NEGX
NEG oprx8,X
NEG ,X
NEG oprx8,SP

Negate M ← – (M) = $00 – (M)
(Two’s Complement) A ← – (A) = $00 – (A)

X ← – (X) = $00 – (X)
M ← – (M) = $00 – (M)
M ← – (M) = $00 – (M)
M ← – (M) = $00 – (M)

DIR
INH
INH
IX1
IX
SP1

30
40
50
60
70

9E 60

dd

ff

ff

5
1
1
5
4
6

rfwpp
p
p
rfwpp
rfwp
prfwpp

↕ 1 1 – – ↕ ↕ ↕

NOP No Operation — Uses 1 Bus Cycle INH 9D 1 p – 1 1 – – – – –

NSA
Nibble Swap Accumulator
A ← (A[3:0]:A[7:4])

INH 62 1 p – 1 1 – – – – –

ORA #opr8i
ORA opr8a
ORA opr16a
ORA oprx16,X
ORA oprx8,X
ORA ,X
ORA oprx16,SP
ORA oprx8,SP

Inclusive OR Accumulator and Memory
A ← (A) | (M)

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

AA
BA
CA
DA
EA
FA

9E DA
9E EA

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

pp
rpp
prpp
prpp
rpp
rfp
pprpp
prpp

0 1 1 – – ↕ ↕ –

PSHA
Push Accumulator onto Stack
Push (A); SP ← (SP) – $0001

INH 87 2 sp – 1 1 – – – – –

PSHH
Push H (Index Register High) onto Stack
Push (H); SP ← (SP) – $0001

INH 8B 2 sp – 1 1 – – – – –

PSHX
Push X (Index Register Low) onto Stack
Push (X); SP ← (SP) – $0001

INH 89 2 sp – 1 1 – – – – –

PULA
Pull Accumulator from Stack
SP ← (SP + $0001); Pull (A) INH 86 3 ufp – 1 1 – – – – –

PULH
Pull H (Index Register High) from Stack
SP ← (SP + $0001); Pull (H) INH 8A 3 ufp – 1 1 – – – – –

PULX
Pull X (Index Register Low) from Stack
SP ← (SP + $0001); Pull (X) INH 88 3 ufp – 1 1 – – – – –

ROL opr8a
ROLA
ROLX
ROL oprx8,X
ROL ,X
ROL oprx8,SP

Rotate Left through Carry DIR
INH
INH
IX1
IX
SP1

39
49
59
69
79

9E 69

dd

ff

ff

5
1
1
5
4
6

rfwpp
p
p
rfwpp
rfwp
prfwpp

↕ 1 1 – – ↕ ↕ ↕

ROR opr8a
RORA
RORX
ROR oprx8,X
ROR ,X
ROR oprx8,SP

Rotate Right through Carry DIR
INH
INH
IX1
IX
SP1

36
46
56
66
76

9E 66

dd

ff

ff

5
1
1
5
4
6

rfwpp
p
p
rfwpp
rfwp
prfwpp

↕ 1 1 – – ↕ ↕ ↕

Source
Form Operation

A
d

d
re

ss
M

o
d

e

Object Code

C
yc

le
s

Cyc-by-Cyc
Details

Affect
on CCR

V 1 1 H I N Z C

C

b0b7

b0b7

C

MC9S08SH32 Series Data Sheet, Rev. 3

Freescale Semiconductor 107

Chapter 7 Central Processor Unit (S08CPUV3)
Table 7-3. Opcode Map (Sheet 1 of 2)
Bit-Manipulation Branch Read-Modify-Write Control Register/Memory

