

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	508
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08sh32vtj

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Chapter 4 Memory

The first byte of a series of sequential bytes being programmed in burst mode will take the same amount of time to program as a byte programmed in standard mode. Subsequent bytes will program in the burst program time provided that the conditions above are met. In the case the next sequential address is the beginning of a new row, the program time for that byte will be the standard time instead of the burst time. This is because the high voltage to the array must be disabled and then enabled again. If a new burst command has not been queued before the current command completes, then the charge pump will be disabled and high voltage removed from the array.

must be programmed to logic 0 to enable block protection. Therefore the value 0xF8 must be programmed into NVPROT to protect addresses 0xFA00 through 0xFFFF.

Figure 4-4. Block Protection Mechanism

One use for block protection is to block protect an area of FLASH memory for a bootloader program. This bootloader program then can be used to erase the rest of the FLASH memory and reprogram it. Because the bootloader is protected, it remains intact even if MCU power is lost in the middle of an erase and reprogram operation.

4.5.7 Vector Redirection

Whenever any block protection is enabled, the reset and interrupt vectors will be protected. Vector redirection allows users to modify interrupt vector information without unprotecting bootloader and reset vector space. Vector redirection is enabled by programming the FNORED bit in the NVOPT register located at address 0xFFBF to zero. For redirection to occur, at least some portion but not all of the FLASH memory must be block protected by programming the NVPROT register located at address 0xFFBD. All of the interrupt vectors (memory locations 0xFFC0–0xFFFD) are redirected, though the reset vector (0xFFFE:FFFF) is not.

For example, if 512 bytes of FLASH are protected, the protected address region is from 0xFE00 through 0xFFFF. The interrupt vectors (0xFFC0–0xFFFD) are redirected to the locations 0xFDC0–0xFDFD. Now, if an SPI interrupt is taken for instance, the values in the locations 0xFDE0:FDE1 are used for the vector instead of the values in the locations 0xFFE0:FFE1. This allows the user to reprogram the unprotected portion of the FLASH with new program code including new interrupt vector values while leaving the protected area, which includes the default vector locations, unchanged.

4.6 Security

The MC9S08SH32 Series includes circuitry to prevent unauthorized access to the contents of FLASH and RAM memory. When security is engaged, FLASH and RAM are considered secure resources. Direct-page registers, high-page registers, and the background debug controller are considered unsecured resources. Programs executing within secure memory have normal access to any MCU memory locations and resources. Attempts to access a secure memory location with a program executing from an unsecured memory space or through the background debug interface are blocked (writes are ignored and reads return all 0s).

Security is engaged or disengaged based on the state of two nonvolatile register bits (SEC01:SEC00) in the FOPT register. During reset, the contents of the nonvolatile location NVOPT are copied from FLASH into the working FOPT register in high-page register space. A user engages security by programming the NVOPT location which can be done at the same time the FLASH memory is programmed. The 1:0 state disengages security and the other three combinations engage security. Notice the erased state (1:1) makes

Chapter 6 Parallel Input/Output Control

6.6 Parallel I/O and Pin Control Registers

This section provides information about the registers associated with the parallel I/O ports. The data and data direction registers are located in page zero of the memory map. The pull up, slew rate, drive strength, and interrupt control registers are located in the high page section of the memory map.

Refer to tables in Chapter 4, "Memory," for the absolute address assignments for all parallel I/O and their pin control registers. This section refers to registers and control bits only by their names. A Freescale Semiconductor-provided equate or header file normally is used to translate these names into the appropriate absolute addresses.

Chapter 6 Parallel Input/Output Control

6.6.2.5 Port B Drive Strength Selection Register (PTBDS)

Figure 6-15. Drive Strength Selection for Port B Register (PTBDS)

Table 6-14. PTBDS Register Field Descriptions

Field	Description
7:0 PTBDS[7:0]	 Output Drive Strength Selection for Port B Bits — Each of these control bits selects between low and high output drive for the associated PTB pin. For port B pins that are configured as inputs, these bits have no effect. 0 Low output drive strength selected for port B bit n. 1 High output drive strength selected for port B bit n.

