

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 8x12b SAR; D/A 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4244pva-442t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

Block Diagram	3
Functional Description	3
Functional Overview	4
CPU and Memory Subsystem	4
System Resources	4
Analog Blocks	5
Programmable Digital	6
Fixed Function Digital	7
GPIO	7
Special Function Peripherals	8
Pinouts	9
_	
Power	11
Power Unregulated External Supply	
	11
Unregulated External Supply	11 11
Unregulated External Supply Regulated External Supply	11 11 12
Unregulated External Supply Regulated External Supply Development Support	11 11 12 12
Unregulated External Supply Regulated External Supply Development Support Documentation	11 11 12 12 12
Unregulated External Supply Regulated External Supply Development Support Documentation Online	
Unregulated External Supply Regulated External Supply Development Support Documentation Online Tools Electrical Specifications Absolute Maximum Ratings	
Unregulated External Supply Regulated External Supply Development Support Documentation Online Tools Electrical Specifications	

Analog Peripherals	17
Digital Peripherals	22
Memory	
System Resources	
Ordering Information	30
Part Numbering Conventions	
Packaging	
Acronyms	
Document Conventions	
Units of Measure	
Document History Page	36
Sales, Solutions, and Legal Information	37
Worldwide Sales and Design Support	37
Products	37
PSoC® Solutions	
Cypress Developer Community	37
Technical Support	

Functional Overview

CPU and Memory Subsystem

CPU

The Cortex-M0 CPU in PSoC 4200 is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. It mostly uses 16-bit instructions and executes a subset of the Thumb-2 instruction set. This enables fully compatible binary upward migration of the code to higher performance processors such as the Cortex-M3 and M4, thus enabling upward compatibility. The Cypress implementation includes a hardware multiplier that provides a 32-bit result in one cycle. It includes a nested vectored interrupt controller (NVIC) block with 32 interrupt inputs and also includes a Wakeup Interrupt Controller (WIC). The WIC can wake the processor up from the Deep Sleep mode, allowing power to be switched off to the main processor when the chip is in the Deep Sleep mode. The Cortex-M0 CPU provides a Non-Maskable Interrupt (NMI) input, which is made available to the user when it is not in use for system functions requested by the user.

The CPU also includes a debug interface, the serial wire debug (SWD) interface, which is a two-wire form of JTAG; the debug configuration used for PSoC 4200 has four break-point (address) comparators and two watchpoint (data) comparators.

Flash

The PSoC 4200 device has a flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The flash block is designed to deliver 1 wait-state (WS) access time at 48 MHz and with 0-WS access time at 24 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average. Part of the flash module can be used to emulate EEPROM operation if required.

The PSoC 4200 flash supports the following flash protection modes at the Memory subsystem level.

Open: No Protection. Factory default mode that the product is shipped in.

Protected: User may change from Open to Protected. This mode disables Debug interface accesses. The mode can be set back to Open but only after completely erasing the flash.

Kill: User may change from Open to Kill. This mode disables all Debug accesses. The part cannot be erased externally thus obviating the possibility of partial erasure by power interruption and potential malfunction and security leaks. This is an irrecvocable mode.

In addition, Row level Read/Write protection is also supported to prevent inadvertent Writes as well as selectively block Reads. Flash Read/Write/Erase operations are always available for internal code using system calls.

SRAM

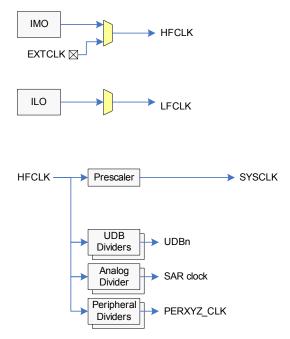
SRAM memory is retained during Hibernate.

SROM

A supervisory ROM that contains boot and configuration routines is provided.

System Resources

Power System


The power system is described in detail in the section Power on page 11. It provides assurance that voltage levels are as required for each respective mode and either delay mode entry (on power-on reset (POR), for example) until voltage levels are as required for proper function or generate resets (Brown-Out Detect (BOD)) or interrupts (Low Voltage Detect (LVD)). PSoC 4200 operates with a single external supply over the range of 1.71 V to 5.5 V and has five different power modes, transitions between which are managed by the power system. The PSoC 4200 provides Sleep, Deep Sleep, Hibernate, and Stop low-power modes.

Clock System

The PSoC 4200 clock system is responsible for providing clocks to all subsystems that require clocks and for switching between different clock sources without glitching. In addition, the clock system ensures that no metastable conditions occur.

The clock system for PSoC 4200 consists of the IMO and the ILO internal oscillators and provision for an external clock.

Figure 1. PSoC 4200 MCU Clocking Architecture

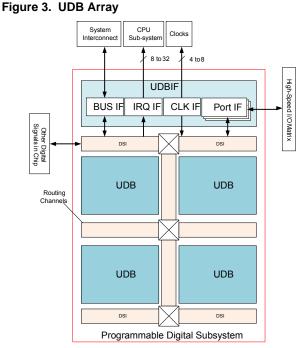
The HFCLK signal can be divided down (see PSoC 4200 MCU Clocking Architecture) to generate synchronous clocks for the UDBs, and the analog and digital peripherals. There are a total of 12 clock dividers for PSoC 4200, each with 16-bit divide capability; this allows eight to be used for the fixed-function blocks and four for the UDBs. The analog clock leads the digital clocks to allow analog events to occur before digital clock-related noise is generated. The 16-bit capability allows a lot of flexibility in generating fine-grained frequency values and is fully supported in PSoC Creator. When UDB-generated Pulse Interrupts are used, SYSCLK must equal HFCLK.

Opamp (CTBm Block)

PSoC 4200 has an opamp with Comparator mode which allow most common analog functions to be performed on-chip eliminating external components; PGAs, Voltage Buffers, Filters, Trans-Impedance Amplifiers, and other functions can be realized with external passives saving power, cost, and space. The on-chip opamp is designed with enough bandwidth to drive the Sample-and-Hold circuit of the ADC without requiring external buffering.