00 5
BRSET0
3 DIR

10 5
BSET0

2 DIR

20 3
BRA

2 REL

30 5
NEG

2 DIR

40 1
NEGA

1 INH

50 1
NEGX

1 INH

60 5
NEG

2 IX1

70 4
NEG

1 IX

80 9
RTI

1 INH

90 3
BGE

2 REL

A0 2
SUB

2 IMM

B0 3
SUB

2 DIR

C0 4
SUB

3 EXT

D0 4
SUB

3 IX2

E0 3
SUB

2 IX1

F0 3
SUB

1 IX
01 5
BRCLR0
3 DIR

11 5
BCLR0

2 DIR

21 3
BRN

2 REL

31 5
CBEQ

3 DIR

41 4
CBEQA

3 IMM

51 4
CBEQX

3 IMM

61 5
CBEQ

3 IX1+

71 5
CBEQ

2 IX+

81 6
RTS

1 INH

91 3
BLT

2 REL

A1 2
CMP

2 IMM

B1 3
CMP

2 DIR

C1 4
CMP

3 EXT

D1 4
CMP

3 IX2

E1 3
CMP

2 IX1

F1 3
CMP

1 IX
02 5
BRSET1
3 DIR

12 5
BSET1

2 DIR

22 3
BHI

2 REL

32 5
LDHX

3 EXT

42 5
MUL

1 INH

52 6
DIV

1 INH

62 1
NSA

1 INH

72 1
DAA

1 INH

82 5+
BGND

1 INH

92 3
BGT

2 REL

A2 2
SBC

2 IMM

B2 3
SBC

2 DIR

C2 4
SBC

3 EXT

D2 4
SBC

3 IX2

E2 3
SBC

2 IX1

F2 3
SBC

1 IX
03 5
BRCLR1
3 DIR

13 5
BCLR1

2 DIR

23 3
BLS

2 REL

33 5
COM

2 DIR

43 1
COMA

1 INH

53 1
COMX

1 INH

63 5
COM

2 IX1

73 4
COM

1 IX

83 11
SWI

1 INH

93 3
BLE

2 REL

A3 2
CPX

2 IMM

B3 3
CPX

2 DIR

C3 4
CPX

3 EXT

D3 4
CPX

3 IX2

E3 3
CPX

2 IX1

F3 3
CPX

1 IX
04 5
BRSET2
3 DIR

14 5
BSET2

2 DIR

24 3
BCC

2 REL

34 5
LSR

2 DIR

44 1
LSRA

1 INH

54 1
LSRX

1 INH

64 5
LSR

2 IX1

74 4
LSR

1 IX

84 1
TAP

1 INH

94 2
TXS

1 INH

A4 2
AND

2 IMM

B4 3
AND

2 DIR

C4 4
AND

3 EXT

D4 4
AND

3 IX2

E4 3
AND

2 IX1

F4 3
AND

1 IX
05 5
BRCLR2
3 DIR

15 5
BCLR2

2 DIR

25 3
BCS

2 REL

35 4
STHX

2 DIR

45 3
LDHX

3 IMM

55 4
LDHX

2 DIR

65 3
CPHX

3 IMM

75 5
CPHX

2 DIR

85 1
TPA

1 INH

95 2
TSX

1 INH

A5 2
BIT

2 IMM

B5 3
BIT

2 DIR

C5 4
BIT

3 EXT

D5 4
BIT

3 IX2

E5 3
BIT

2 IX1

F5 3
BIT

1 IX
06 5
BRSET3
3 DIR

16 5
BSET3

2 DIR

26 3
BNE

2 REL

36 5
ROR

2 DIR

46 1
RORA

1 INH

56 1
RORX

1 INH

66 5
ROR

2 IX1

76 4
ROR

1 IX

86 3
PULA

1 INH

96 5
STHX

3 EXT

A6 2
LDA

2 IMM

B6 3
LDA

2 DIR

C6 4
LDA

3 EXT

D6 4
LDA

3 IX2

E6 3
LDA

2 IX1

F6 3
LDA

1 IX
07 5
BRCLR3
3 DIR

17 5
BCLR3

2 DIR

27 3
BEQ

2 REL

37 5
ASR

2 DIR

47 1
ASRA

1 INH

57 1
ASRX

1 INH

67 5
ASR

2 IX1

77 4
ASR

1 IX

87 2
PSHA

1 INH

97 1
TAX

1 INH

A7 2
AIS

2 IMM

B7 3
STA

2 DIR

C7 4
STA

3 EXT

D7 4
STA

3 IX2

E7 3
STA

2 IX1

F7 2
STA

1 IX
08 5
BRSET4
3 DIR

18 5
BSET4

2 DIR

28 3
BHCC

2 REL

38 5
LSL

2 DIR

48 1
LSLA

1 INH

58 1
LSLX

1 INH

68 5
LSL

2 IX1

78 4
LSL

1 IX

88 3
PULX

1 INH

98 1
CLC

1 INH

A8 2
EOR

2 IMM

B8 3
EOR

2 DIR

C8 4
EOR

3 EXT

D8 4
EOR

3 IX2

E8 3
EOR

2 IX1

F8 3
EOR

1 IX
09 5
BRCLR4
3 DIR

19 5
BCLR4

2 DIR

29 3
BHCS

2 REL

39 5
ROL

2 DIR

49 1
ROLA

1 INH

59 1
ROLX

1 INH

69 5
ROL

2 IX1

79 4
ROL

1 IX

89 2
PSHX

1 INH

99 1
SEC

1 INH

A9 2
ADC

2 IMM

B9 3
ADC

2 DIR

C9 4
ADC

3 EXT

D9 4
ADC

3 IX2

E9 3
ADC

2 IX1

F9 3
ADC

1 IX
0A 5
BRSET5
3 DIR

1A 5
BSET5

2 DIR

2A 3
BPL

2 REL

3A 5
DEC

2 DIR

4A 1
DECA

1 INH

5A 1
DECX

1 INH

6A 5
DEC

2 IX1

7A 4
DEC

1 IX

8A 3
PULH

1 INH

9A 1
CLI

1 INH

AA 2
ORA

2 IMM

BA 3
ORA

2 DIR

CA 4
ORA

3 EXT

DA 4
ORA

3 IX2

EA 3
ORA

2 IX1

FA 3
ORA

1 IX
0B 5
BRCLR5
3 DIR

1B 5
BCLR5

2 DIR

2B 3
BMI

2 REL

3B 7
DBNZ

3 DIR

4B 4
DBNZA

2 INH

5B 4
DBNZX

2 INH

6B 7
DBNZ

3 IX1

7B 6
DBNZ

2 IX

8B 2
PSHH

1 INH

9B 1
SEI

1 INH

AB 2
ADD

2 IMM

BB 3
ADD

2 DIR

CB 4
ADD

3 EXT

DB 4
ADD

3 IX2

EB 3
ADD

2 IX1

FB 3
ADD

1 IX
0C 5
BRSET6
3 DIR

1C 5
BSET6

2 DIR

2C 3
BMC

2 REL

3C 5
INC

2 DIR

4C 1
INCA

1 INH

5C 1
INCX

1 INH

6C 5
