NXP USA Inc. - MC9S08SH32VTG Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	508
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	13
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	- ·
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	16-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08sh32vtg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Chapters

Chapter 1	Device Overview	19
Chapter 2	Pins and Connections	23
Chapter 3	Modes of Operation	31
Chapter 4	Memory	37
Chapter 5	Resets, Interrupts, and General System Control	59
Chapter 6	Parallel Input/Output Control	75
Chapter 7	Central Processor Unit (S08CPUV3)	93
Chapter 8	Analog Comparator 5-V (S08ACMPV3)	113
Chapter 9	Analog-to-Digital Converter (S08ADC10V1)	121
Chapter 10	Inter-Integrated Circuit (S08IICV2)	149
Chapter 11	Internal Clock Source (S08ICSV2)	167
Chapter 12	Modulo Timer (S08MTIMV1)	181
Chapter 13	Real-Time Counter (S08RTCV1)	191
Chapter 14	Serial Communications Interface (S08SCIV4)	201
Chapter 15	Serial Peripheral Interface (S08SPIV3)	221
Chapter 16	Timer Pulse-Width Modulator (S08TPMV3)	237
Chapter 17	Development Support	261
Appendix A	Electrical Characteristics	283
Appendix B	Ordering Information and Mechanical Drawings	313

Chapter 1 Device Overview

1.3 System Clock Distribution

Figure 1-2 shows a simplified clock connection diagram. Some modules in the MCU have selectable clock inputs as shown. The clock inputs to the modules indicate the clock(s) that are used to drive the module function.

The following defines the clocks used in this MCU:

- BUSCLK The frequency of the bus is always half of ICSOUT.
- ICSOUT Primary output of the ICS and is twice the bus frequency.
- ICSLCLK Development tools can select this clock source to speed up BDC communications in systems where the bus clock is configured to run at a very slow frequency.
- ICSERCLK External reference clock can be selected as the RTC clock source and as the alternate clock for the ADC module.
- ICSIRCLK Internal reference clock can be selected as the RTC clock source.
- ICSFFCLK Fixed frequency clock can be selected as clock source for the TPM1, TPM2 and MTIM modules.
- LPOCLK Independent 1-kHz clock source that can be selected as the clock source for the COP and RTC modules.
- TCLK External input clock source for TPM1, TPM2 and MTIM and is referenced as TPMCLK in TPM chapters.

Figure 1-2. System Clock Distribution Diagram

MC9S08SH32 Series Data Sheet, Rev. 3

			Priority					
		er	Lowest Highest				nest	
28-pin	20-pin	16-pin	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4	Alt5
1	_	—	PTC5					ADP13
2	_	_	PTC4					ADP12
3	1	1	PTA5	IRQ	TCLK			RESET ¹
4	2	2	PTA4	ACMPO			BKGD	MS
5								V _{DD}
6	3	3					V _{DDA}	V _{REFH}
7							V _{SSA}	V _{REFL}
8	4	4						V _{SS}
9	5	5	PTB7	SCL ²	EXTAL			
10	6	6	PTB6	SDA ²	XTAL			
11	7	7	PTB5	TPM1CH1 ³	SS	PTC0 ⁴		
12	8	8	PTB4	TPM2CH1 ⁵	MISO	PTC0 ⁴		
13	9		PTC3			PTC0 ⁴	ADP11	
14	10		PTC2			PTC0 ⁴	ADP10	
15	11		PTC1	TPM1CH1 ³		PTC0 ⁴	ADP9	
16	12		PTC0	TPM1CH0 ³		PTC0 ⁴	ADP8	
17	13	9	PTB3	PIB3	MOSI	PTC0 ⁴	ADP7	
18	14	10	PTB2	PIB2	SPSCK	PTC0 ⁴	ADP6	
19	15	11	PTB1	PIB1	TxD		ADP5	
20	16	12	PTB0	PIB0	RxD		ADP4	
21	_		PTA7	TPM2CH1 ⁵				
22	_		PTA6	TPM2CH0 ⁵				
23	17	13	PTA3	PIA3	SCL ²		ADP3	
24	18	14	PTA2	PIA2	SDA ²		ADP2	
25	19	15	PTA1	PIA1	TPM2CH0 ⁵		ADP1 ⁶	ACMP- ⁶
26	20	16	PTA0	PIA0	TPM1CH0 ³		ADP0 ⁶	ACMP+ ⁶
27	—	_	PTC7					ADP15
28	—	—	PTC6					ADP14

¹ Pin does not contain a clamp diode to V_{DD} and should not be driven above V_{DD}. The voltage measured on the internally pulled up RESET in will not be pulled to V_{DD}. The internal gates connected to this pin are pulled to V_{DD}.

² IIC pins can be repositioned using IICPS in SOPT2, default reset locations are PTA2, PTA3.

³ TPM1CHx pins can be repositioned using T1CHxPS bits in SOPT2, default reset locations are PTA0, PTB5.

⁴ This port pin is part of the ganged output feature. When pin is enabled for ganged output, it will have priority over all digital modules. The output data, drive strength and slew-rate control of this port pin will follow the configuration for the PTC0 pin, even in 16-pin packages where PTC0 doesn't bond out.