Temperature Sensor

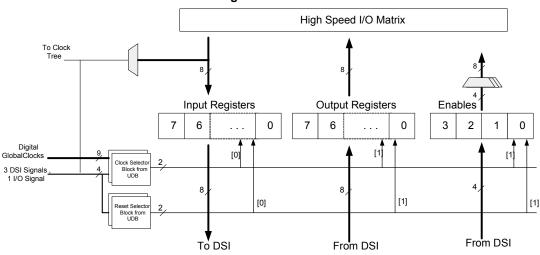
PSoC 4200 has one on-chip temperature sensor This consists of a diode, which is biased by a current source that can be disabled to save power. The temperature sensor is connected to the ADC, which digitizes the reading and produces a temperature value using Cypress supplied software that includes calibration and linearization.


Low-power Comparators

PSoC 4200 has a pair of low-power comparators, which can also operate in the Deep Sleep and Hibernate modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during low-power modes. The comparator outputs are normally synchronized to avoid metastability unless operating in an asynchronous power mode (Hibernate) where the system wake-up circuit is activated by a comparator switch event.

Programmable Digital

Universal Digital Blocks (UDBs) and Port Interfaces


PSoC 4200 has four UDBs; the UDB array also provides a switched Digital System Interconnect (DSI) fabric that allows signals from peripherals and ports to be routed to and through the UDBs for communication and control. The UDB array is shown in the following figure.

UDBs can be clocked from a clock divider block, from a port interface (required for peripherals such as SPI), and from the DSI network directly or after synchronization.

A port interface is defined, which acts as a register that can be clocked with the same source as the PLDs inside the UDB array. This allows faster operation because the inputs and outputs can be registered at the port interface close to the I/O pins and at the edge of the array. The port interface registers can be clocked by one of the I/Os from the same port. This allows interfaces such as SPI to operate at higher clock speeds by eliminating the delay for the port input to be routed over DSI and used to register other inputs (see Figure 4).

The UDBs can generate interrupts (one UDB at a time) to the interrupt controller. The UDBs retain the ability to connect to any pin on the chip through the DSI.

Figure 4. Port Interface

Fixed Function Digital

Timer/Counter/PWM Block

The Timer/Counter/PWM block consists of four 16-bit counters with user-programmable period length. There is a Capture register to record the count value at the time of an event (which may be an I/O event), a period register which is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals which are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow use as deadband programmable complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this is used in motor drive systems when an overcurrent state is indicated and the PWMs driving the FETs need to be shut off immediately with no time for software intervention.

Serial Communication Blocks (SCB)

PSoC 4200 has two SCBs, which can each implement an I^2C , UART, SPI, or LIN Slave interface.

I²C Mode: The hardware I²C block implements a full multi-master and slave interface (it is capable of multimaster arbitration). This block is capable of operating at speeds of up to 1 Mbps (Fast Mode Plus) and has flexible buffering options to reduce interrupt overhead and latency for the CPU. The FIFO mode is available in all channels and is very useful in the absence of DMA.

The I²C peripheral is compatible with the I²C Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/O is implemented with GPIO in open-drain modes. The I²C bus uses open-drain drivers for clock and data with pull-up resistors on the bus for clock and data connected to all nodes. Required Rise and Fall times for different I²C speeds are guaranteed by using appropriate pull-up resistor values depending on V_{DD}, Bus Capacitance, and resistor tolerance. For detailed information on how to calculate the optimum pull-up resistor value for your design, please refer to the UM10204 I²C bus specification and user manual, the newest revision is available at www.nxp.com.

PSoC 4200 is not completely compliant with the I²C spec in the following respects:

- GPIO cells are not overvoltage tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I²C system.
- Fast-mode Plus has an I_{OL} specification of 20 mA at a V_{OL} of 0.4 V. The GPIO cells can sink a maximum of 8 mA I_{OL} with a V_{OL} maximum of 0.6 V.
- Fast-mode and Fast-mode Plus specify minimum Fall times, which are not met with the GPIO cell; Slow strong mode can help meet this spec depending on the Bus Load.
- When the SCB is an I²C Master, it interposes an IDLE state between NACK and Repeated Start; the I²C spec defines Bus free as following a Stop condition so other Active Masters do

not intervene but a Master that has just become activated may start an Arbitration cycle.

When the SCB is in I²C Slave mode, and Address Match on External Clock is enabled (EC_AM = 1) along with operation in the internally clocked mode (EC_OP = 0), then its I²C address must be even.

UART Mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated. Note that hardware handshaking is not supported. This is not commonly used and can be implemented with a UDB-based UART in the system, if required.

SPI Mode: The SPI mode supports full Motorola SPI, TI SSP (essentially adds a start pulse used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO and also supports an EzSPI mode in which data interchange is reduced to reading and writing an array in memory.

LIN Slave Mode: The LIN Slave mode uses the SCB hardware block and implements a full LIN slave interface. This LIN slave is compliant with LIN v1.3 and LIN v2.1/2.2 specification standards. It is certified by C&S GmbH based on the standard protocol and data link layer conformance tests. LIN slave can be operated at baud rates of up to ~20 Kbps with a maximum of 40-meter cable length. PSoC Creator software supports up to two LIN slave interfaces in the PSoC 4 device, providing built-in application programming interfaces (APIs) based on the LIN specification standard.

GPIO

PSoC 4200 has 24 GPIOs. The GPIO block implements the following:

- Eight drive strength modes:
 - Analog input mode (input and output buffers disabled)
 Input only

 - □ Weak pull-up with strong pull-down
 - □ Strong pull-up with weak pull-down
 - □ Open drain with strong pull-down
 - Open drain with strong pull-up
 - Strong pull-up with strong pull-down
 - Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL).
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes.
- Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode and Hibernate modes).
- Selectable slew rates for dV/dt related noise control to improve EMI.

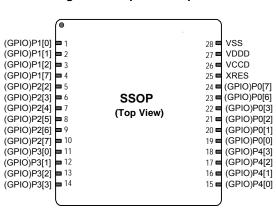
VSSA: Analog ground pin where package pins allow; shorted to VSS otherwise

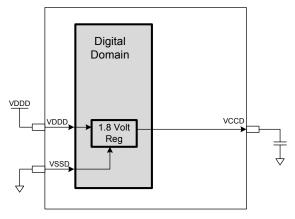
VSS: Ground pin.

VCCD: Regulated Digital supply (1.8 V ±5%).

Port Pins can all be used as LCD Commons, LCD Segment drivers, or CSD sense and shield pins can be connected to AMUXBUS A or B or can all be used as GPIO pins that can be driven by firmware or DSI signals.

The following package is supported: 28-pin SSOP.