INC

2 IX1

7C 4
INC

1 IX

8C 1
CLRH

1 INH

9C 1
RSP

1 INH

BC 3
JMP

2 DIR

CC 4
JMP

3 EXT

DC 4
JMP

3 IX2

EC 3
JMP

2 IX1

FC 3
JMP

1 IX
0D 5
BRCLR6
3 DIR

1D 5
BCLR6

2 DIR

2D 3
BMS

2 REL

3D 4
TST

2 DIR

4D 1
TSTA

1 INH

5D 1
TSTX

1 INH

6D 4
TST

2 IX1

7D 3
TST

1 IX

9D 1
NOP

1 INH

AD 5
BSR

2 REL

BD 5
JSR

2 DIR

CD 6
JSR

3 EXT

DD 6
JSR

3 IX2

ED 5
JSR

2 IX1

FD 5
JSR

1 IX
0E 5
BRSET7
3 DIR

1E 5
BSET7

2 DIR

2E 3
BIL

2 REL

3E 6
CPHX

3 EXT

4E 5
MOV

3 DD

5E 5
MOV

2 DIX+

6E 4
MOV

3 IMD

7E 5
MOV

2 IX+D

8E 2+
STOP

1 INH

9E
Page 2

AE 2
LDX

2 IMM

BE 3
LDX

2 DIR

CE 4
LDX

3 EXT

DE 4
LDX

3 IX2

EE 3
LDX

2 IX1

FE 3
LDX

1 IX
0F 5
BRCLR7
3 DIR

1F 5
BCLR7

2 DIR

2F 3
BIH

2 REL

3F 5
CLR

2 DIR

4F 1
CLRA

1 INH

5F 1
CLRX

1 INH

6F 5
CLR

2 IX1

7F 4
CLR

1 IX

8F 2+
WAIT

1 INH

9F 1
TXA

1 INH

AF 2
AIX

2 IMM

BF 3
STX

2 DIR

CF 4
STX

3 EXT

DF 4
STX

3 IX2

EF 3
STX

2 IX1

FF 2
STX

1 IX

INH Inherent REL Relative SP1 Stack Pointer, 8-Bit Offset
IMM Immediate IX Indexed, No Offset SP2 Stack Pointer, 16-Bit Offset
DIR Direct IX1 Indexed, 8-Bit Offset IX+ Indexed, No Offset with
EXT Extended IX2 Indexed, 16-Bit Offset Post Increment
DD DIR to DIR IMD IMM to DIR IX1+ Indexed, 1-Byte Offset with
IX+D IX+ to DIR DIX+ DIR to IX+ Post Increment Opcode in

Hexadecimal

Number of Bytes

F0 3
SUB

1 IX

HCS08 Cycles
Instruction Mnemonic
Addressing Mode
MC9S08SH32 Series Data Sheet, Rev. 3

Freescale Semiconductor 111

Chapter 8 Analog Comparator (S08ACMPV3)
Figure 8-2. Analog Comparator 5V (ACMP5) Block Diagram

+

-

Interrupt
Control

Internal
Reference

ACBGS

Internal Bus

Status & Control
Register

A
C

M
O

D

se
t A

C
F

ACME ACF

ACIE

ACOPE

Comparator

ACMP
INTERRUPT
REQUEST

ACMP+

ACMP-

ACMPO
MC9S08SH32 Series Data Sheet, Rev. 3

116 Freescale Semiconductor

Chapter 8 Analog Comparator (S08ACMPV3)
8.6.1.1 ACMP Status and Control Register (ACMPSC)
ACMPSC contains the status flag and control bits which are used to enable and configure the ACMP.

 7 6 5 4 3 2 1 0

R
ACME ACBGS ACF ACIE

ACO
ACOPE ACMOD

W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 8-3. ACMP Status and Control Register

Table 8-2. ACMP Status and Control Register Field Descriptions

Field Description

7
ACME

Analog Comparator Module Enable — ACME enables the ACMP module.
0 ACMP not enabled
1 ACMP is enabled

6
ACBGS

Analog Comparator Bandgap Select — ACBGS is used to select between the bandgap reference voltage or
the ACMP+ pin as the input to the non-inverting input of the analog comparatorr.
0 External pin ACMP+ selected as non-inverting input to comparator
1 Internal reference select as non-inverting input to comparator
Note: refer to this chapter introduction to verify if any other config bits are necessary to enable the bandgap

reference in the chip level.

5
ACF

Analog Comparator Flag — ACF is set when a compare event occurs. Compare events are defined by ACMOD.
ACF is cleared by writing a one to ACF.
0 Compare event has not occurred
1 Compare event has occurred

4
ACIE

Analog Comparator Interrupt Enable — ACIE enables the interrupt from the ACMP. When ACIE is set, an
interrupt will be asserted when ACF is set.
0 Interrupt disabled
1 Interrupt enabled

3
ACO

Analog Comparator Output — Reading ACO will return the current value of the analog comparator output. ACO
is reset to a 0 and will read as a 0 when the ACMP is disabled (ACME = 0).