6.6.2.6 Port B Interrupt Status and Control Register (PTBSC)

	7	6	5	4	3	2	1	0
R	0	0	0	0	PTBIF	0	DTDIE	
W						PTBACK	FIDIC	FIDINIOD
Reset:	0	0	0	0	0	0	0	0

Figure 6-16. Port B Interrupt Status and Control Register (PTBSC)

Table 6-15. PTBSC Register Field Descriptions

Field	Description
3 PTBIF	 Port B Interrupt Flag — PTBIF indicates when a Port B interrupt is detected. Writes have no effect on PTBIF. 0 No Port B interrupt detected. 1 Port B interrupt detected.
2 PTBACK	Port B Interrupt Acknowledge — Writing a 1 to PTBACK is part of the flag clearing mechanism. PTBACK always reads as 0.
1 PTBIE	 Port B Interrupt Enable — PTBIE determines whether a port B interrupt is enabled. 0 Port B interrupt request not enabled. 1 Port B interrupt request enabled.
0 PTBMOD	 Port B Detection Mode — PTBMOD (along with the PTBES bits) controls the detection mode of the port B interrupt pins. 0 Port B pins detect edges only. 1 Port B pins detect both edges and levels.

Chapter 6 Parallel Input/Output Control

6.6.3.5 Port C Drive Strength Selection Register (PTCDS)

Figure 6-23. Drive Strength Selection for Port C Register (PTCDS)

Table 6-22. PTCDS Register Field Descriptions

Field	Description
7:0 PTCDS[7:0]	 Output Drive Strength Selection for Port C Bits — Each of these control bits selects between low and high output drive for the associated PTC pin. For port C pins that are configured as inputs, these bits have no effect. 0 Low output drive strength selected for port C bit n. 1 High output drive strength selected for port C bit n.

6.6.3.6 Ganged Output Drive Control Register (GNGC)

_	7	6	5	4	3	2	1	0
R W	GNGPS7	GNGPS6	GNGPS5	GNGPS4	GNGPS3	GNGPS2	GNGPS1	GNGEN
Reset:	0	0	0	0	0	0	0	0

Figure 6-24. Ganged Output Drive Control Register (GNGC)

Table 6-23. GNGC Register Field Descriptions

Field	Description
7:1 GNGP[7:1]	 Ganged Output Pin Select Bits— These write-once control bits selects whether the associated pin (see Table 6-1for pins available) is enabled for ganged output. When GNGEN = 1, all enabled ganged output pins will be controlled by the data, drive strength and slew rate settings for PTCO. 0 Associated pin is not part of the ganged output drive. 1 Associated pin is part of the ganged output drive. Requires GNGEN = 1.
0 GNGEN	 Ganged Output Drive Enable Bit— This write-once control bit selects whether the ganged output drive feature is enabled. 0 Ganged output drive disabled. 1 Ganged output drive enabled. PTC0 forced to output regardless of the value of PTCDD0 in PTCDD.

Chapter 7 Central Processor Unit (S08CPUV3)

Table 7-2. Instruction Set Summary (Sheet 9 of 9)

Source	Operation	dress lode	Object Code	/cles	Cyc-by-Cyc	Affect on CCR	
		Ad M		ර	Detailo	V 11 H	INZC
TXS	Transfer Index Reg. to SP SP \leftarrow (H:X) – \$0001	INH	94	2	fp	- 1 1 -	
WAIT	Enable Interrupts; Wait for Interrupt I bit \leftarrow 0; Halt CPU	INH	8F	2+	fp	- 1 1 -	0

Source Form: Everything in the source forms columns, except expressions in italic characters, is literal information which must appear in the assembly source file exactly as shown. The initial 3- to 5-letter mnemonic and the characters (#, () and +) are always a literal characters.