Figure 5. 28-pin SSOP pinout

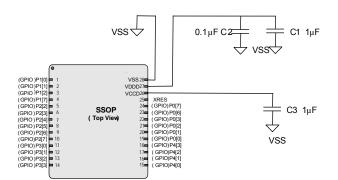
Power

The following power system diagram shows the minimum set of power supply pins as implemented for PSoC 4200. The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from the V_{DDA} input. There are separate regulators for the Deep Sleep and Hibernate (lowered power supply and retention) modes. There is a separate low-noise regulator for the bandgap. The supply voltage range is 1.71 to 5.5 V with all functions and circuits operating over that range.

Figure 6. PSoC 4 Power Supply

The PSoC 4200 family allows two distinct modes of power supply operation: Unregulated External Supply, and Regulated External Supply modes.

Unregulated External Supply


In this mode, the PSoC 4200 is powered by an External Power Supply that can be anywhere in the range of 1.8 to 5.5V. This range is also designed for battery-powered operation, for instance, the chip can be powered from a battery system that starts at 3.5V and works down to 1.8V. In this mode, the internal regulator of the PSoC 4200 supplies the internal logic and the VCCD output of the PSoC 4200 must be bypassed to ground via an external Capacitor (in the range of 1 to 1.6 μ F; X5R ceramic or better).

Bypass capacitors must be used from VDDD to ground, typical practice for systems in this frequency range is to use a capacitor in the 1 μ F range in parallel with a smaller capacitor (0.1 μ F for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the Bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

Table 1.	Example	of a	bypass	scheme
----------	---------	------	--------	--------

Power Supply	Bypass Capacitors
VDDD-VSS	0.1 μ F ceramic capacitor (C2) plus bulk capacitor 1 to 10 μ F (C1). Total Capacitance may be greater than 10 μ F.
VCCD-VSS	1 μ F ceramic capacitor at the VCCD pin (C3)
VREF–VSS (optional)	The internal bandgap may be bypassed with a 1 μ F to 10 μ F capacitor. Total capacitance may be greater than 10 μ F.

Regulated External Supply

In this mode, PSoC 4200 is powered by an external power supply that must be within the range of 1.71 to 1.89 V ($1.8 \pm 5\%$); note that this range needs to include power supply ripple too. In this mode, VCCD, and VDDD pins are all shorted together and bypassed. The internal regulator is disabled in firmware.

Table 3. DC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID25A	I _{DD20A}	I ² C wakeup, WDT, and Comparators on. 12 MHz	-	1.7	2.2	mA	V _{DD} = 1.71 V to 5.5 V
Deep Sleep N	Mode, V _{DD} = 1.8	V to 3.6V (Regulator on)			•		
SID31	I _{DD26}	I ² C wakeup and WDT on	_	1.3	-	μA	T = 25 °C
SID32	I _{DD27}	I ² C wakeup and WDT on	-	-	45	μA	T = 85 °C
Deep Sleep N	Mode, V _{DD} = 3.6	V to 5.5 V					
SID34	I _{DD29}	I ² C wakeup and WDT on	-	1.5	15	μA	Typ at 25 °C Max at 85 °C
Deep Sleep N	Node, V _{DD} = 1.71	V to 1.89 V (Regulator bypassed)					
SID37	I _{DD32}	I ² C wakeup and WDT on	-	1.7	-	μA	T = 25 °C
SID38	I _{DD33}	I ² C wakeup and WDT on	-	-	60	μA	T = 85 °C
Deep Sleep N	/lode, +105 °C				•		
SID33Q	I _{DD28Q}	I ² C wakeup and WDT on. Regulator Off.	-	-	135	μA	V _{DD} = 1.71 V to 1.89 V
SID34Q	I _{DD29Q}	I ² C wakeup and WDT on	-	-	180	μA	V _{DD} = 1.8 V to 3.6 V
SID35Q	I _{DD30Q}	I ² C wakeup and WDT on	-	-	140	μA	V _{DD} = 3.6 V to 5.5 V
Hibernate Mo	ode, V _{DD} = 1.8 V	to 3.6 V (Regulator on)			•		
SID40	I _{DD35}	GPIO & Reset active	_	150	-	nA	T = 25 °C
SID41	I _{DD36}	GPIO & Reset active	-	-	1000	nA	T = 85 °C
Hibernate Mo	ode, V _{DD} = 3.6 V	to 5.5 V			•	•	
SID43	I _{DD38}	GPIO & Reset active	_	150	-	nA	T = 25 °C
Hibernate Mo	ode, V _{DD} = 1.71 V	V to 1.89 V (Regulator bypassed)			•		•
SID46	I _{DD41}	GPIO & Reset active	-	150	-	nA	T = 25 °C
SID47	I _{DD42}	GPIO & Reset active	-	-	1000	nA	T = 85 °C
Hibernate Mo	ode, +105 °C	•			•		
SID42Q	I _{DD37Q}	Regulator Off	-	-	19.4	μA	V _{DD} = 1.71 V to 1.89 V
SID43Q	I _{DD38Q}		-	-	17	μA	V _{DD} = 1.8 V to 3.6 V
SID44Q	I _{DD39Q}		-	-	16	μA	V _{DD} = 3.6 V to 5.5 V
Stop Mode	•					•	
SID304	I _{DD43A}	Stop Mode current; V _{DD} = 3.3 V	-	20	80	nA	Typ at 25 °C Max at 85 °C
		Stop Mode current; V _{DD} = 5.5 V	_	20	750	nA	Typ at 25 °C Max at 85 °C
Stop Mode, +	-105 °C				•		
SID304Q	I _{DD43AQ}	Stop Mode current; V _{DD} = 3.6 V	_	_	5645	nA	
XRES curren					•		
SID307	I _{DD_XR}	Supply current while XRES asserted	_	2	5	mA	