⁵ TPM2CHx pins can be repositioned using T2CHxPS bits in SOPT2, default reset locations are PTA1, PTB4.

⁶ If ACMP and ADC are both enabled, both will have access to the pin.

MC9S08SH32 Series Data Sheet, Rev. 3

Nonvolatile FLASH registers, shown in Table 4-4, are located in the FLASH memory. These registers include an 8-byte backdoor key, NVBACKKEY, which can be used to gain access to secure memory resources. During reset events, the contents of NVPROT and NVOPT in the nonvolatile register area of the FLASH memory are transferred into corresponding FPROT and FOPT working registers in the high-page registers to control security and block protection options.

Table 4-4. Nonvolatile Register Summary

Provided the key enable (KEYEN) bit is 1, the 8-byte comparison key can be used to temporarily disengage memory security. This key mechanism can be accessed only through user code running in secure memory. (A security key cannot be entered directly through background debug commands.) This security key can be disabled completely by programming the KEYEN bit to 0. If the security key is disabled, the only way to disengage security is by mass erasing the FLASH if needed (normally through the background debug interface) and verifying that FLASH is blank. To avoid returning to secure mode after the next reset, program the security bits (SEC) to the unsecured state (1:0).

Chapter 5 Resets, Interrupts, and General System Control

5.4 Computer Operating Properly (COP) Watchdog

The COP watchdog is intended to force a system reset when the application software fails to execute as expected. To prevent a system reset from the COP timer (when it is enabled), application software must reset the COP counter periodically. If the application program gets lost and fails to reset the COP counter before it times out, a system reset is generated to force the system back to a known starting point.

After any reset, the COP watchdog is enabled (see Section 5.7.4, "System Options Register 1 (SOPT1)," for additional information). If the COP watchdog is not used in an application, it can be disabled by clearing COPT bits in SOPT1.

The COP counter is reset by writing 0x0055 and 0x00AA (in this order) to the address of SRS during the selected timeout period. Writes do not affect the data in the read-only SRS. As soon as the write sequence is done, the COP timeout period is restarted. If the program fails to do this during the time-out period, the MCU will reset. Also, if any value other than 0x0055 or 0x00AA is written to SRS, the MCU is immediately reset.

The COPCLKS bit in SOPT2 (see Section 5.7.5, "System Options Register 2 (SOPT2)," for additional information) selects the clock source used for the COP timer. The clock source options are either the bus clock or an internal 1-kHz clock source. With each clock source, there are three associated time-outs controlled by the COPT bits in SOPT1. Table 5-1 summaries the control functions of the COPCLKS and COPT bits. The COP watchdog defaults to operation from the 1-kHz clock source and the longest time-out (2^{10} cycles) .

Control Bits		Clock Source	COP Window ¹ Opens	COP Overflow Count		
COPCLKS	COPT[1:0]	Clock Source	(COPW = 1)	COP Overnow Count		
N/A	0:0	N/A	N/A	COP is disabled		
0	0:1	1 kHz	N/A	2 ⁵ cycles (32 ms ²)		
0	1:0	1 kHz	N/A	2 ⁸ cycles (256 ms ¹)		
0	1:1	1 kHz	N/A	2 ¹⁰ cycles (1.024 s ¹)		
1	0:1	Bus	6144 cycles	2 ¹³ cycles		
1	1:0	Bus	49,152 cycles	2 ¹⁶ cycles		
1	1:1	Bus	196,608 cycles	2 ¹⁸ cycles		

Table 5-1. COP Configuration Options

¹ Windowed COP operation requires the user to clear the COP timer in the last 25% of the selected timeout period. This column displays the minimum number of clock counts required before the COP timer can be reset when in windowed COP mode (COPW = 1).

² Values shown in milliseconds based on $t_{LPO} = 1$ ms. See t_{LPO} in the appendix Section A.12.1, "Control Timing," for the tolerance of this value.

When the bus clock source is selected, windowed COP operation is available by setting COPW in the SOPT2 register. In this mode, writes to the SRS register to clear the COP timer must occur in the last 25% of the selected timeout period. A premature write immediately resets the MCU. When the 1-kHz clock source is selected, windowed COP operation is not available.

Chapter 5 Resets, Interrupts, and General System Control

5.7.5 System Options Register 2 (SOPT2)

This high page register contains bits to configure MCU specific features on the MC9S08SH32 Series devices.

Figure 5-6. System Options Register 2 (SOPT2)

¹ This bit can be written only one time after reset. Additional writes are ignored.