- Any label or expression that evaluates to a single integer in the range 0-7. n
- opr8i Any label or expression that evaluates to an 8-bit immediate value.
- opr16i Any label or expression that evaluates to a 16-bit immediate value.
- opr8a Any label or expression that evaluates to an 8-bit direct-page address (\$00xx).
- Any label or expression that evaluates to a 16-bit address. opr16a
- Any label or expression that evaluates to an unsigned 8-bit value, used for indexed addressing. oprx8
- Any label or expression that evaluates to a 16-bit value, used for indexed addressing. oprx16
- rel Any label or expression that refers to an address that is within -128 to +127 locations from the start of the next instruction.

Operation Symbols:

- Accumulator А
- CCR Condition code register
- Index register high byte н
- Μ Memory location
- Any bit n
- Operand (one or two bytes) opr
- PC Program counter
- PCH Program counter high byte
- Program counter low byte PCL
- Relative program counter offset byte rel
- SP Stack pointer
- SPL
- Stack pointer low byte Х Index register low byte
- & Logical AND
- Logical OR . ⊕
- Logical EXCLUSIVE OR Contents of
- ()
- Add +
- Subtract, Negation (two's complement)
- × Multiply
- Divide ÷
- # Immediate value
- I oaded with \leftarrow
- Concatenated with

CCR Bits:

- Overflow bit V
- Half-carry bit н
- Interrupt mask Т
- Ν Negative bit
- Ζ Zero bit
- С Carry/borrow bit

- Addressing Modes: DIR
- Direct addressing mode Extended addressing mode FXT
- Immediate addressing mode IMM
- Inherent addressing mode
- INH
- IX Indexed, no offset addressing mode
- IX1 Indexed, 8-bit offset addressing mode
- IX2 Indexed, 16-bit offset addressing mode
- IX+ Indexed, no offset, post increment addressing mode
- Indexed, 8-bit offset, post increment addressing mode IX1+
- REL Relative addressing mode
- Stack pointer, 8-bit offset addressing mode SP1
- SP2 Stack pointer 16-bit offset addressing mode

Cycle-by-Cycle Codes:

- Free cycle. This indicates a cycle where the CPU f does not require use of the system buses. An f cycle is always one cycle of the system bus clock and is always a read cycle.
- Program fetch; read from next consecutive р location in program memory
- r Read 8-bit operand
- s
- Push (write) one byte onto stack Pop (read) one byte from stack
- u
- Read vector from \$FFxx (high byte first) v
- Write 8-bit operand w

CCR Effects:

- Set or cleared \$
- Not affected
- U Undefined

Chapter 8 Analog Comparator 5-V (S08ACMPV3)

8.1 Introduction

The analog comparator module (ACMP) provides a circuit for comparing two analog input voltages or for comparing one analog input voltage to an internal reference voltage. The comparator circuit is designed to operate across the full range of the supply voltage (rail-to-rail operation).

Figure 8-1 shows the MC9S08SH32 Series block diagram with the ACMP highlighted.

8.1.1 ACMP Configuration Information

When using the bandgap reference voltage for input to ACMP+, the user must enable the bandgap buffer by setting BGBE =1 in SPMSC1 see Section 5.7.6, "System Power Management Status and Control 1 Register (SPMSC1)". For value of bandgap voltage reference see Section A.6, "DC Characteristics".

8.1.2 ACMP/TPM Configuration Information

The ACMP module can be configured to connect the output of the analog comparator to TPM1 input capture channel 0 by setting ACIC in SOPT2. With ACIC set, the TPM1CH0 pin is not available externally regardless of the configuration of the TPM1 module for channel 0.

Chapter 9 Analog-to-Digital Converter (S08ADCV1)

Figure 9-2. ADC Block Diagram

9.2 External Signal Description

The ADC module supports up to 28 separate analog inputs. It also requires four supply/reference/ground connections.