Table 6. GPIO AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID70	T _{RISEF}	Rise time in fast strong mode	2	-	12	ns	3.3 V V _{DDD} , Cload = 25 pF
SID71	T _{FALLF}	Fall time in fast strong mode	2	-	12	ns	3.3 V V _{DDD} , Cload = 25 pF
SID72	T _{RISES}	Rise time in slow strong mode	10	-	60		3.3 V V _{DDD} , Cload = 25 pF
SID73	T _{FALLS}	Fall time in slow strong mode	10	-	60		3.3 V V _{DDD} , Cload = 25 pF
SID74	F _{GPIOUT1}	GPIO Fout;3.3 V \leq V _{DDD} \leq 5.5 V. Fast strong mode.	_	-	33	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID75	F _{GPIOUT2}	GPIO Fout;1.7 V \leq V _{DDD} \leq 3.3 V. Fast strong mode.	-	-	16.7	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID76	F _{GPIOUT3}	GPIO Fout;3.3 V \leq V _{DDD} \leq 5.5 V. Slow strong mode.	_	-	7	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID245	F _{GPIOUT4}	GPIO Fout;1.7 V \leq V _{DDD} \leq 3.3 V. Slow strong mode.	_	-	3.5	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID246	F _{GPIOIN}	GPIO input operating frequency; 1.71 V \leq V _{DDD} \leq 5.5 V	_	-	48	MHz	90/10% V _{IO}

XRES

Table 7. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID77	V _{IH}	Input voltage high threshold	0.7 × V _{DDD}	-	-	V	CMOS Input
SID78	V _{IL}	Input voltage low threshold	-	-	0.3 × V _{DDD}	V	CMOS Input
SID79	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID80	C _{IN}	Input capacitance	-	3	-	pF	
SID81	V _{HYSXRES}	Input voltage hysteresis	-	100	-	mV	Guaranteed by characterization
SID82	I _{DIODE}	Current through protection diode to V_{DDD}/V_{SS}	-	-	100	μA	Guaranteed by characterization

Table 8. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID83	T _{RESETWIDTH}	Reset pulse width	1	-	-	μs	Guaranteed by characterization

Analog Peripherals

Opamp

Table 9. Opamp Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
	I _{DD}	Opamp block current. No load.	-	-	-	_	
SID269	I _{DD_HI}	Power = high	-	1100	1850	μA	
SID270	I _{DD MED}	Power = medium	_	550	950	μA	
SID271	I _{DD_LOW}	Power = low	-	150	350	μA	
	GBW	Load = 20 pF, 0.1 mA. V _{DDA} = 2.7 V	_	-	_	_	
SID272	GBW_HI	Power = high	6	-	_	MHz	
SID273	GBW_MED	Power = medium	4	-	_	MHz	
SID274	GBW_LO	Power = low	-	1	-	MHz	
	I _{OUT_MAX}	$V_{DDA} \ge 2.7 \text{ V}, 500 \text{ mV}$ from rail	-	-	-	-	
SID275	I _{OUT_MAX_HI}	Power = high	10	-	_	mA	
SID276	I _{OUT_MAX_MID}	Power = medium	10	_	-	mA	
SID277	IOUT_MAX_LO	Power = low	-	5	-	mA	
	I _{OUT}	V _{DDA} = 1.71 V, 500 mV from rail	-	-	-	-	
SID278	IOUT_MAX_HI	Power = high	4	-	-	mA	
SID279	IOUT_MAX_MID	Power = medium	4	-	-	mA	
SID280	IOUT_MAX_LO	Power = low	_	2	-	mA	
SID281	V _{IN}	Charge pump on, $V_{DDA} \ge 2.7 V$	-0.05	-	VDDA – 0.2	V	
SID282	V _{CM}	Charge pump on, $V_{DDA} \ge 2.7 \text{ V}$	-0.05	_	VDDA-0.2	V	
	V _{OUT}	$V_{DDA} \ge 2.7 \text{ V}$	_	_	_		
SID283	V _{OUT_1}	Power = high, lload=10 mA	0.5	-	VDDA – 0.5	V	
SID284	V _{OUT_2}	Power = high, lload=1 mA	0.2	_	VDDA-0.2	V	
SID285	V _{OUT_3}	Power = medium, lload=1 mA	0.2	-	VDDA-0.2	V	
SID286	V _{OUT_4}	Power = low, lload=0.1mA	0.2	-	VDDA-0.2	V	
SID288	V _{OS_TR}	Offset voltage, trimmed	1	±0.5	1	mV	High mode
SID288A	V _{OS_TR}	Offset voltage, trimmed	-	±1	-	mV	Medium mode
SID288B	V _{OS_TR}	Offset voltage, trimmed	-	±2	-	mV	Low mode
SID290	V _{OS_DR_TR}	Offset voltage drift, trimmed	-10	±3	10	µV/C	High mode. T _A <u><</u> 85 °C.
SID290Q	V _{OS_DR_TR}	Offset voltage drift, trimmed	-15	±3	15	µV/C	High mode. T _A ≤ 105 °C
SID290A	V _{OS_DR_TR}	Offset voltage drift, trimmed	_	±10	-	μV/C	Medium mode
SID290B	V _{OS_DR_TR}	Offset voltage drift, trimmed	-	±10	-	μV/C	Low mode
SID291	CMRR	DC	70	80	-	dB	VDDD = 3.6 V
SID292	PSRR	At 1 kHz, 100 mV ripple	70	85	-	dB	VDDD = 3.6 V
	Noise		_	_	_	_	
SID293	V _{N1}	Input referred, 1 Hz - 1GHz, power = high	-	94	-	µVrms	
SID294	V _{N2}	Input referred, 1 kHz, power = high	-	72	-	nV/rtHz	
SID295	V _{N3}	Input referred, 10kHz, power = high	-	28	_	nV/rtHz	
SID296	V _{N4}	Input referred, 100kHz, power = high	_	15	_	nV/rtHz	

Table 11. Comparator AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID91	T _{RESP1}	Response time, normal mode	-	_	110	ns	50 mV overdrive
SID258	T _{RESP2}	Response time, low power mode	-	-	200	ns	50 mV overdrive
SID92	T _{RESP3}	Response time, ultra low power mode ($V_{DDD} \ge 2.2 \text{ V}$ for Temp < 0 °C, $V_{DDD} \ge 1.8 \text{ V}$ for Temp > 0 °C)	-	-	15	μs	200 mV overdrive

Temperature Sensor

Table 12. Temperature Sensor Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID93	T _{SENSACC}	Temperature sensor accuracy	-5	±1	+5	°C	–40 to +85 °C