Table 5-7. SOPT2 Register Field Descriptions

Field	Description					
7 COPCLKS	 COP Watchdog Clock Select — This write-once bit selects the clock source of the COP watchdog. Internal 1-kHz clock is source to COP. Bus clock is source to COP. 					
6 COPW	 COP Window — This write-once bit selects the COP operation mode. When set, the 0x55-0xAA write sequence to the SRS register must occur in the last 25% of the selected period. Any write to the SRS register during the first 75% of the selected period will reset the MCU. 0 Normal COP operation 1 Window COP operation (only if COPCLKS = 1) 					
4 ACIC	 Analog Comparator to Input Capture Enable— This bit connects the output of ACMP to TPM1 input channel 0. 0 ACMP output not connected to TPM1 input channel 0. 1 ACMP output connected to TPM1 input channel 0. 					
3 T2CH1PS	 TPM2CH1 Pin Select— This selects the location of the TPM2CH1 pin of the TPM2 module. 0 TPM2CH1 on PTB4. 1 TPM2CH1 on PTA7. 					
2 T2CH0PS	 TPM2CH0 Pin Select— This bit selects the location of the TPM2CH0 pin of the TPM2 module. 0 TPM2CH0 on PTA1. 1 TPM2CH0 on PTA6. 					
1 T1CH1PS	 TPM1CH1 Pin Select— This selects the location of the TPM1CH1 pin of the TPM1 module. 0 TPM1CH1 on PTB5. 1 TPM1CH1 on PTC1. 					
0 T1CH0PS	 TPM1CH0 Pin Select— This bit selects the location of the TPM1CH0 pin of the TPM1 module. 0 TPM1CH0 on PTA0. 1 TPM1CH0 on PTC0. 					

6.3 Ganged Output

The MC9S08SH32 Series devices contain a feature that allows for up to eight port pins to be tied together externally to allow higher output current drive. The ganged output drive control register (GNGC) is a write-once register that is used to enabled the ganged output feature and select which port pins will be used as ganged outputs. The GNGEN bit in GNGC enables ganged output. The GNGPS[7:1] bits are used to select which pin will be part of the ganged output.

When GNGEN is set, any pin that is enabled as a ganged output will be automatically configured as an output and follow the data, drive strength and slew rate control of PTC0. The ganged output drive pin mapping is shown in Table 6-1.

NOTE

See the DC characteristics in the electrical section for maximum Port I/O currents allowed for this MCU.

When a pin is enabled as ganged output, this feature will have priority over any digital module. An enabled analog function will have priority over the ganged output pin. See Table 2-1 for information on pin priority.

	GNGC Register Bits								
	GNGPS7 GNGPS6 GNGPS5 GNGPS4 GNGPS3 GNGPS2 GNGPS1 C							GNGEN ¹	
Port Pin ²	PTB5	PTB4	PTB3	PTB2	PTC3	PTC2	PTC1	PTC0	
Data Direction Control	Pin is automatically configured as output when pin is enabled as ganged output.								
Data Control	PTCD0 in PTCD controls data value of output								
Drive Strength Control	PTCDS0 in PTCDS controls drive strength of output								
Slew Rate Control	PTCSE0 in PTCSE controls slew rate of output								

Table 6-1. Ganged Output Pin Enable

¹ Ganged output on PTC3-PTC0 not available on 16-pin packages, however PTC0 control registers are still used to control ganged output.

² When GNGEN = 1, PTC0 is forced to an output, regardless of the value in PTCDD0 in PTCDD.

Chapter 6 Parallel Input/Output Control

6.6.2 Port B Registers

Port B is controlled by the registers listed below.

6.6.2.1 Port B Data Register (PTBD)

Figure 6-11. Port B Data Register (PTBD)

Table 6-10. PTBD Register Field Descriptions

Field	Description
7:0 PTBD[7:0]	Port B Data Register Bits — For port B pins that are inputs, reads return the logic level on the pin. For port B pins that are configured as outputs, reads return the last value written to this register. Writes are latched into all bits of this register. For port B pins that are configured as outputs, the logic level is driven out the corresponding MCU pin. Reset forces PTBD to all 0s, but these 0s are not driven out the corresponding pins because reset also configures all port pins as high-impedance inputs with pull-ups/pull-downs disabled.

6.6.2.2 Port B Data Direction Register (PTBDD)

	7	6	5	4	3	2	1	0
R W	PTBDD7	PTBDD6	PTBDD5	PTBDD4	PTBDD3	PTBDD2	PTBDD1	PTBDD0
Reset:	0	0	0	0	0	0	0	0

Figure 6-12. Port B Data Direction Register (PTBDD)

Table 6-11. PTBDD Register Field Descriptions

Field	Description
7:0 PTBDD[7:0]	Data Direction for Port B Bits — These read/write bits control the direction of port B pins and what is read for PTBD reads.
	 0 Input (output driver disabled) and reads return the pin value. 1 Output driver enabled for port B bit n and PTBD reads return the contents of PTBDn.