Name	Function
AD27–AD0	Analog Channel inputs
V _{REFH}	High reference voltage
V _{REFL}	Low reference voltage
V _{DDAD}	Analog power supply
V _{SSAD}	Analog ground

Table 9-2. Signal Properties

result of the conversion is transferred to ADCRH and ADCRL upon completion of the conversion algorithm.

If the bus frequency is less than the f_{ADCK} frequency, precise sample time for continuous conversions cannot be guaranteed when short sample is enabled (ADLSMP=0). If the bus frequency is less than 1/11th of the f_{ADCK} frequency, precise sample time for continuous conversions cannot be guaranteed when long sample is enabled (ADLSMP=1).

The maximum total conversion time for different conditions is summarized in Table 9-12.

T			
Conversion Type	ADICLK	ADLSMP	Max Total Conversion Time
Single or first continuous 8-bit	0x, 10	0	20 ADCK cycles + 5 bus clock cycles
Single or first continuous 10-bit	0x, 10	0	23 ADCK cycles + 5 bus clock cycles
Single or first continuous 8-bit	0x, 10	1	40 ADCK cycles + 5 bus clock cycles
Single or first continuous 10-bit	0x, 10	1	43 ADCK cycles + 5 bus clock cycles
Single or first continuous 8-bit	11	0	5 μ s + 20 ADCK + 5 bus clock cycles
Single or first continuous 10-bit	11	0	5 μ s + 23 ADCK + 5 bus clock cycles
Single or first continuous 8-bit	11	1	5 μ s + 40 ADCK + 5 bus clock cycles
Single or first continuous 10-bit	11	1	5 μ s + 43 ADCK + 5 bus clock cycles
Subsequent continuous 8-bit;	ХХ	0	17 ADCK cycles
^t BUS ≥ ^t ADCK			
Subsequent continuous 10-bit; $f_{BUS} \ge f_{ADCK}$	XX	0	20 ADCK cycles
Subsequent continuous 8-bit; f _{BUS} ≥ f _{ADCK} /11	XX	1	37 ADCK cycles
Subsequent continuous 10-bit; $f_{BUS} \ge f_{ADCK}/11$	XX	1	40 ADCK cycles

Table 9-12. Total Conversion Time vs. Control Conditions

The maximum total conversion time is determined by the clock source chosen and the divide ratio selected. The clock source is selectable by the ADICLK bits, and the divide ratio is specified by the ADIV bits. For example, in 10-bit mode, with the bus clock selected as the input clock source, the input clock divide-by-1 ratio selected, and a bus frequency of 8 MHz, then the conversion time for a single conversion is:

Conversion time = $\frac{23 \text{ ADCK cyc}}{8 \text{ MHz/1}} + \frac{5 \text{ bus cyc}}{8 \text{ MHz}} = 3.5 \text{ }\mu\text{s}$

Number of bus cycles = $3.5 \ \mu s \ x \ 8 \ MHz = 28 \ cycles$

NOTE

The ADCK frequency must be between f_{ADCK} minimum and f_{ADCK} maximum to meet ADC specifications.

Inter-Integrated Circuit (S08IICV2)