SAR ADC

Table 13. SAR ADC DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID94	A_RES	Resolution	-	-	12	bits	
SID95	A_CHNIS_S	Number of channels - single ended	-	-	8		8 full speed
SID96	A-CHNKS_D	Number of channels - differential	-	-	4		Diff inputs use neighboring I/O
SID97	A-MONO	Monotonicity	-	-	_		Yes. Based on characterization
SID98	A_GAINERR	Gain error	-	_	±0.1	%	With external reference. Guaranteed by characterization
SID99	A_OFFSET	Input offset voltage	-	-	2	mV	Measured with 1-V V _{REF.} Guaranteed by characterization
SID100	A_ISAR	Current consumption	-	-	1	mA	
SID101	A_VINS	Input voltage range - single ended	V _{SS}	-	V _{DDA}	V	Based on device characterization
SID102	A_VIND	Input voltage range - differential	V _{SS}	-	V _{DDA}	V	Based on device characterization
SID103	A_INRES	Input resistance	-	-	2.2	KΩ	Based on device characterization
SID104	A_INCAP	Input capacitance	-	-	10	pF	Based on device characterization

CSD

Table 15. CSD Block Specification

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
CSD Spec	ification					-	
SID308	VCSD	Voltage range of operation	1.71	-	5.5	V	
SID309	IDAC1	DNL for 8-bit resolution	-1	-	1	LSB	
SID310	IDAC1	INL for 8-bit resolution	-3	-	3	LSB	
SID311	IDAC2	DNL for 7-bit resolution	-1	-	1	LSB	
SID312	IDAC2	INL for 7-bit resolution	-3	_	3	LSB	
SID313	SNR	Ratio of counts of finger to noise. Guaranteed by characterization	5	-	-	Ratio	Capacitance range of 9 to 35 pF, 0.1 pF sensitivity
SID314	IDAC1_CRT1	Output current of Idac1 (8-bits) in High range	-	612	-	μA	
SID314A	IDAC1_CRT2	Output current of Idac1(8-bits) in Low range	_	306	-	μA	
SID315	IDAC2_CRT1	Output current of Idac2 (7-bits) in High range	-	304.8	-	μA	
SID315A	IDAC2_CRT2	Output current of Idac2 (7-bits) in Low range	-	152.4	-	μA	

Digital Peripherals

The following specifications apply to the Timer/Counter/PWM peripherals in the Timer mode.

Timer/Counter/PWM

Table 16. TCPWM Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.TCPWM.1	ITCPWM1	Block current consumption at 3 MHz	_	_	45	μA	All modes (Timer/Counter/PWM)
SID.TCPWM.2	ITCPWM2	Block current consumption at 12 MHz	-	-	155	μA	All modes (Timer/Counter/PWM)
SID.TCPWM.2A	ITCPWM3	Block current consumption at 48 MHz	_	-	650	μA	All modes (Timer/Counter/PWM)
SID.TCPWM.3	TCPWMFREQ	Operating frequency	_	-	Fc	MHz	Fc max = Fcpu. Maximum = 24 MHz
SID.TCPWM.4	TPWMENEXT	Input Trigger Pulse Width for all Trigger Events	2/Fc	_	_	ns	Trigger Events can be Stop, Start, Reload, Count, Capture, or Kill depending on which mode of operation is selected.
SID.TCPWM.5	TPWMEXT	Output Trigger Pulse widths	2/Fc	_	_	ns	Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) trigger outputs
SID.TCPWM.5A	TCRES	Resolution of Counter	1/Fc	-	-	ns	Minimum time between successive counts
SID.TCPWM.5B	PWMRES	PWM Resolution	1/Fc	-	-	ns	Minimum pulse width of PWM Output
SID.TCPWM.5C	QRES	Quadrature inputs resolution	1/Fc	_	_	ns	Minimum pulse width between Quadrature phase inputs.

βĈ

Table 17. Fixed I²C DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID149	I _{I2C1}	Block current consumption at 100 kHz	-	-	50	μΑ	
SID150	I _{I2C2}	Block current consumption at 400 kHz	-	-	135	μA	
SID151	I _{I2C3}	Block current consumption at 1 Mbps	-	-	310	μΑ	
SID152	I _{I2C4}	I ² C enabled in Deep Sleep mode	_	_	1.4	μA	

Table 18. Fixed I²C AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	_	-	1	Mbps	

LCD Direct Drive

Table 19. LCD Direct Drive DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID154	ILCDLOW	Operating current in low power mode	_	5	-	μA	16 × 4 small segment disp. at 50 Hz
SID155	C _{LCDCAP}	LCD capacitance per segment/common driver	-	500	5000	pF	Guaranteed by Design
SID156	LCD _{OFFSET}	Long-term segment offset	-	20	-	mV	
SID157	I _{LCDOP1}	PWM Mode current. 5-V bias. 24-MHz IMO. 25 °C	-	0.6	-	mA	32 × 4 segments. 50 Hz
SID158	I _{LCDOP2}	PWM Mode current. 3.3-V bias. 24-MHz IMO. 25 °C	-	0.5	_	mA	32 × 4 segments. 50 Hz

Table 20. LCD Direct Drive AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID159	F _{LCD}	LCD frame rate	10	50	150	Hz	

Table 21. Fixed UART DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID160	I _{UART1}	Block current consumption at 100 Kbits/sec	-	-	55	μA	
SID161	I _{UART2}	Block current consumption at 1000 Kbits/sec	-	-	312	μA	

Table 22. Fixed UART AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units
SID162	F _{UART}	Bit rate	-	-	1	Mbps

Table 32. Voltage Monitors AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID212	T _{MONTRIP}	Voltage monitor trip time	1	Ι	1	μs	Guaranteed by characterization

SWD Interface

Table 33. SWD Interface Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID213	F_SWDCLK1	$3.3 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	_	_	14	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID214	F_SWDCLK2	$1.71 \text{ V} \leq \text{V}_{DD} \leq 3.3 \text{ V}$	_	_	7	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID215	T_SWDI_SETUP	T = 1/f SWDCLK	0.25*T	_	_	ns	Guaranteed by characterization
SID216	T_SWDI_HOLD	T = 1/f SWDCLK	0.25*T	_	_	ns	Guaranteed by characterization
SID217	T_SWDO_VALID	T = 1/f SWDCLK	_	_	0.5*T	ns	Guaranteed by characterization
SID217A	T_SWDO_HOLD	T = 1/f SWDCLK	1	-	_	ns	Guaranteed by characterization