2
ACOPE

Analog Comparator Output Pin Enable — ACOPE is used to enable the comparator output to be placed onto
the external pin, ACMPO.
0 Analog comparator output not available on ACMPO
1 Analog comparator output is driven out on ACMPO

1:0
ACMOD

Analog Comparator Mode — ACMOD selects the type of compare event which sets ACF.
00 Encoding 0 — Comparator output falling edge
01 Encoding 1 — Comparator output rising edge
10 Encoding 2 — Comparator output falling edge
11 Encoding 3 — Comparator output rising or falling edge
MC9S08SH32 Series Data Sheet, Rev. 3

118 Freescale Semiconductor

Chapter 9 Analog-to-Digital Converter (S08ADCV1)
9.3.5 Compare Value High Register (ADCCVH)
This register holds the upper two bits of the 10-bit compare value. These bits are compared to the upper
two bits of the result following a conversion in 10-bit mode when the compare function is enabled.In 8-bit
operation, ADCCVH is not used during compare.

9.3.6 Compare Value Low Register (ADCCVL)
This register holds the lower 8 bits of the 10-bit compare value, or all 8 bits of the 8-bit compare value.
Bits ADCV7:ADCV0 are compared to the lower 8 bits of the result following a conversion in either 10-bit
or 8-bit mode.

9.3.7 Configuration Register (ADCCFG)
ADCCFG is used to select the mode of operation, clock source, clock divide, and configure for low power
or long sample time.

7 6 5 4 3 2 1 0

R ADR7 ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0

W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 9-7. Data Result Low Register (ADCRL)

7 6 5 4 3 2 1 0

R 0 0 0 0
ADCV9 ADCV8

W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 9-8. Compare Value High Register (ADCCVH)

7 6 5 4 3 2 1 0

R
ADCV7 ADCV6 ADCV5 ADCV4 ADCV3 ADCV2 ADCV1 ADCV0

W

Reset: 0 0 0 0 0 0 0 0

Figure 9-9. Compare Value Low Register(ADCCVL)
MC9S08SH32 Series Data Sheet, Rev. 3

Freescale Semiconductor 131

Inter-Integrated Circuit (S08IICV2)
10.3.3 IIC Control Register (IICC1)

10.3.4 IIC Status Register (IICS)

7 6 5 4 3 2 1 0

R
IICEN IICIE MST TX TXAK

0 0 0

W RSTA

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 10-5. IIC Control Register (IICC1)

Table 10-6. IICC1 Field Descriptions

Field Description

7
IICEN

IIC Enable. The IICEN bit determines whether the IIC module is enabled.
0 IIC is not enabled
1 IIC is enabled

6
IICIE

IIC Interrupt Enable. The IICIE bit determines whether an IIC interrupt is requested.
0 IIC interrupt request not enabled
1 IIC interrupt request enabled

5
MST

Master Mode Select. The MST bit changes from a 0 to a 1 when a start signal is generated on the bus and
master mode is selected. When this bit changes from a 1 to a 0 a stop signal is generated and the mode of
operation changes from master to slave.
0 Slave mode
1 Master mode

4
TX

Transmit Mode Select. The TX bit selects the direction of master and slave transfers. In master mode, this bit
should be set according to the type of transfer required. Therefore, for address cycles, this bit is always high.
When addressed as a slave, this bit should be set by software according to the SRW bit in the status register.
0 Receive
1 Transmit

3
TXAK

Transmit Acknowledge Enable. This bit specifies the value driven onto the SDA during data acknowledge
cycles for master and slave receivers.
0 An acknowledge signal is sent out to the bus after receiving one data byte
1 No acknowledge signal response is sent

2
RSTA

Repeat start. Writing a 1 to this bit generates a repeated start condition provided it is the current master. This
bit is always read as cleared. Attempting a repeat at the wrong time results in loss of arbitration.

7 6 5 4 3 2 1 0

R TCF
IAAS

BUSY
ARBL

0 SRW
IICIF

RXAK

W

Reset 1 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 10-6. IIC Status Register (IICS)
MC9S08SH32 Series Data Sheet, Rev. 3

156 Freescale Semiconductor

Inter-Integrated Circuit (S08IICV2)
10.4.1.8 Handshaking
The clock synchronization mechanism can be used as a handshake in data transfer. Slave devices may hold
the SCL low after completion of one byte transfer (9 bits). In such a case, it halts the bus clock and forces
the master clock into wait states until the slave releases the SCL line.

10.4.1.9 Clock Stretching
The clock synchronization mechanism can be used by slaves to slow down the bit rate of a transfer. After
the master has driven SCL low the slave can drive SCL low for the required period and then release it. If
the slave SCL low period is greater than the master SCL low period then the resulting SCL bus signal low
period is stretched.

10.4.2 10-bit Address
For 10-bit addressing, 0x11110 is used for the first 5 bits of the first address byte. Various combinations of
read/write formats are possible within a transfer that includes 10-bit addressing.

10.4.2.1 Master-Transmitter Addresses a Slave-Receiver
The transfer direction is not changed (see Table 10-10). When a 10-bit address follows a start condition,
each slave compares the first seven bits of the first byte of the slave address (11110XX) with its own
address and tests whether the eighth bit (R/W direction bit) is 0. More than one device can find a match
and generate an acknowledge (A1). Then, each slave that finds a match compares the eight bits of the
second byte of the slave address with its own address. Only one slave finds a match and generates an
acknowledge (A2). The matching slave remains addressed by the master until it receives a stop condition
(P) or a repeated start condition (Sr) followed by a different slave address.