Chapter 7 Central Processor Unit (S08CPUV3)

Source	Operation	S S S S S S S S S S S S S S S S S S S	/cles	Cyc-by-Cyc	Affect on CCR		
1 Onn		PdA		රි	Details	V 1 1 H	INZC
RSP	Reset Stack Pointer (Low Byte) SPL ← \$FF (High Byte Not Affected)	INH	9C	1	q	- 1 1 -	
RTI	Return from Interrupt SP \leftarrow (SP) + \$0001; Pull (CCR) SP \leftarrow (SP) + \$0001; Pull (A) SP \leftarrow (SP) + \$0001; Pull (X) SP \leftarrow (SP) + \$0001; Pull (PCH) SP \leftarrow (SP) + \$0001; Pull (PCL)	INH	80	9	uuuuufppp	↓11↓	↓↓↓↓
RTS	Return from Subroutine SP \leftarrow SP + \$0001; Pull (PCH) SP \leftarrow SP + \$0001; Pull (PCL)	INH	81	5	ufppp	- 1 1 -	
SBC #opr8i SBC opr8a SBC opr16a SBC oprx16,X SBC oprx8,X SBC ,X SBC oprx16,SP SBC oprx8,SP	Subtract with Carry A \leftarrow (A) – (M) – (C)	IMM DIR EXT IX2 IX1 IX SP2 SP1	A2 ii B2 dd C2 hh 11 D2 ee ff E2 ff F2 9E D2 ee ff 9E E2 ff	2 3 4 3 3 5 4	pp rpp prpp rpp rfp pprpp prpp	↓11-	- ↓ ↓ ↓
SEC	Set Carry Bit $(C \leftarrow 1)$	INH	99	1	p	- 1 1 -	1
SEI	Set Interrupt Mask Bit $(I \leftarrow 1)$	INH	9B	1	p	- 1 1 -	1 – – –
STA opr8a STA opr16a STA oprx16,X STA oprx8,X STA ,X STA oprx16,SP STA oprx8,SP	Store Accumulator in Memory $M \leftarrow (A)$	DIR EXT IX2 IX1 IX SP2 SP1	B7 dd C7 hh 11 D7 ee ff E7 ff F7 9E D7 ee ff 9E E7 ff	3 4 3 2 5 4	БмББ ББмББ мБ БмББ БмББ БмББ АмББ	011-	- \$ \$ -
STHX opr8a STHX opr16a STHX oprx8,SP	Store H:X (Index Reg.) (M:M + \$0001) ← (H:X)	DIR EXT SP1	35 dd 96 hh 11 9E FF ff	4 5 5	bambb bambb bambb	011-	- ↓ ↓ -
STOP	Enable Interrupts: Stop Processing Refer to MCU Documentation I bit \leftarrow 0; Stop Processing	INH	8E	2	fp	- 1 1 -	0
STX opr8a STX opr16a STX oprx16,X STX oprx8,X STX ,X STX oprx16,SP STX oprx8,SP	Store X (Low 8 Bits of Index Register) in Memory $M \leftarrow (X)$	DIR EXT IX2 IX1 IX SP2 SP1	BF dd CF hh ll DF ee ff EF ff FF 9E DF ee ff 9E EF ff	3 4 3 2 5 4	БмББ ББмББ мБ БмББ БмББ БмББ АмББ	011-	- \$ \$ -

Table 7-2. Instruction \$	Set Summary	(Sheet 7 of 9)
---------------------------	-------------	----------------