Internal Main Oscillator

Table 34. IMO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID218	I _{IMO1}	IMO operating current at 48 MHz	_	_	1000	μA	
SID219	I _{IMO2}	IMO operating current at 24 MHz	_	-	325	μA	
SID220	I _{IMO3}	IMO operating current at 12 MHz	-	-	225	μA	
SID221	I _{IMO4}	IMO operating current at 6 MHz	_	-	180	μA	
SID222	I _{IMO5}	IMO operating current at 3 MHz	_	Ι	150	μA	

Table 35. IMO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID223	F _{IMOTOL1}	Frequency variation from 3 to 48 MHz	-	-	±2		<u>+</u> 3% if T _A > 85 °C and IMO frequency < 24 MHz
SID226	T _{STARTIMO}	IMO startup time	_	-	12	μs	
SID227	T _{JITRMSIMO1}	RMS Jitter at 3 MHz	_	156	-	ps	
SID228	T _{JITRMSIMO2}	RMS Jitter at 24 MHz	_	145	-	ps	
SID229	T _{JITRMSIMO3}	RMS Jitter at 48 MHz	-	139	-	ps	

Internal Low-Speed Oscillator

Table 36. ILO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID231	I _{ILO1}	ILO operating current at 32 kHz	-	0.3	1.05		Guaranteed by characterization
SID233	IILOLEAK	ILO leakage current	-	2	15	nA	Guaranteed by design

Table 37. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID234	T _{STARTILO1}	ILO startup time	-	-	2	ms	Guaranteed by characterization
SID236	T _{ILODUTY}	ILO duty cycle	40	50	60	%	Guaranteed by characterization
SID237	F _{ILOTRIM1}	32 kHz trimmed frequency	15	32	50	kHz	Max. ILO frequency is 70 kHz if T _A > 85 °C

Table 38. External Clock Specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID305	ExtClkFreq	External Clock input Frequency	0	-	48		Guaranteed by characterization
SID306	ExtClkDuty	Duty cycle; Measured at V _{DD/2}	45	-	55		Guaranteed by characterization

Table 39. UDB AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
Datapath p	erformance	· · ·					
SID249	F _{MAX-TIMER}	Max frequency of 16-bit timer in a UDB pair	_	-	48	MHz	
SID250	F _{MAX-ADDER}	Max frequency of 16-bit adder in a UDB pair	-	-	48	MHz	
SID251	F _{MAX_CRC}	Max frequency of 16-bit CRC/PRS in a UDB pair	-	-	48	MHz	
PLD Perfo	rmance in UDB	· · ·					
SID252	F _{MAX_PLD}	Max frequency of 2-pass PLD function in a UDB pair	-	-	48	MHz	
Clock to O	Clock to Output Performance						
SID253	T _{CLK_OUT_UDB1}	Prop. delay for clock in to data out at 25 °C, Typ.	-	15	-	ns	
SID254	T _{CLK_OUT_UDB2}	Prop. delay for clock in to data out, Worst case.	_	25	_	ns	

Table 40. Block Specs

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID256*	T _{WS48} *	Number of wait states at 48 MHz	1	-	_		CPU execution from Flash. Guaranteed by characterization
SID257	T _{WS24} *	Number of wait states at 24 MHz	0	-	-		CPU execution from Flash. Guaranteed by characterization
SID260	V _{REFSAR}	Trimmed internal reference to SAR	-1	-	+1	%	Percentage of Vbg (1.024 V). Guaranteed by characterization
SID262	T _{CLKSWITCH}	Clock switching from clk1 to clk2 in clk1 periods	3	-	4	Periods	Guaranteed by design

Table 41. UDB Port Adaptor Specifications

(Based on LPC Component Specs, Guaranteed by Characterization -10-pF load, 3-V V_{DDIO} and $V_{\text{DDD}})$

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID263	T _{LCLKDO}	LCLK to output delay	-	-	18	ns	
SID264	T _{DINLCLK}	Input setup time to LCLCK rising edge	-	-	7	ns	
SID265	T _{DINLCLKHLD}	Input hold time from LCLK rising edge	5	-	-	ns	
SID266	T _{LCLKHIZ}	LCLK to output tristated	-	-	28	ns	
SID267	T _{FLCLK}	LCLK frequency	-	-	33	MHz	
SID268	T _{LCLKDUTY}	LCLK duty cycle (percentage high)	40	-	60	%	

The field values are listed in the following table.

Table 43. Field Values

Field	Description	Values	Meaning
CY8C	Cypress prefix		
4	Architecture	4	PSoC 4
A	Family within architecture	1	4100 Family
		2	4200 Family
В	CPU speed	2	24 MHz
		4	48 MHz
С	Flash capacity	4	16 KB
		5	32 KB
DE	Package code	PV	SSOP
F	Temperature range	A/S	Automotive
GHI	Attributes code	000-999	Code of feature set in specific family
Z	Fab location change		

Packaging

Table 44. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature	For A grade devices	-40	25.00	85	°C
T _A	Operating ambient temperature	For S grade devices	-40	25.00	105	°C
TJ	Operating junction temperature	For A grade devices	-40	_	100	°C
TJ	Operating junction temperature	For S grade devices	-40	-	120	°C
T _{JA}	Package θ_{JA} (28-pin SSOP)		-	66.58	-	°C/W
T _{JC}	Package θ_{JC} (28-pin SSOP)		-	46.28	-	°C/W

Table 45. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
28-pin SSOP	260 °C	30 seconds

Table 46. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
28-pin SSOP	MSL 3

PSoC4 CAB Libraries with Schematics Symbols and PCB Footprints are on the Cypress web site at http://www.cypress.com/cad-resources/psoc-4-cad-libraries?source=search&cat=technical_documents