After the master-transmitter has sent the first byte of the 10-bit address, the slave-receiver sees an IIC
interrupt. Software must ensure the contents of IICD are ignored and not treated as valid data for this
interrupt.

10.4.2.2 Master-Receiver Addresses a Slave-Transmitter
The transfer direction is changed after the second R/W bit (see Table 10-11). Up to and including
acknowledge bit A2, the procedure is the same as that described for a master-transmitter addressing a
slave-receiver. After the repeated start condition (Sr), a matching slave remembers that it was addressed
before. This slave then checks whether the first seven bits of the first byte of the slave address following
Sr are the same as they were after the start condition (S) and tests whether the eighth (R/W) bit is 1. If there
is a match, the slave considers that it has been addressed as a transmitter and generates acknowledge A3.
The slave-transmitter remains addressed until it receives a stop condition (P) or a repeated start condition
(Sr) followed by a different slave address.

S
Slave Address 1st 7 bits R/W

A1
Slave Address 2nd byte

A2 Data A ... Data A/A P
11110 + AD10 + AD9 0 AD[8:1]

Table 10-10. Master-Transmitter Addresses Slave-Receiver with a 10-bit Address
MC9S08SH32 Series Data Sheet, Rev. 3

162 Freescale Semiconductor

Chapter 11 Internal Clock Source (S08ICSV2)
11.3.1 ICS Control Register 1 (ICSC1)

 7 6 5 4 3 2 1 0

R
CLKS RDIV IREFS IRCLKEN IREFSTEN

W

Reset: 0 0 0 0 0 1 0 0

Figure 11-3. ICS Control Register 1 (ICSC1)

Table 11-2. ICS Control Register 1 Field Descriptions

Field Description

7:6
CLKS

Clock Source Select — Selects the clock source that controls the bus frequency. The actual bus frequency
depends on the value of the BDIV bits.
00 Output of FLL is selected.
01 Internal reference clock is selected.
10 External reference clock is selected.
11 Reserved, defaults to 00.

5:3
RDIV

Reference Divider — Selects the amount to divide down the FLL reference clock selected by the IREFS bits.
Resulting frequency must be in the range 31.25 kHz to 39.0625 kHz.
000 Encoding 0 — Divides reference clock by 1 (reset default)
001 Encoding 1 — Divides reference clock by 2
010 Encoding 2 — Divides reference clock by 4
011 Encoding 3 — Divides reference clock by 8
100 Encoding 4 — Divides reference clock by 16
101 Encoding 5 — Divides reference clock by 32
110 Encoding 6 — Divides reference clock by 64
111 Encoding 7 — Divides reference clock by 128

2
IREFS

Internal Reference Select — The IREFS bit selects the reference clock source for the FLL.
1 Internal reference clock selected
0 External reference clock selected

1
IRCLKEN

Internal Reference Clock Enable — The IRCLKEN bit enables the internal reference clock for use as
ICSIRCLK.
1 ICSIRCLK active
0 ICSIRCLK inactive

0
IREFSTEN

Internal Reference Stop Enable — The IREFSTEN bit controls whether or not the internal reference clock
remains enabled when the ICS enters stop mode.
1 Internal reference clock stays enabled in stop if IRCLKEN is set or if ICS is in FEI, FBI, or FBILP mode before

entering stop
0 Internal reference clock is disabled in stop
MC9S08SH32 Series Data Sheet, Rev. 3

172 Freescale Semiconductor

Chapter 12 Modulo Timer (S08MTIMV1)
12.4 Functional Description
The MTIM is composed of a main 8-bit up-counter with an 8-bit modulo register, a clock source selector,
and a prescaler block with nine selectable values. The module also contains software selectable interrupt
logic.

The MTIM counter (MTIMCNT) has three modes of operation: stopped, free-running, and modulo. Out
of reset, the counter is stopped. If the counter is started without writing a new value to the modulo register,
then the counter will be in free-running mode. The counter is in modulo mode when a value other than $00
is in the modulo register while the counter is running.

After any MCU reset, the counter is stopped and reset to $00, and the modulus is set to $00. The bus clock
is selected as the default clock source and the prescale value is divide by 1. To start the MTIM in
free-running mode, simply write to the MTIM status and control register (MTIMSC) and clear the MTIM
stop bit (TSTP).

Four clock sources are software selectable: the internal bus clock, the fixed frequency clock (XCLK), and
an external clock on the TCLK pin, selectable as incrementing on either rising or falling edges. The MTIM
clock select bits (CLKS1:CLKS0) in MTIMSC are used to select the desired clock source. If the counter
is active (TSTP = 0) when a new clock source is selected, the counter will continue counting from the
previous value using the new clock source.

Nine prescale values are software selectable: clock source divided by 1, 2, 4, 8, 16, 32, 64, 128, or 256.
The prescaler select bits (PS[3:0]) in MTIMSC select the desired prescale value. If the counter is active
(TSTP = 0) when a new prescaler value is selected, the counter will continue counting from the previous
value using the new prescaler value.

The MTIM modulo register (MTIMMOD) allows the overflow compare value to be set to any value from
$01 to $FF. Reset clears the modulo value to $00, which results in a free running counter.