Pit Maninulation Pranch Pead Medify Write					trol	· /		Pagisto	Momony						
DIL-IVIAIII		Branch		Rea			70 1				D 0	Register	/wentory	150 0	50 0
DO 5	10 5 BSETO							80 51 9	90 3						
3 DIR	2 DIR	2 REI				2 181		1 INH	2 REI	2 IMM	2 DIR	3 FXT	3 122	2 111	
01 5	11 5	21 3	31 5	1 1	51 /	61 5	71 5	81 6	01 3	Δ1 2	B1 3		D1 4	E1 3	F1 3
BRCIRO	BCIRO	BRN	CBEO	CBEQA	CBEOX	CBEO	CBEO	RTS	ੈ BIT	CMP	CMP	CMP	CMP	CMP	CMP
3 DIR	2 DIR	2 REL	3 DIR	3 IMM	3 IMM	3 IX1+	2 IX+	1 INH	2 REL	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
02 5	12 5	22 3	32 5	42 5	52 6	62 1	72 1	82 5+	92 3	A2 2	B2 3	C2 4	D2 4	F2 3	F2 3
BRSET1	BSET1	BHI	LDHX	MUL		NSA .	DAA	BGND	BGT	SBC	SBC	SBC	SBC	SBC	SBC
3 DIR	2 DIR	2 REL	3 EXT	1 INH	1 INH	1 INH	1 INH	1 INH	2 REL	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
03 5	13 5	23 3	33 5	43 1	53 1	63 5	73 4	83 11	93 3	A3 2	B3 3	C3 4	D3 4	E3 3	F3 3
BRCLR1	BCLR1	BLS	COM	COMA	COMX	COM	COM	SWI	BLE	CPX	CPX	CPX	CPX	CPX	CPX
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	2 REL	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
04 5	14 5	24 3	34 5	44 1	54 1	64 5	74 4	84 1	94 2	A4 2	B4 3	C4 4	D4 4	E4 3	F4 3
BRSET2	BSET2	BCC	LSR	LSRA	LSRX	LSR	LSR	TAP	TXS	AND	AND	AND	AND	AND	AND
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
05 5	15 5	25 3	35 4	45 3	55 4	65 3	75 5	85 1	⁹⁵ 2	A5 2	B5 3	C5 4	D5 4	E5 3	F5 3
BRCLR2	BCLR2	BCS	SIHX			CPHX	CPHX	IPA	ISX	BII	BII	BII	BII	BII	BII
3 DIR	2 DIR	Z REL	Z DIR	3 11/11/1	Z DIR	3 11/11/1	Z DIR			2 111111	Z DIR	3 EAT	3 1/2		
	10 5 BCET2		3000			⁶⁶ 00 ⁵									
3 DIR	2 DIR	2 REI				2 181			3 FXT			3 FXT			
07 5	17 5	27 3	37 5	47 1	57 1	67 5	77 1	87 2	97 1	Δ7 2	B7 3		D7 4	E7 3	F7 2
BRCI R3	BCI R3	É BEQ	"ASR	"ASRA	ASRX'	"ASR	'ASR	PSHA	TAX	ais 1	STA	STA	l'sta	L'STA	'STA
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
08 5	18 5	28 3	38 5	48 1	58 1	68 5	78 4	88 3	98 1	A8 2	B8 3	C8 4	D8 4	E8 3	F8 3
BRSET4	BSET4	BHCC	LSL	LSLA	LSLX	LSL	LSL	PULX	CLC	EOR	EOR	EOR	EOR	EOR	EOR
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
09 5	19 5	29 3	39 5	49 1	59 1	69 5	79 4	89 2	99 1	A9 2	B9 3	C9 4	D9 4	E9 3	F9 3
BRCLR4	BCLR4	BHCS	ROL	ROLA	ROLX	ROL	ROL	PSHX	SEC	ADC	ADC	ADC	ADC	ADC	ADC
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
0A 5	1A 5	2A 3	3A 5	4A 1	5A 1	6A 5	7A 4	8A 3	9A 1	AA 2	BA 3	CA 4	DA 4	EA 3	FA 3
BRSEIS	BSE15	BPL	DEC	DECA		DEC	DEC	PULH		ORA	ORA	ORA	ORA	ORA	ORA
3 DIR	2 DIR	Z REL	Z DIR								Z DIR	3 EAT	3 1/2		
											BB 3				
3 DIR	2 DIR	2 REI				3 1X1		1 INH				3 FXT	3 122	2 111	
	10 5	2 112	30 5	40 1	50 1	60 5	70 1	80 1	9C 1	2 10101	BC 3			EC 3	FC 3
BRSET	BSET	BMC	INC	INCA	UNCX	INC	Í INC	CIRH	[°] RSP [']		JMP	JMP	.IMP	L. IMP	JMP
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH		2 DIR	3 EXT	3 IX2	2 IX1	1 IX
0D 5	1D 5	2D 3	3D 4	4D 1	5D 1	6D 4	7D 3		9D 1	AD 5	BD 5	CD 6	DD 6	ED 5	FD 5
BRCLR6	BCLR6	BMS	TST	TSTA	TSTX	TST	TST		NOP	BSR	JSR	JSR	JSR	JSR	JSR
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX		1 INH	2 REL	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
0E 5	1E 5	2E 3	3E 6	4E 5	5E 5	6E 4	7E 5	8E 2+	9E	AE 2	BE 3	CE 4	DE 4	EE 3	FE 3
BRSET7	BSET7	BIL	CPHX	MOV	MOV	MOV	MOV	STOP	Page 2	LDX	LDX	LDX	LDX	LDX	LDX
3 DIR	2 DIR	2 REL	3 EXT	3 DD	2 DIX+	3 IMD	2 IX+D	1 INH		2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
OF 5	1F 5	2F 3	3F 5	4F 1	5F 1	6F 5	7F 4	8F 2+	9F1	AF 2	BF 3	CF 4	DF 4	EF 3	FF 2
BRCLR/	BCLK/	N RIH		CLRA		CLR	CLR	WAII		AIX	SIX	SIX	SIX	SIX	SIX
JS DIR		Z KEL	∠ DIR	LI INH	LI INH	∠ IX1	LI 1X	LI INH	LI INH	∠ IIVIIVI			13 1AZ	1X1 2	<u>X</u> 1

Table 7-3. Opcode Map (Sheet 1 of 2)

	Inhoront
	Innerent
IMM	Immediate
DIR	Direct
EXT	Extended
DD	DIR to DIR
IX+D	IX+ to DIR

REL IX IX1 IX2 IMD DIX+

Relative Indexed, No Offset Indexed, 8-Bit Offset Indexed, 16-Bit Offset IMM to DIR DIR to IX+

Stack Pointer, 8-Bit Offset Stack Pointer, 16-Bit Offset Indexed, No Offset with Post Increment Indexed, 1-Byte Offset with Post Increment

SP1 SP2 IX+

IX1+

MC9S08SH32 Series Data Sheet, Rev. 3

Opcode in Hexadecimal F0 3 SUB 1 IX HCS08 Cycles Instruction Mnemonic Addressing Mode

Chapter 8 Analog Comparator (S08ACMPV3)

8.6.1.1 ACMP Status and Control Register (ACMPSC)

ACMPSC contains the status flag and control bits which are used to enable and configure the ACMP.