Field	Description
7–6 MULT	IIC Multiplier Factor . The MULT bits define the multiplier factor, mul. This factor, along with the SCL divider, generates the IIC baud rate. The multiplier factor mul as defined by the MULT bits is provided below. 00 mul = 01 01 mul = 02 10 mul = 04 11 Reserved
5–0 ICR	IIC Clock Rate . The ICR bits are used to prescale the bus clock for bit rate selection. These bits and the MUL bits determine the IIC baud rate, the SDA hold time, the SCL Start hold time, and the SCL Stop hold time. Table 10-5 provides the SCL divider and hold values for corresponding values of the ICR. The SCL divider multiplied by multiplier factor mul generates IIC baud rate.
	$IIC \text{ baud rate } = \frac{\text{bus speed (Hz)}}{\text{mul} \times \text{SCLdivider}} \qquad \qquad \textbf{Eqn. 10-}$ SDA hold time is the delay from the falling edge of SCL (IIC clock) to the changing of SDA (IIC data).
	SDA hold time = bus period (s) \times mul \times SDA hold value Eqn. 10 -
	SCL start hold time is the delay from the falling edge of SDA (IIC data) while SCL is high (Start condition) to the falling edge of SCL (IIC clock).
	SCL Start hold time = bus period (s) \times mul \times SCL Start hold value Eqn. 10 -
	SCL stop hold time is the delay from the rising edge of SCL (IIC clock) to the rising edge of SDA SDA (IIC data) while SCL is high (Stop condition).
	SCL Stop hold time = bus period (s) \times mul \times SCL Stop hold value Eqn. 10 -

Table 10-3. IICF Field Descriptions

For example, if the bus speed is 8 MHz, the table below shows the possible hold time values with different ICR and MULT selections to achieve an IIC baud rate of 100 kbps.

	ICP	Hold Times (µs)				
MOLI		SDA	SCL Start	SCL Stop		
0x2	0x00	3.500	3.000	5.500		
0x1	0x07	2.500	4.000	5.250		
0x1	0x0B	2.250	4.000	5.250		
0x0	0x14	2.125	4.250	5.125		
0x0	0x18	1.125	4.750	5.125		

Table 10-4. Hold Time Values for 8 MHz Bus Speed

Chapter 11 Internal Clock Source (S08ICSV2)

11.1 Introduction

The internal clock source (ICS) module provides clock source choices for the MCU. The module contains a frequency-locked loop (FLL) as a clock source that is controllable by either an internal or an external reference clock. The module can provide this FLL clock or either of the internal or external reference clocks as a source for the MCU system clock. There are also signals provided to control a low power oscillator (XOSC) module to allow the use of an external crystal/resonator as the external reference clock.

Whichever clock source is chosen, it is passed through a reduced bus divider (BDIV) which allows a lower final output clock frequency to be derived.

The bus frequency will be one-half of the ICSOUT frequency. After reset, the ICS is configured for FEI mode and BDIV is reset to 0:1 to introduce an extra divide-by-two before ICSOUT so the bus frequency is $f_{dco}/4$. At POR, the TRIM and FTRIM settings are reset to 0x80 and 0 respectively so the dco frequency is f_{dco} ut. For other resets, the trim settings keep the value that was present before the reset.

NOTE

Refer to Section 1.3, "System Clock Distribution for a detailed view of the distribution of clock sources throughout the MCU.

11.1.1 Module Configuration

When the internal reference is enabled in stop mode (IREFSTEN = 1), the voltage regulator must also be enabled in stop mode by setting the LVDE and LVDSE bits in the SPMSC1 register.

Figure 11-1 shows the MC9S08SH32 block diagram with the ICS highlighted.

13.1.1 Features

Features of the RTC module include:

- 8-bit up-counter
 - 8-bit modulo match limit
 - Software controllable periodic interrupt on match
- Three software selectable clock sources for input to prescaler with selectable binary-based and decimal-based divider values
 - 1-kHz internal low-power oscillator (LPO)
 - External clock (ERCLK)
 - 32-kHz internal clock (IRCLK)

13.1.2 Modes of Operation

This section defines the operation in stop, wait and background debug modes.

13.1.2.1 Wait Mode

The RTC continues to run in wait mode if enabled before executing the appropriate instruction. Therefore, the RTC can bring the MCU out of wait mode if the real-time interrupt is enabled. For lowest possible current consumption, the RTC should be stopped by software if not needed as an interrupt source during wait mode.