When the counter is active (TSTP = 0), the counter increments at the selected rate until the count matches
the modulo value. When these values match, the counter overflows to $00 and continues counting. The
MTIM overflow flag (TOF) is set whenever the counter overflows. The flag sets on the transition from the
modulo value to $00. Writing to MTIMMOD while the counter is active resets the counter to $00 and
clears TOF.

Clearing TOF is a two-step process. The first step is to read the MTIMSC register while TOF is set. The
second step is to write a 0 to TOF. If another overflow occurs between the first and second steps, the
clearing process is reset and TOF will remain set after the second step is performed. This will prevent the
second occurrence from being missed. TOF is also cleared when a 1 is written to TRST or when any value
is written to the MTIMMOD register.

The MTIM allows for an optional interrupt to be generated whenever TOF is set. To enable the MTIM
overflow interrupt, set the MTIM overflow interrupt enable bit (TOIE) in MTIMSC. TOIE should never
be written to a 1 while TOF = 1. Instead, TOF should be cleared first, then the TOIE can be set to 1.
MC9S08SH32 Series Data Sheet, Rev. 3

Freescale Semiconductor 189

Chapter 14 Serial Communications Interface (S08SCIV4)
14.3.5.2 Stop Mode Operation
During all stop modes, clocks to the SCI module are halted.

In stop1 and stop2 modes, all SCI register data is lost and must be re-initialized upon recovery from these
two stop modes. No SCI module registers are affected in stop3 mode.

The receive input active edge detect circuit is still active in stop3 mode, but not in stop2. . An active edge
on the receive input brings the CPU out of stop3 mode if the interrupt is not masked (RXEDGIE = 1).

Note, because the clocks are halted, the SCI module will resume operation upon exit from stop (only in
stop3 mode). Software should ensure stop mode is not entered while there is a character being transmitted
out of or received into the SCI module.

14.3.5.3 Loop Mode
When LOOPS = 1, the RSRC bit in the same register chooses between loop mode (RSRC = 0) or
single-wire mode (RSRC = 1). Loop mode is sometimes used to check software, independent of
connections in the external system, to help isolate system problems. In this mode, the transmitter output is
internally connected to the receiver input and the RxD pin is not used by the SCI, so it reverts to a
general-purpose port I/O pin.

14.3.5.4 Single-Wire Operation
When LOOPS = 1, the RSRC bit in the same register chooses between loop mode (RSRC = 0) or
single-wire mode (RSRC = 1). Single-wire mode is used to implement a half-duplex serial connection.
The receiver is internally connected to the transmitter output and to the TxD pin. The RxD pin is not used
and reverts to a general-purpose port I/O pin.

In single-wire mode, the TXDIR bit in SCIxC3 controls the direction of serial data on the TxD pin. When
TXDIR = 0, the TxD pin is an input to the SCI receiver and the transmitter is temporarily disconnected
from the TxD pin so an external device can send serial data to the receiver. When TXDIR = 1, the TxD pin
is an output driven by the transmitter. In single-wire mode, the internal loop back connection from the
transmitter to the receiver causes the receiver to receive characters that are sent out by the transmitter.
MC9S08SH32 Series Data Sheet, Rev. 3

Freescale Semiconductor 219

Chapter 16 Timer/PWM Module (S08TPMV3)
16.1.3 Features
The TPM includes these distinctive features:

• One to eight channels:
— Each channel may be input capture, output compare, or edge-aligned PWM
— Rising-Edge, falling-edge, or any-edge input capture trigger
— Set, clear, or toggle output compare action
— Selectable polarity on PWM outputs

• Module may be configured for buffered, center-aligned pulse-width-modulation (CPWM) on all
channels

• Timer clock source selectable as prescaled bus clock, fixed system clock, or an external clock pin
— Prescale taps for divide-by 1, 2, 4, 8, 16, 32, 64, or 128
— Fixed system clock source are synchronized to the bus clock by an on-chip synchronization

circuit
— External clock pin may be shared with any timer channel pin or a separated input pin

• 16-bit free-running or modulo up/down count operation
• Timer system enable
• One interrupt per channel plus terminal count interrupt

16.1.4 Modes of Operation
In general, TPM channels may be independently configured to operate in input capture, output compare,
or edge-aligned PWM modes. A control bit allows the whole TPM (all channels) to switch to
center-aligned PWM mode. When center-aligned PWM mode is selected, input capture, output compare,
and edge-aligned PWM functions are not available on any channels of this TPM module.

When the microcontroller is in active BDM background or BDM foreground mode, the TPM temporarily
suspends all counting until the microcontroller returns to normal user operating mode. During stop mode,
all system clocks, including the main oscillator, are stopped; therefore, the TPM is effectively disabled
until clocks resume. During wait mode, the TPM continues to operate normally. Provided the TPM does
not need to produce a real time reference or provide the interrupt source(s) needed to wake the MCU from
wait mode, the user can save power by disabling TPM functions before entering wait mode.

• Input capture mode
When a selected edge event occurs on the associated MCU pin, the current value of the 16-bit timer
counter is captured into the channel value register and an interrupt flag bit is set. Rising edges,
falling edges, any edge, or no edge (disable channel) may be selected as the active edge which
triggers the input capture.