Figure 8-3. ACMP Status and Control Register

Table 8-2. ACMP Status and Control Register F	ield Descriptions
---	-------------------

Field	Description
7 ACME	 Analog Comparator Module Enable — ACME enables the ACMP module. 0 ACMP not enabled 1 ACMP is enabled
6 ACBGS	 Analog Comparator Bandgap Select — ACBGS is used to select between the bandgap reference voltage or the ACMP+ pin as the input to the non-inverting input of the analog comparatorr. 0 External pin ACMP+ selected as non-inverting input to comparator 1 Internal reference select as non-inverting input to comparator Note: refer to this chapter introduction to verify if any other config bits are necessary to enable the bandgap reference in the chip level.
5 ACF	 Analog Comparator Flag — ACF is set when a compare event occurs. Compare events are defined by ACMOD. ACF is cleared by writing a one to ACF. 0 Compare event has not occurred 1 Compare event has occurred
4 ACIE	 Analog Comparator Interrupt Enable — ACIE enables the interrupt from the ACMP. When ACIE is set, an interrupt will be asserted when ACF is set. 0 Interrupt disabled 1 Interrupt enabled
3 ACO	Analog Comparator Output — Reading ACO will return the current value of the analog comparator output. ACO is reset to a 0 and will read as a 0 when the ACMP is disabled (ACME = 0).
2 ACOPE	 Analog Comparator Output Pin Enable — ACOPE is used to enable the comparator output to be placed onto the external pin, ACMPO. 0 Analog comparator output not available on ACMPO 1 Analog comparator output is driven out on ACMPO
1:0 ACMOD	 Analog Comparator Mode — ACMOD selects the type of compare event which sets ACF. 00 Encoding 0 — Comparator output falling edge 01 Encoding 1 — Comparator output rising edge 10 Encoding 2 — Comparator output falling edge 11 Encoding 3 — Comparator output rising or falling edge

Chapter 10 Inter-Integrated Circuit (S08IICV2)

10.1 Introduction

The inter-integrated circuit (IIC) provides a method of communication between a number of devices. The interface is designed to operate up to 100 kbps with maximum bus loading and timing. The device is capable of operating at higher baud rates, up to a maximum of clock/20, with reduced bus loading. The maximum communication length and the number of devices that can be connected are limited by a maximum bus capacitance of 400 pF.

NOTE

The SDA and SCL should not be driven above V_{DD} . These pins are pseudo open-drain containing a protection diode to V_{DD} .

10.1.1 Module Configuration

The IIC module pins, SDA and SCL can be repositioned under software control using IICPS in SOPT1 as as shown in Table 10-1. IICPS in SOPT1 selects which general-purpose I/O ports are associated with IIC operation.

IICPS in SOPT1	Port Pin for SDA	Port Pin for SCL	
0 (default)	PTA2	PTA3	
1	PTB6	PTB7	

Table 10-1. IIC Position Options

Figure 10-1 shows the MC9S08SH32 Series block diagram with the IIC module highlighted.

Inter-Integrated Circuit (S08IICV2)

Figure 10-2. IIC Functional Block Diagram

10.2 External Signal Description

This section describes each user-accessible pin signal.

10.2.1 SCL — Serial Clock Line

The bidirectional SCL is the serial clock line of the IIC system.

10.2.2 SDA — Serial Data Line

The bidirectional SDA is the serial data line of the IIC system.

10.3 Register Definition

This section consists of the IIC register descriptions in address order.

Refer to the direct-page register summary in the memory chapter of this document for the absolute address assignments for all IIC registers. This section refers to registers and control bits only by their names. A

Inter-Integrated Circuit (S08IICV2)

Field	Description						
7–6 MULT	IIC Multiplier Factor . The MULT bits define the multiplier factor, mul. This factor, along with the SCL divider, generates the IIC baud rate. The multiplier factor mul as defined by the MULT bits is provided below. 00 mul = 01 01 mul = 02 10 mul = 04 11 Reserved						
5–0 ICR	IIC Clock Rate . The ICR bits are used to prescale the bus clock for bit rate selection. These bits and the MUL bits determine the IIC baud rate, the SDA hold time, the SCL Start hold time, and the SCL Stop hold time. Table 10-5 provides the SCL divider and hold values for corresponding values of the ICR. The SCL divider multiplied by multiplier factor mul generates IIC baud rate.						
	$IIC \text{ baud rate } = \frac{\text{bus speed (Hz)}}{\text{mul} \times \text{SCLdivider}} \qquad \qquad \textbf{Eqn. 10-}$ SDA hold time is the delay from the falling edge of SCL (IIC clock) to the changing of SDA (IIC data).						
	SDA hold time = bus period (s) \times mul \times SDA hold value Eqn. 10 -						
	SCL start hold time is the delay from the falling edge of SDA (IIC data) while SCL is high (Start condition) to the falling edge of SCL (IIC clock).						
	SCL Start hold time = bus period (s) \times mul \times SCL Start hold value Eqn. 10 -						
	SCL stop hold time is the delay from the rising edge of SCL (IIC clock) to the rising edge of SDA SDA (IIC data) while SCL is high (Stop condition).						
	SCL Stop hold time = bus period (s) \times mul \times SCL Stop hold value Eqn. 10 -						

Table 10-3. IICF Field Descriptions

For example, if the bus speed is 8 MHz, the table below shows the possible hold time values with different ICR and MULT selections to achieve an IIC baud rate of 100 kbps.