PGA programmable gain amplifier PHUB peripheral hub PHY physical layer PICU port interrupt control unit PLA programmable logic array PLD programmable logic device, see also PAL PLL phase-locked loop PMDD package material declaration data sheet POR power-on reset PRES precise power-on reset PRS pseudo random sequence PS port read data register PSoC [®] Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SIO special input/output, GPIO with advanced features. See GPIO. SOC start of frame SPI Serial	Acronym	Description
PHY physical layer PICU port interrupt control unit PLA programmable logic array PLD programmable logic device, see also PAL PLL phase-locked loop PMDD package material declaration data sheet POR power-on reset PRES precise power-on reset PRS pseudo random sequence PS port read data register PSoC [®] Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I ² C serial clock SDA I ² C serial data S/H sample and hold SINAD signal to noise and distortion ratio	PGA	programmable gain amplifier
PICU port interrupt control unit PLA programmable logic array PLD programmable logic device, see also PAL PLL phase-locked loop PMDD package material declaration data sheet POR power-on reset PRES precise power-on reset PRS pseudo random sequence PS port read data register PSoC [®] Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I ² C serial clock SDA I ² C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with a	PHUB	peripheral hub
PLA programmable logic array PLD programmable logic device, see also PAL PLL phase-locked loop PMDD package material declaration data sheet POR power-on reset PRES precise power-on reset PRS pseudo random sequence PS port read data register PSoC [®] Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I ² C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced features. See GPIO. SOC start of conversion SOF	PHY	physical layer
PLD programmable logic device, see also PAL PLL phase-locked loop PMDD package material declaration data sheet POR power-on reset PRES precise power-on reset PRS pseudo random sequence PS port read data register PSoC [®] Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I ² C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced features. See GPIO. SOC start of conversion SOF start of frame SPI Serial Per	PICU	port interrupt control unit
PLL phase-locked loop PMDD package material declaration data sheet POR power-on reset PRES precise power-on reset PRS pseudo random sequence PS port read data register PSoC [®] Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I ² C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced features. See GPIO. SOC start of conversion SOF start of frame SPI Serial Peripheral Interface, a communications protocol SR	PLA	programmable logic array
PMDDpackage material declaration data sheetPORpower-on resetPRESprecise power-on resetPRSpseudo random sequencePSport read data registerPSoC®Programmable System-on-Chip™PSRRpower supply rejection ratioPWMpulse-width modulatorRAMrandom-access memoryRISCreduced-instruction-set computingRMSroot-mean-squareRTCreal-time clockRTLregister transfer languageRTRremote transmission requestRXreceiveSARsuccessive approximation registerSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSINADsignal to noise and distortion ratioSIOspecial input/output, GPIO with advanced features. See GPIO.SOCstart of conversionSOFstart of frameSPISerial Peripheral Interface, a communications protocolSRslew rate	PLD	programmable logic device, see also PAL
POR power-on reset PRES precise power-on reset PRS pseudo random sequence PS port read data register PSoC® Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I ² C serial clock SDA I ² C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced features. See GPIO. SOC start of conversion SOF start of frame SPI Serial Peripheral Interface, a communications protocol SR slew rate	PLL	phase-locked loop
PRES precise power-on reset PRS pseudo random sequence PS port read data register PSoC [®] Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I ² C serial clock SDA I ² C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced features. See GPIO. SOC start of conversion SOF start of frame SPI Serial Peripheral Interface, a communications protocol SR slew rate	PMDD	package material declaration data sheet
PRS pseudo random sequence PS port read data register PSoC® Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTL register transfer language RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I ² C serial clock SDA I ² C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced features. See GPIO. SOC start of conversion SOF start of frame SPI Serial Peripheral Interface, a communications protocol SR slew rate	POR	power-on reset
PS port read data register PSoC® Programmable System-on-Chip™ PSRR power supply rejection ratio PWM pulse-width modulator RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock RTR remote transmission request RX receive SAR successive approximation register SC/CT switched capacitor/continuous time SCL I ² C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced features. See GPIO. SOC start of conversion SOF start of frame SPI Serial Peripheral Interface, a communications protocol SR slew rate	PRES	precise power-on reset
PSoC®Programmable System-on-Chip™PSRRpower supply rejection ratioPWMpulse-width modulatorRAMrandom-access memoryRISCreduced-instruction-set computingRMSroot-mean-squareRTCreal-time clockRTLregister transfer languageRTRremote transmission requestRXreceiveSARsuccessive approximation registerSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSINADsignal to noise and distortion ratioSIOspecial input/output, GPIO with advanced features. See GPIO.SOFstart of conversionSOFstart of frameSPISerial Peripheral Interface, a communications protocolSRslew rate	PRS	pseudo random sequence
PSRRpower supply rejection ratioPWMpulse-width modulatorRAMrandom-access memoryRISCreduced-instruction-set computingRMSroot-mean-squareRTCreal-time clockRTLregister transfer languageRTRremote transmission requestRXreceiveSARsuccessive approximation registerSC/CTswitched capacitor/continuous timeSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSINADsignal to noise and distortion ratioSIOspecial input/output, GPIO with advanced features. See GPIO.SOFstart of conversionSOFstart of frameSPISerial Peripheral Interface, a communications protocolSRslew rate	PS	port read data register
PWMpulse-width modulatorRAMrandom-access memoryRISCreduced-instruction-set computingRMSroot-mean-squareRTCreal-time clockRTLregister transfer languageRTRremote transmission requestRXreceiveSARsuccessive approximation registerSC/CTswitched capacitor/continuous timeSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSINADsignal to noise and distortion ratioSIOspecial input/output, GPIO with advanced features. See GPIO.SOFstart of frameSPISerial Peripheral Interface, a communications protocolSRslew rate	PSoC [®]	Programmable System-on-Chip™
RAMrandom-access memoryRISCreduced-instruction-set computingRMSroot-mean-squareRTCreal-time clockRTLregister transfer languageRTRremote transmission requestRXreceiveSARsuccessive approximation registerSC/CTswitched capacitor/continuous timeSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSINADsignal to noise and distortion ratioSIOspecial input/output, GPIO with advanced features. See GPIO.SOFstart of conversionSOFstart of frameSPISerial Peripheral Interface, a communications protocolSRslew rate	PSRR	power supply rejection ratio
RISCreduced-instruction-set computingRISCreduced-instruction-set computingRMSroot-mean-squareRTCreal-time clockRTLregister transfer languageRTRremote transmission requestRXreceiveSARsuccessive approximation registerSC/CTswitched capacitor/continuous timeSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSINADsignal to noise and distortion ratioSIOspecial input/output, GPIO with advanced features. See GPIO.SOFstart of conversionSOFstart of frameSPISerial Peripheral Interface, a communications protocolSRslew rate	PWM	pulse-width modulator
RMSroot-mean-squareRTCreal-time clockRTLregister transfer languageRTRremote transmission requestRXreceiveSARsuccessive approximation registerSC/CTswitched capacitor/continuous timeSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSINADsignal to noise and distortion ratioSIOspecial input/output, GPIO with advanced features. See GPIO.SOFstart of conversionSOFstart of frameSPISerial Peripheral Interface, a communications protocolSRslew rate	RAM	random-access memory
RTCreal-time clockRTLregister transfer languageRTRremote transmission requestRXreceiveSARsuccessive approximation registerSC/CTswitched capacitor/continuous timeSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSINADsignal to noise and distortion ratioSIOspecial input/output, GPIO with advanced features. See GPIO.SOCstart of conversionSOFstart of frameSPISerial Peripheral Interface, a communications protocolSRslew rate	RISC	reduced-instruction-set computing
RTLregister transfer languageRTRremote transmission requestRXreceiveSARsuccessive approximation registerSC/CTswitched capacitor/continuous timeSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSINADsignal to noise and distortion ratioSIOspecial input/output, GPIO with advanced features. See GPIO.SOCstart of conversionSOFstart of frameSPISerial Peripheral Interface, a communications protocolSRslew rate	RMS	root-mean-square
RTRremote transmission requestRXreceiveSARsuccessive approximation registerSC/CTswitched capacitor/continuous timeSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSINADsignal to noise and distortion ratioSIOspecial input/output, GPIO with advanced features. See GPIO.SOCstart of conversionSOFstart of frameSPISerial Peripheral Interface, a communications protocolSRslew rate	RTC	real-time clock
RXreceiveSARsuccessive approximation registerSC/CTswitched capacitor/continuous timeSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSINADsignal to noise and distortion ratioSIOspecial input/output, GPIO with advanced features. See GPIO.SOCstart of conversionSOFstart of frameSPISerial Peripheral Interface, a communications protocolSRslew rate	RTL	register transfer language
SARsuccessive approximation registerSC/CTswitched capacitor/continuous timeSCLI²C serial clockSDAI²C serial dataS/Hsample and holdSINADsignal to noise and distortion ratioSIOspecial input/output, GPIO with advanced features. See GPIO.SOCstart of conversionSOFstart of frameSPISerial Peripheral Interface, a communications protocolSRslew rate	RTR	remote transmission request
SC/CT switched capacitor/continuous time SCL I ² C serial clock SDA I ² C serial data S/H sample and hold SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced features. See GPIO. SOC start of conversion SOF start of frame SPI Serial Peripheral Interface, a communications protocol SR slew rate	RX	receive
SCLI²C serial clockSDAI²C serial dataS/Hsample and holdSINADsignal to noise and distortion ratioSIOspecial input/output, GPIO with advanced features. See GPIO.SOCstart of conversionSOFstart of frameSPISerial Peripheral Interface, a communications protocolSRslew rate	SAR	successive approximation register
SDAI²C serial dataS/Hsample and holdSINADsignal to noise and distortion ratioSIOspecial input/output, GPIO with advanced features. See GPIO.SOCstart of conversionSOFstart of frameSPISerial Peripheral Interface, a communications protocolSRslew rate	SC/CT	switched capacitor/continuous time
S/Hsample and holdSINADsignal to noise and distortion ratioSIOspecial input/output, GPIO with advanced features. See GPIO.SOCstart of conversionSOFstart of frameSPISerial Peripheral Interface, a communications protocolSRslew rate	SCL	I ² C serial clock
SINAD signal to noise and distortion ratio SIO special input/output, GPIO with advanced features. See GPIO. SOC start of conversion SOF start of frame SPI Serial Peripheral Interface, a communications protocol SR slew rate	SDA	I ² C serial data
SIO special input/output, GPIO with advanced features. See GPIO. SOC start of conversion SOF start of frame SPI Serial Peripheral Interface, a communications protocol SR slew rate	S/H	sample and hold
features. See GPIO. SOC start of conversion SOF start of frame SPI Serial Peripheral Interface, a communications protocol SR slew rate	SINAD	signal to noise and distortion ratio
SOF start of frame SPI Serial Peripheral Interface, a communications protocol SR slew rate	SIO	special input/output, GPIO with advanced features. See GPIO.
SPI Serial Peripheral Interface, a communications protocol SR slew rate	SOC	start of conversion
protocol SR slew rate	SOF	start of frame
	SPI	
SRAM static random access memory	SR	slew rate
	SRAM	static random access memory
SRES software reset	SRES	software reset
SWD serial wire debug, a test protocol	SWD	serial wire debug, a test protocol
SWV single-wire viewer	SWV	single-wire viewer
TD transaction descriptor, see also DMA	TD	transaction descriptor, see also DMA