13.1.2.2 Stop Modes

The RTC continues to run in stop2 or stop3 mode if the RTC is enabled before executing the STOP instruction. Therefore, the RTC can bring the MCU out of stop modes with no external components, if the real-time interrupt is enabled.

The LPO clock can be used in stop2 and stop3 modes. ERCLK and IRCLK clocks are only available in stop3 mode.

Power consumption is lower when all clock sources are disabled, but in that case, the real-time interrupt cannot wake up the MCU from stop modes.

13.1.2.3 Active Background Mode

The RTC suspends all counting during active background mode until the microcontroller returns to normal user operating mode. Counting resumes from the suspended value as long as the RTCMOD register is not written and the RTCPS and RTCLKS bits are not altered.

13.3.2 RTC Counter Register (RTCCNT)

RTCCNT is the read-only value of the current RTC count of the 8-bit counter.

Figure 13-4. RTC Counter Register (RTCCNT)

Table 13-4. RTCCNT Field Descriptions

Field	Description
7:0 RTCCNT	RTC Count. These eight read-only bits contain the current value of the 8-bit counter. Writes have no effect to this register. Reset, writing to RTCMOD, or writing different values to RTCLKS and RTCPS clear the count to 0x00.

13.3.3 RTC Modulo Register (RTCMOD)

Field	Description
7:0 RTCMOD	RTC Modulo. These eight read/write bits contain the modulo value used to reset the count to 0x00 upon a compare match and set the RTIF status bit. A value of 0x00 sets the RTIF bit on each rising edge of the prescaler output. Writing to RTCMOD resets the prescaler and the RTCCNT counters to 0x00. Reset sets the modulo to 0x00.

13.4 Functional Description

The RTC is composed of a main 8-bit up-counter with an 8-bit modulo register, a clock source selector, and a prescaler block with binary-based and decimal-based selectable values. The module also contains software selectable interrupt logic.

After any MCU reset, the counter is stopped and reset to 0x00, the modulus register is set to 0x00, and the prescaler is off. The 1-kHz internal oscillator clock is selected as the default clock source. To start the prescaler, write any value other than zero to the prescaler select bits (RTCPS).

Three clock sources are software selectable: the low power oscillator clock (LPO), the external clock (ERCLK), and the internal clock (IRCLK). The RTC clock select bits (RTCLKS) select the desired clock source. If a different value is written to RTCLKS, the prescaler and RTCCNT counters are reset to 0x00.

Chapter 16 Timer/PWM Module (S08TPMV3)

The TPM channels are programmable independently as input capture, output compare, or edge-aligned PWM channels. Alternately, the TPM can be configured to produce CPWM outputs on all channels. When the TPM is configured for CPWMs, the counter operates as an up/down counter; input capture, output compare, and EPWM functions are not practical.

If a channel is configured as input capture, an internal pullup device may be enabled for that channel. The details of how a module interacts with pin controls depends upon the chip implementation because the I/O pins and associated general purpose I/O controls are not part of the module. Refer to the discussion of the I/O port logic in a full-chip specification.

Because center-aligned PWMs are usually used to drive 3-phase AC-induction motors and brushless DC motors, they are typically used in sets of three or six channels.

16.2 Signal Description

Table 16-2 shows the user-accessible signals for the TPM. The number of channels may be varied from one to eight. When an external clock is included, it can be shared with the same pin as any TPM channel; however, it could be connected to a separate input pin. Refer to the I/O pin descriptions in full-chip specification for the specific chip implementation.

Name	Function				
EXTCLK ¹ External clock source which may be selected to drive the TPM courses					
TPMxCHn ²	I/O pin associated with TPM channel n				

Table 16-2. Signal Properties

¹ When preset, this signal can share any channel pin; however depending upon full-chip implementation, this signal could be connected to a separate external pin.

² n=channel number (1 to 8)

Refer to documentation for the full-chip for details about reset states, port connections, and whether there is any pullup device on these pins.