	ICP	Hold Times (µs)				
MOLI		SDA	SCL Start	SCL Stop		
0x2	0x00	3.500	3.000	5.500		
0x1	0x07	2.500	4.000	5.250		
0x1	0x0B	2.250	4.000	5.250		
0x0	0x14	2.125	4.250	5.125		
0x0	0x18	1.125	4.750	5.125		

Table 10-4. Hold Time Values for 8 MHz Bus Speed

Figure 14-5. SCI Baud Rate Register (SCIxBDL)

Table 14-2. SCIxBDL Field Descriptions

Field	Description
7:0 SBR[7:0]	Baud Rate Modulo Divisor — These 13 bits in SBR[12:0] are referred to collectively as BR, and they set the modulo divide rate for the SCI baud rate generator. When BR = 0, the SCI baud rate generator is disabled to reduce supply current. When BR = 1 to 8191, the SCI baud rate = BUSCLK/($16 \times BR$). See also BR bits in Table 14-1.

14.2.2 SCI Control Register 1 (SCIxC1)

This read/write register is used to control various optional features of the SCI system.

_	7	6	5	4	3	2	1	0
R W	LOOPS	SCISWAI	RSRC	М	WAKE	ILT	PE	PT
Reset	0	0	0	0	0	0	0	0

Figure 14-6. SCI Control Register 1 (SCIxC1)

Table 14-3. SCIxC1 Field Descriptions

Field	Description
7 LOOPS	 Loop Mode Select — Selects between loop back modes and normal 2-pin full-duplex modes. When LOOPS = 1, the transmitter output is internally connected to the receiver input. 0 Normal operation — RxD and TxD use separate pins. 1 Loop mode or single-wire mode where transmitter outputs are internally connected to receiver input. (See RSRC bit.) RxD pin is not used by SCI.
6 SCISWAI	 SCI Stops in Wait Mode SCI clocks continue to run in wait mode so the SCI can be the source of an interrupt that wakes up the CPU. SCI clocks freeze while CPU is in wait mode.
5 RSRC	 Receiver Source Select — This bit has no meaning or effect unless the LOOPS bit is set to 1. When LOOPS = 1, the receiver input is internally connected to the TxD pin and RSRC determines whether this connection is also connected to the transmitter output. Provided LOOPS = 1, RSRC = 0 selects internal loop back mode and the SCI does not use the RxD pins. Single-wire SCI mode where the TxD pin is connected to the transmitter output.
4 M	 9-Bit or 8-Bit Mode Select 0 Normal — start + 8 data bits (LSB first) + stop. 1 Receiver and transmitter use 9-bit data characters start + 8 data bits (LSB first) + 9th data bit + stop.

Writing 0 to TE does not immediately release the pin to be a general-purpose I/O pin. Any transmit activity that is in progress must first be completed. This includes data characters in progress, queued idle characters, and queued break characters.

14.3.2.1 Send Break and Queued Idle

The SBK control bit in SCIxC2 is used to send break characters which were originally used to gain the attention of old teletype receivers. Break characters are a full character time of logic 0 (10 bit times including the start and stop bits). A longer break of 13 bit times can be enabled by setting BRK13 = 1. Normally, a program would wait for TDRE to become set to indicate the last character of a message has moved to the transmit shifter, then write 1 and then write 0 to the SBK bit. This action queues a break character to be sent as soon as the shifter is available. If SBK is still 1 when the queued break moves into the shifter (synchronized to the baud rate clock), an additional break character is queued. If the receiving device is another Freescale Semiconductor SCI, the break characters will be received as 0s in all eight data bits and a framing error (FE = 1) occurs.

When idle-line wakeup is used, a full character time of idle (logic 1) is needed between messages to wake up any sleeping receivers. Normally, a program would wait for TDRE to become set to indicate the last character of a message has moved to the transmit shifter, then write 0 and then write 1 to the TE bit. This action queues an idle character to be sent as soon as the shifter is available. As long as the character in the shifter does not finish while TE = 0, the SCI transmitter never actually releases control of the TxD pin. If there is a possibility of the shifter finishing while TE = 0, set the general-purpose I/O controls so the pin that is shared with TxD is an output driving a logic 1. This ensures that the TxD line will look like a normal idle line even if the SCI loses control of the port pin between writing 0 and then 1 to TE.

The length of the break character is affected by the BRK13 and M bits as shown below.

BRK13	М	Break Character Length
0	0	10 bit times
0	1	11 bit times
1	0	13 bit times
1	1	14 bit times

Table 14-8. Break Character Length

14.3.3 Receiver Functional Description

In this section, the receiver block diagram (Figure 14-3) is used as a guide for the overall receiver functional description. Next, the data sampling technique used to reconstruct receiver data is described in more detail. Finally, two variations of the receiver wakeup function are explained.