Table 47. Acronyms Used in this Document (continued)

Acronym	Description	
THD	total harmonic distortion	
TIA	transimpedance amplifier	
TRM	technical reference manual	
TTL	transistor-transistor logic	
ТΧ	transmit	
UART	Universal Asynchronous Transmitter Receiver, a communications protocol	
UDB	universal digital block	
USB	Universal Serial Bus	
USBIO	USB input/output, PSoC pins used to connect to a USB port	
VDAC	voltage DAC, see also DAC, IDAC	
WDT	watchdog timer	
WOL	write once latch, see also NVL	
WRES	watchdog timer reset	
XRES	external reset I/O pin	
XTAL	crystal	

Table 47. Acronyms Used in this Document (continued)

Document Conventions

Units of Measure

Table 48. Units of Measure

Symbol	Unit of Measure	
°C	degrees Celsius	
dB	decibel	
fF	femtofarad	
Hz	hertz	
KB	1024 bytes	
kbps	kilobits per second	
Khr	kilohour	
kHz	kilohertz	
kΩ	kilo ohm	
ksps	kilosamples per second	
LSB	least significant bit	
Mbps	megabits per second	
MHz	megahertz	
MΩ	mega-ohm	
Msps	megasamples per second	
μA	microampere	
μF	microfarad	
μH	microhenry	
μs	microsecond	
μV	microvolt	
μW	microwatt	
mA	milliampere	
ms	millisecond	
mV	millivolt	
nA	nanoampere	
ns	nanosecond	
nV	nanovolt	
Ω	ohm	
pF	picofarad	
ppm	parts per million	
ps	picosecond	
S	second	
sps	samples per second	
sqrtHz	square root of hertz	
V	volt	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

[©] Cypress Semiconductor Corporation 2014-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify and reproduce the Software is non-exclusive, nontransferable license (vithout the right to sublicense) and distributors), solely for use with Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum extent its necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of hazardous substances management, or other taslaltations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or properly damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.