TPM channel pins can be associated with general purpose I/O pins and have passive pullup devices which can be enabled with a control bit when the TPM or general purpose I/O controls have configured the associated pin as an input. When no TPM function is enabled to use a corresponding pin, the pin reverts to being controlled by general purpose I/O controls, including the port-data and data-direction registers. Immediately after reset, no TPM functions are enabled, so all associated pins revert to general purpose I/O control.

16.2.1 Detailed Signal Descriptions

This section describes each user-accessible pin signal in detail. Although Table 16-2 grouped all channel pins together, any TPM pin can be shared with the external clock source signal. Since I/O pin logic is not part of the TPM, refer to full-chip documentation for a specific derivative for more details about the interaction of TPM pin functions and general purpose I/O controls including port data, data direction, and pullup controls.

When the TPM is configured for center-aligned PWM (and ELSnB:ELSnA not = 0:0), the data direction for all channels in this TPM are overridden, the TPMxCHn pins are forced to be outputs controlled by the TPM, and the ELSnA bits control the polarity of each TPMxCHn output. If ELSnB:ELSnA=1:0, the corresponding TPMxCHn pin is cleared when the timer counter is counting up, and the channel value register matches the timer counter; the TPMxCHn pin is set when the timer counter is counting down, and the channel value register matches the timer counter. If ELSnA=1, the corresponding TPMxCHn pin is set when the timer counter; the TPMxCHn pin is cleared when the channel value register matches the timer counter is counting up and the channel value register matches the timer counter; the TPMxCHn pin is cleared when the timer counter is the timer counter; the timer counter is counting up and the channel value register matches the timer counter is counting the timer counter; the timer counter is counter is counter; the timer counter is counter is counter.

TPMxMODH:TPMxMODL = 0x0008 TPMxMODH:TPMxMODL = 0x0005

TPMxMODH:TPMxMODL = 0x0008 TPMxMODH:TPMxMODL = 0x0005

Figure 16-6. Low-True Pulse of a Center-Aligned PWM

Chapter 17 Development Support

17.4.3.9 **Debug Status Register (DBGS)**

This is a read-only status register.

Figure 17-9. Debug Status Register (DBGS)

Table 17-6. DBGS Register Field Descriptions
--

Field	Description						
7 AF	 Trigger Match A Flag — AF is cleared at the start of a debug run and indicates whether a trigger match A condition was met since arming. 0 Comparator A has not matched 1 Comparator A match 						
6 BF	 Trigger Match B Flag — BF is cleared at the start of a debug run and indicates whether a trigger match B condition was met since arming. 0 Comparator B has not matched 1 Comparator B match 						
5 ARMF	 Arm Flag — While DBGEN = 1, this status bit is a read-only image of ARM in DBGC. This bit is set by writing 1 to the ARM control bit in DBGC (while DBGEN = 1) and is automatically cleared at the end of a debug run. A debug run is completed when the FIFO is full (begin trace) or when a trigger event is detected (end trace). A debug run can also be ended manually by writing 0 to ARM or DBGEN in DBGC. 0 Debugger not armed 1 Debugger armed 						
3:0 CNT[3:0]	FIFO Valid Count — These bits are cleared at the start of a debug run and indicate the number of words of valid data in the FIFO at the end of a debug run. The value in CNT does not decrement as data is read out of the FIFO. The external debug host is responsible for keeping track of the count as information is read out of the FIFO. 0000 Number of valid words in FIFO = No valid data 0001 Number of valid words in FIFO = 1 0010 Number of valid words in FIFO = 2 0011 Number of valid words in FIFO = 3 0100 Number of valid words in FIFO = 4 0101 Number of valid words in FIFO = 5 0110 Number of valid words in FIFO = 5 0110 Number of valid words in FIFO = 7 1000 Number of valid words in FIFO = 7 1000 Number of valid words in FIFO = 8						