The receiver input is inverted by setting RXINV = 1. The receiver is enabled by setting the RE bit in SCIxC2. Character frames consist of a start bit of logic 0, eight (or nine) data bits (LSB first), and a stop bit of logic 1. For information about 9-bit data mode, refer to Section 14.3.5.1, "8- and 9-Bit Data Modes." For the remainder of this discussion, we assume the SCI is configured for normal 8-bit data mode.

After receiving the stop bit into the receive shifter, and provided the receive data register is not already full, the data character is transferred to the receive data register and the receive data register full (RDRF)

Field	Description
7 SPRF	 SPI Read Buffer Full Flag — SPRF is set at the completion of an SPI transfer to indicate that received data may be read from the SPI data register (SPIxD). SPRF is cleared by reading SPRF while it is set, then reading the SPI data register. 0 No data available in the receive data buffer 1 Data available in the receive data buffer
5 SPTEF	SPI Transmit Buffer Empty Flag — This bit is set when there is room in the transmit data buffer. It is cleared by reading SPIxS with SPTEF set, followed by writing a data value to the transmit buffer at SPIxD. SPIxS must be read with SPTEF = 1 before writing data to SPIxD or the SPIxD write will be ignored. SPTEF generates an SPTEF CPU interrupt request if the SPTIE bit in the SPIxC1 is also set. SPTEF is automatically set when a data byte transfers from the transmit buffer into the transmit shift register. For an idle SPI (no data in the transmit buffer or the shift register and no transfer in progress), data written to SPIxD is transferred to the shifter almost immediately so SPTEF is set within two bus cycles allowing a second 8-bit data value to be queued into the transmit buffer. After completion of the transfer of the value in the shift register, the queued value from the transmit buffer will automatically move to the shifter and SPTEF will be set to indicate there is room for new data in the transmit buffer. If no new data is waiting in the transmit buffer, SPTEF simply remains set and no data moves from the buffer to the shifter. 0 SPI transmit buffer not empty 1 SPI transmit buffer empty
4 MODF	Master Mode Fault Flag — MODF is set if the SPI is configured as a master and the slave select input goes low, indicating some other SPI device is also configured as a master. The SS pin acts as a mode fault error input only when MSTR = 1, MODFEN = 1, and SSOE = 0; otherwise, MODF will never be set. MODF is cleared by reading MODF while it is 1, then writing to SPI control register 1 (SPIxC1). 0 No mode fault error 1 Mode fault error detected

15.4.5 SPI Data Register (SPIxD)

	7	6	5	4	3	2	1	0
R W	Bit 7	6	5	4	3	2	1	Bit 0
Reset	0	0	0	0	0	0	0	0

Figure 15-9. SPI Data Register (SPIxD)

Reads of this register return the data read from the receive data buffer. Writes to this register write data to the transmit data buffer. When the SPI is configured as a master, writing data to the transmit data buffer initiates an SPI transfer.

Data should not be written to the transmit data buffer unless the SPI transmit buffer empty flag (SPTEF) is set, indicating there is room in the transmit buffer to queue a new transmit byte.

Data may be read from SPIxD any time after SPRF is set and before another transfer is finished. Failure to read the data out of the receive data buffer before a new transfer ends causes a receive overrun condition and the data from the new transfer is lost.

MC9S08SH32 Series Data Sheet, Rev. 3

Appendix A Electrical Characteristics

inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pull-up resistor associated with the pin is enabled.

#	Rating	Symbol	Value	Unit
1	Supply voltage	V _{DD}	–0.3 to +5.8	V
2	Maximum current into V _{DD}	I _{DD}	120	mA
3	Digital input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V
4	Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	I _D	± 25	mA
5	Storage temperature range	T _{stg}	-55 to 150	°C

Table A-2. Absolute	Maximum Rating	S
---------------------	-----------------------	---

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2\,$ All functional non-supply pins except PTA5/IRQ/TCLK/RESET are internally clamped to V_{SS} and V_{DD}.

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

Appendix A Electrical Characteristics

Figure A-5. Typical Run I_{DD} vs. Bus Frequency ($V_{DD} = 5V$)

Figure A-6. Typical Run and Wait I_{DD} vs. Temperature ($V_{DD} = 5V$; $f_{bus} = 8MHz$)

#	Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment
6	Differential Non-Linearity	10-bit mode	Б	DNL	_	±0.5	±1.0	LSB ²	
		8-bit mode	Г		_	±0.3	±0.5		
		Monotonicity and No-Missing-Codes guaranteed							
7	Integral	10-bit mode	_			±0.5	±1.0	LSB ²	
	non-linearity	8-bit mode	I	INL	_	±0.3	±0.5		
		28-pin packages only							
	Zero-scale error	10-bit mode	Ρ	E_{ZS}		±0.5	±1.5	LSB ²	
		8-bit mode			_	±0.5	±0.5		
		20-pin packages							
8		10-bit mode	Ρ	E_{ZS}		±1.5	±2.5	LSB ²	
		8-bit mode				±0.5	±0.7		
		16-pin packages							
		10-bit mode	Ρ	E_{ZS}		±1.5	±2.5	LSB ²	
		8-bit mode				±0.5	±0.7		

Table A-12. ADC Characteristics (continued)