• Output compare mode
When the value in the timer counter register matches the channel value register, an interrupt flag
bit is set, and a selected output action is forced on the associated MCU pin. The output compare
action may be selected to force the pin to zero, force the pin to one, toggle the pin, or ignore the
pin (used for software timing functions).
MC9S08SH32 Series Data Sheet, Rev. 3

Freescale Semiconductor 239

Chapter 16 Timer/PWM Module (S08TPMV3)
16.3 Register Definition
This section consists of register descriptions in address order. A typical MCU system may contain multiple
TPMs, and each TPM may have one to eight channels, so register names include placeholder characters to
identify which TPM and which channel is being referenced. For example, TPMxCnSC refers to timer
(TPM) x, channel n. TPM1C2SC would be the status and control register for channel 2 of timer 1.

16.3.1 TPM Status and Control Register (TPMxSC)
TPMxSC contains the overflow status flag and control bits used to configure the interrupt enable, TPM
configuration, clock source, and prescale factor. These controls relate to all channels within this timer
module.

7 6 5 4 3 2 1 0

R TOF
TOIE CPWMS CLKSB CLKSA PS2 PS1 PS0

W 0

Reset 0 0 0 0 0 0 0 0

Figure 16-7. TPM Status and Control Register (TPMxSC)

Table 16-3. TPMxSC Field Descriptions

Field Description

7
TOF

Timer overflow flag. This read/write flag is set when the TPM counter resets to 0x0000 after reaching the modulo
value programmed in the TPM counter modulo registers. Clear TOF by reading the TPM status and control
register when TOF is set and then writing a logic 0 to TOF. If another TPM overflow occurs before the clearing
sequence is complete, the sequence is reset so TOF would remain set after the clear sequence was completed
for the earlier TOF. This is done so a TOF interrupt request cannot be lost during the clearing sequence for a
previous TOF. Reset clears TOF. Writing a logic 1 to TOF has no effect.
0 TPM counter has not reached modulo value or overflow
1 TPM counter has overflowed

6
TOIE

Timer overflow interrupt enable. This read/write bit enables TPM overflow interrupts. If TOIE is set, an interrupt is
generated when TOF equals one. Reset clears TOIE.
0 TOF interrupts inhibited (use for software polling)
1 TOF interrupts enabled

5
CPWMS

Center-aligned PWM select. When present, this read/write bit selects CPWM operating mode. By default, the TPM
operates in up-counting mode for input capture, output compare, and edge-aligned PWM functions. Setting
CPWMS reconfigures the TPM to operate in up/down counting mode for CPWM functions. Reset clears CPWMS.
0 All channels operate as input capture, output compare, or edge-aligned PWM mode as selected by the

MSnB:MSnA control bits in each channel’s status and control register.
1 All channels operate in center-aligned PWM mode.
MC9S08SH32 Series Data Sheet, Rev. 3

246 Freescale Semiconductor

Chapter 16 Timer/PWM Module (S08TPMV3)
Input capture, output compare, and edge-aligned PWM functions do not make sense when the counter is
operating in up/down counting mode so this implies that all active channels within a TPM must be used in
CPWM mode when CPWMS=1.

The TPM may be used in an 8-bit MCU. The settings in the timer channel registers are buffered to ensure
coherent 16-bit updates and to avoid unexpected PWM pulse widths. Writes to any of the registers
TPMxMODH, TPMxMODL, TPMxCnVH, and TPMxCnVL, actually write to buffer registers.

In center-aligned PWM mode, the TPMxCnVH:L registers are updated with the value of their write buffer
according to the value of CLKSB:CLKSA bits, so:

• If (CLKSB:CLKSA = 0:0), the registers are updated when the second byte is written
• If (CLKSB:CLKSA not = 0:0), the registers are updated after the both bytes were written, and the

TPM counter changes from (TPMxMODH:TPMxMODL - 1) to (TPMxMODH:TPMxMODL). If
the TPM counter is a free-running counter, the update is made when the TPM counter changes from
0xFFFE to 0xFFFF.

When TPMxCNTH:TPMxCNTL=TPMxMODH:TPMxMODL, the TPM can optionally generate a TOF
interrupt (at the end of this count).

Writing to TPMxSC cancels any values written to TPMxMODH and/or TPMxMODL and resets the
coherency mechanism for the modulo registers. Writing to TPMxCnSC cancels any values written to the
channel value registers and resets the coherency mechanism for TPMxCnVH:TPMxCnVL.

16.5 Reset Overview

16.5.1 General
The TPM is reset whenever any MCU reset occurs.

16.5.2 Description of Reset Operation
Reset clears the TPMxSC register which disables clocks to the TPM and disables timer overflow interrupts
(TOIE=0). CPWMS, MSnB, MSnA, ELSnB, and ELSnA are all cleared which configures all TPM
channels for input-capture operation with the associated pins disconnected from I/O pin logic (so all MCU
pins related to the TPM revert to general purpose I/O pins).

16.6 Interrupts

16.6.1 General
The TPM generates an optional interrupt for the main counter overflow and an interrupt for each channel.
The meaning of channel interrupts depends on each channel’s mode of operation. If the channel is
configured for input capture, the interrupt flag is set each time the selected input capture edge is
recognized. If the channel is configured for output compare or PWM modes, the interrupt flag is set each
time the main timer counter matches the value in the 16-bit channel value register.
MC9S08SH32 Series Data Sheet, Rev. 3

258 Freescale Semiconductor

Chapter 17 Development Support
the host must perform ((8 – CNT) – 1) dummy reads of the FIFO to advance it to the first significant entry
in the FIFO.