#	С	Characteristic	Symbol	Condition	Min	Typ ¹	Max	Unit
		DC injection current ^{4, 5, 6, 7}						
		Single pin limit	t	$V_{IN} > V_{DD}$	0	—	2	mA
12	D		I _{IC}	V _{IN} < V _{SS} ,	0	—	-0.2	mA
		Total MCU limit, includes		$V_{IN} > V_{DD}$	0	—	25	mA
		sum of all stressed pins		V _{IN} < V _{SS} ,	0		-5	mA
13	D	Input Capacitance, all pins	C _{In}	_	—		8	pF
14	D	RAM retention voltage	V _{RAM}	_	—	0.6	1.0	V
15	D	POR re-arm voltage ⁸	V _{POR}	_	0.9	1.4	2.0	V
16	D	POR re-arm time ⁹	t _{POR}	_	10			μS
17	Ρ	Low-voltage detection threshold —						
		high range	V	—	39	4.0	41	
		V _{DD} rising	* LVD1		4.0	4.1	4.2	V
		Low-voltage detection threshold —						
18	Б	low range		_	0.40	0.56	0.64	
	Р	V _{DD} laining V _{DD} rising	VLVD0		2.48	2.56	2.64 2.70	V
		Low-voltage warning threshold —						
19	-	high range 1	.,	_		1.0		
 <i>"</i> 12 13 14 15 16 17 18 19 20 21 22 23 24 	Р	V _{DD} falling V _{DD} rising	V _{LVW3}		4.5 4.6	4.6 4.7	4.7 4.8	V
		Low-voltage warning threshold —						
		high range 0						
20	Ρ	V _{DD} falling	V_{LVW2}		4.2	4.3	4.4	v
		V _{DD} hsing			4.3	4.4	4.0	
		low range 1						
21	Ρ	V _{DD} falling	V _{LVW1}	_	2.84	2.92	3.00	v
		V _{DD} rising			2.90	2.98	3.06	-
		Low-voltage warning threshold —						
22	Ρ	V _{DD} falling	VIVWO	—	2.66	2.74	2.82	v
		V _{DD} rising	2000		2.72	2.80	2.88	v
23	т	Low-voltage inhibit reset/recover	V _{hys}	5 V	—	100		mV
20		nysteresis		3 V	_	60		mV
24	Ρ	Bandgap Voltage Reference ¹⁰	V _{BG}	_	1.18	1.202	1.21	V

¹ Typical values are measured at 25°C. Characterized, not tested

² When IRQ or a pin interrupt is configured to detect rising edges, pulldown resistors are used in place of pullup resistors.

³ The specified resistor value is the actual value internal to the device. The pullup value may measure higher when measured externally on the pin.

⁴ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

⁵ All functional non-supply pins except PTA5/IRQ/TCLK/RESET are internally clamped to V_{SS} and V_{DD}.

Figure A-8. Typical Frequency Deviation vs Temperature (ICS Trimmed to 16MHz bus@25°C, 5V, FEI)¹

A.10 Analog Comparator (ACMP) Electricals

Table A-10. Analog Comparator Electrical Specifications

#	С	Rating	Symbol	Min	Typical	Max	Unit
1	_	Supply voltage	V _{DD}	2.7	_	5.5	V
2	C/T	Supply current (active)	I _{DDAC}	_	20	35	μA
3	D	Analog input voltage	V _{AIN}	V _{SS} – 0.3	_	V _{DD}	V
4	D	Analog input offset voltage	V _{AIO}	_	20	40	mV
5	D	Analog Comparator hysteresis	V _H	3.0	6.0	20.0	mV
6	D	Analog input leakage current	I _{ALKG}	_	_	1.0	μA
7	D	Analog Comparator initialization delay	t _{AINIT}	_		1.0	μS

^{1.} Based on the average of several hundred units from a typical characterization lot.

Appendix A Electrical Characteristics

NOTES:

1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

NOTES:

1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