In most trigger modes, the information stored in the FIFO consists of 16-bit change-of-flow addresses. In
these cases, read DBGFH then DBGFL to get one coherent word of information out of the FIFO. Reading
DBGFL (the low-order byte of the FIFO data port) causes the FIFO to shift so the next word of information
is available at the FIFO data port. In the event-only trigger modes (see Section 17.3.5, “Trigger Modes”),
8-bit data information is stored into the FIFO. In these cases, the high-order half of the FIFO (DBGFH) is
not used and data is read out of the FIFO by simply reading DBGFL. Each time DBGFL is read, the FIFO
is shifted so the next data value is available through the FIFO data port at DBGFL.

In trigger modes where the FIFO is storing change-of-flow addresses, there is a delay between CPU
addresses and the input side of the FIFO. Because of this delay, if the trigger event itself is a
change-of-flow address or a change-of-flow address appears during the next two bus cycles after a trigger
event starts the FIFO, it will not be saved into the FIFO. In the case of an end-trace, if the trigger event is
a change-of-flow, it will be saved as the last change-of-flow entry for that debug run.

The FIFO can also be used to generate a profile of executed instruction addresses when the debugger is
not armed. When ARM = 0, reading DBGFL causes the address of the most-recently fetched opcode to be
saved in the FIFO. To use the profiling feature, a host debugger would read addresses out of the FIFO by
reading DBGFH then DBGFL at regular periodic intervals. The first eight values would be discarded
because they correspond to the eight DBGFL reads needed to initially fill the FIFO. Additional periodic
reads of DBGFH and DBGFL return delayed information about executed instructions so the host debugger
can develop a profile of executed instruction addresses.

17.3.3 Change-of-Flow Information
To minimize the amount of information stored in the FIFO, only information related to instructions that
cause a change to the normal sequential execution of instructions is stored. With knowledge of the source
and object code program stored in the target system, an external debugger system can reconstruct the path
of execution through many instructions from the change-of-flow information stored in the FIFO.

For conditional branch instructions where the branch is taken (branch condition was true), the source
address is stored (the address of the conditional branch opcode). Because BRA and BRN instructions are
not conditional, these events do not cause change-of-flow information to be stored in the FIFO.

Indirect JMP and JSR instructions use the current contents of the H:X index register pair to determine the
destination address, so the debug system stores the run-time destination address for any indirect JMP or
JSR. For interrupts, RTI, or RTS, the destination address is stored in the FIFO as change-of-flow
information.

17.3.4 Tag vs. Force Breakpoints and Triggers
Tagging is a term that refers to identifying an instruction opcode as it is fetched into the instruction queue,
but not taking any other action until and unless that instruction is actually executed by the CPU. This
distinction is important because any change-of-flow from a jump, branch, subroutine call, or interrupt
causes some instructions that have been fetched into the instruction queue to be thrown away without being
executed.
MC9S08SH32 Series Data Sheet, Rev. 3

272 Freescale Semiconductor

Chapter 17 Development Support
17.3.6 Hardware Breakpoints
The BRKEN control bit in the DBGC register may be set to 1 to allow any of the trigger conditions
described in Section 17.3.5, “Trigger Modes,” to be used to generate a hardware breakpoint request to the
CPU. TAG in DBGC controls whether the breakpoint request will be treated as a tag-type breakpoint or a
force-type breakpoint. A tag breakpoint causes the current opcode to be marked as it enters the instruction
queue. If a tagged opcode reaches the end of the pipe, the CPU executes a BGND instruction to go to active
background mode rather than executing the tagged opcode. A force-type breakpoint causes the CPU to
finish the current instruction and then go to active background mode.

If the background mode has not been enabled (ENBDM = 1) by a serial WRITE_CONTROL command
through the BKGD pin, the CPU will execute an SWI instruction instead of going to active background
mode.

17.4 Register Definition
This section contains the descriptions of the BDC and DBG registers and control bits.

Refer to the high-page register summary in the device overview chapter of this data sheet for the absolute
address assignments for all DBG registers. This section refers to registers and control bits only by their
names. A Freescale-provided equate or header file is used to translate these names into the appropriate
absolute addresses.

17.4.1 BDC Registers and Control Bits
The BDC has two registers:

• The BDC status and control register (BDCSCR) is an 8-bit register containing control and status
bits for the background debug controller.

• The BDC breakpoint match register (BDCBKPT) holds a 16-bit breakpoint match address.

These registers are accessed with dedicated serial BDC commands and are not located in the memory
space of the target MCU (so they do not have addresses and cannot be accessed by user programs).

Some of the bits in the BDCSCR have write limitations; otherwise, these registers may be read or written
at any time. For example, the ENBDM control bit may not be written while the MCU is in active
background mode. (This prevents the ambiguous condition of the control bit forbidding active background
mode while the MCU is already in active background mode.) Also, the four status bits (BDMACT, WS,
WSF, and DVF) are read-only status indicators and can never be written by the WRITE_CONTROL serial
BDC command. The clock switch (CLKSW) control bit may be read or written at any time.
MC9S08SH32 Series Data Sheet, Rev. 3

Freescale Semiconductor 275

